Logistics

» Any questions about last night’s discussion?
Slides will be posted with the main lecture slides.

» Programming assignment?

» Project?

» Paper?

» NOTE: Programming assignment #2 due date pushed
back two days until next Thursday at 5pm.
Originally was due Tuesday at 2pm.

» Research paper