
Logistics

 Any questions about last night’s discussion?

 Slides will be posted with the main lecture slides.

 Programming assignment?

 Project?

 Paper?

 NOTE: Programming assignment #2 due date pushed

back two days until next Thursday at 5pm.

 Originally was due Tuesday at 2pm.

 Research paper #3 posted.

 On transactions for shared memory concurrency.

Book

 Today we do ch. 14.

 Next week, we head into Ch. 15 and then back to

Ch. 8.

Distributed Transactions

 In general, data items belonging to a service may

be distributed among several servers

 Client transactions involve multiple servers

 directly by requests made by a client

 indirectly via requests made by servers

 Distributed transaction

 any transaction whose activities involve multiple servers

 Client transactions that involve multiple servers

indirectly may be modelled as nested transactions

Requirements

 Atomicity

 either all of the servers involved commit

 or all of them abort

 coordinator ensures the same outcome

 depends on protocol chosen

 “two-phase commit protocol” is common

 Concurrency control

 local control to ensure transactions are serializable

 must be serialized globally

 extention of concurrency control methods

Structuring of Distributed Transactions

 Simple distributed transaction

 client makes requests to more than one server

 each server carries out the client’s requests without

invoking operations on other servers

 each transaction accesses servers’ data items

sequentially

 when locking is used, a transaction can only be waiting

for one data item at a time

 Nested transaction

 server invokes operations on other servers

 hierarchy of nested transactions

 Hierarchical or flattened commit protocols.

Coordinator of a Distributed Transaction

 Distributed servers need to coordinate their actions

when the transaction commits

 Client sends OpenTransaction request to server

 Server returns transaction ID

 must be unique within a distributed system

 server ID + unique ID within server

 First server in the transaction become coordinator

 responsible for committing or aborting

 responsible for adding other servers (workers)

 records list of worker, coordinator ID

AddServer Transactional Service Function

 AddServer(Trans, Server ID of coordinator)

 informs server involved in transaction Trans

 AddServer must be used by the client before any

operations are requested in a server not yet joined

 supplies transaction ID

 supplies transaction coordinator ID

 Receipt of AddServer

 initializes local transaction

 sends NewServer request to coordinator

 NewServer(Trans, Server ID of worker)

Coordination and Transaction Completion

 Coordinator and workers knowing each other

enables them to collect information needed at

commit time

 Distribution of servers in a transaction can be made

transparent to user-level programs

 record ID of server that opens transaction

 issue AddServer when new server joins with ID

 CloseTransaction or AbortTransaction

 called when transaction ends

Atomic Commit Protocols

 Transaction end when client requests that the

transaction should be committed or aborted

 One-phase atomic commit protocol

 coordinator communicates the commit or abort request to

all the servers in the transaction

 continue repeating request until all had acknowledged

 One-phase atomic commit is inadequate

 client requests a commit

 does not allow server to unilaterally abort

 servers must be able to abort in certain situations

Two-Phase Commit Protocol

 Designed to allow any server to abort its part of the

transaction

 Due to atomicity, if one part of a transaction is

aborted, the whole transaction must be aborted

 First phase

 each server votes for transaction to be committed or

aborted

 once a server votes commit, it cannot abort

 server must ensure it can commit before voting

 transaction is said to be a prepared state

Two-Phase Commit Protocol (continued)

 Second phase

 every server carries out the joint decision

 if any one server votes to abort, then the decision must be

to abort

 Think of the majority function as being boolean AND.

 if all servers vote to commit, then the decision is to

commit the transaction

 The problem is to ensure that all the servers vote

and that they all reach the same decision

 simple with no errors

 protocol must work correctly in face of failures, lost

messages, temporary loss of communication

More Two-Phase Commit Protocol

 A client’s request to commit/abort directed to

coordinator

 Client abort or server transaction abort

 coordinator informs workers immediately

 Two-phase commit protocol comes into play when

client asks coordinator to commit

 First phase (commit)

 coordinator asks workers if they are prepared

 coordinator tells workers to commit (abort)

 server-to-server operations

More Two-Phase Commit Protocol

 Voting phase and completion phase

 Apparently straightforward protocol could fail due to

one or more of the servers failing or due to a

breakdown in communication

 Each server saves information relating to the two-

phase commit protocol in permanent storage

 Permanent storage here is non-volatile, temporary space

essentially.

 Timeout actions are included in the protocol

 various stages at which a server cannot progress its part

of the protocol until it receives another request or reply

from one of the other servers

Timeouts

 Worker votes Yes and waits for coordinator to report

on the outcome

 Worker is uncertain of the outcome and cannot

proceed

 Worker makes GetDecision request

 get reply to continue protocol

 wait for reply

 Worker could obtain decision cooperatively

 distributed agreement algorithm

 useful when coordinator has failed

 still need to get out of uncertain states

Timeouts (continued)

 Worker can be delayed when carried out all client

requests, but not yet received CanCommit? from

coordinator

 worker can decide to Abort unilaterally

 Coordinator may be delayed waiting for votes from

the workers

 may decide to abort the transaction

 announce AbortTransaction to the workers who have

already sent their votes

 tardy workers voting Yes will be ignored

Performance of Two-Phase Commit Protocol

 All goes well (N servers)

 N-1 CanCommit? messages and replies

 N-1 DoCommit messages

 proportional to 3N

 time cost: three rounds of messages

 HaveCommitted not counted

 Worst case

 arbitrarily many server and communication failures

 can tolerate succession of failures

 guarantees to complete eventually

Performance (continued)

 Considerable delay to workers in uncertain states

 Occurs when the coordinator has failed and cannot

reply to GetDecision requests from workers

 Three-phase commit protocols have been designed

to alleviate delays

Distributed Concurrency Control

 Collection of servers of distributed transactions

 jointly responsible for ensuring transaction performed in

serial equivalent manner

 T before U at one server, it must be in that order at

all servers

 Mechanisms

 locking

 timestamp ordering

 optimistic concurrency control

Distributed Deadlocks

 A global wait-for graph can in theory be constructed

from local ones

 There can be a cycle in the global wait-for graph that

is not in any single local one

 distributed deadlock

 deadlock iff there is a cycle in the wait-for graph

 Detection of distributed deadlock requires a cycle to

be found in global transaction wait-for graph

distributed among the servers

 local wait-for graphs

 communication required between servers

Distributed Deadlock Solutions

 Centralize deadlock detection

 one server is global deadlock detector

 collects local wait-for graphs

 builds global wait-for graph and finds cycles

 decides how to resolve deadlock

 inform servers as to the transactions to be aborted

 Issues

 centralized approach has poor reliability

 transmitting local wait-for graphs is high

Phantom Deadlocks

 Deadlock detected but not really a deadlock

 Information about wait-for relationships between

transactions eventually collected in one place

 Chance that transaction holding a lock will release it

during deadlock detection algorithm and no deadlock will

actually exist

 Simple phantom deadlocks will not arise if two-phase

locks are used

 Recall: two phase locking involves grow then shrink phase, with no

releases followed by more lock acquisitions.

 A phantom deadlock could be detected if a waiting

transaction in a deadlock cycle aborts during the

deadlock detection procedure

Edge Chasing (Path Pushing)

 Global wait-for graph not constructed

 servers involved each know some edges

 Servers attempt to find cycles by forwarding

messages called probes

 follow edges of the graph throughout system

 contains transaction wait-for relationships representing a

path in the global wait-for graph

 When should a server send out a probe?

 At any point, a transaction can be either active or

waiting at just one of these servers

Edge Chasing (Path Pushing) (continued)

 Coordinator records active or waiting for a data

item and workers can get this information

 lock managers inform coordinators when transactions

start waiting or become active

 Coordinator informs workers when transaction is

aborted and locks can be released and edges

removed in local wait-for graphs

 Edge chasing has three steps:

 initiation: sending out probes on waiting events

 detection: receiving probes and detecting cycles

 resolution: aborting transactions to break deadlock

Edge Chasing (Path Pushing) (continued)

 Initiation

 T waits for U where U is waiting to access a data item at

another server

 send probe containing edge <TU> to server where U is

blocked

 if U sharing a lock, probes sent to holders of lock

 Detection

 receive <TU> : check to see if U also waiting

 if so, transaction it waits for is added to the probe

<TUV> and probe is forward if necessary

Edge Chasing (Path Pushing) (continued)

 Before a server transmits a probe to another

server, it consults the coordinator of the last

transaction in the path to find out whether the latter

is waiting for another data item elsewhere

 Most often servers send probes to transaction

coordinators which then forward them to the server

of the data item the transaction is waiting for

 Deadlocks should be found provided waiting

transactions do not abort and there are no failures

 2(N-1) messages sent for a cycle involving N

transactions

Recovery

 Recovery necessary for failure atomicity and

durability of transactions.

 Recovery manager helps make this happen.

 Saves objects in permanent store for committed

transactions.

 Restores server objects after a crash.

 Manage layout of permanent store to improve

performance of recoveries.

 Clean up and optimize space usage of permanent store.

Recovery and permanent store

 In distributed transactions, we have a two (or more)

phase protocol.

 Before actual commit occurs, distributed servers

agree that they are prepared to commit.

 This must be recorded to permanent store before sending

their response to the coordinator.

 The recovery manager also maintains a list of

objects and corresponding values created by active

transactions.

 “Tentative versions” of objects.

 Commitment causes tentative versions to replace

committed versions.

Common technique: Logging

 Historical record of transactions performed by a

server.

 Values, transaction statuses, intention lists.

 Ordered by order in which transactions occurred (started,

committed, aborted).

 Think of the log as a sophisticated version history

repository.

 Maintain historical record of changes and operations.

 Allow restoration of the most recent valid snapshot of the

system when recovering from crash.

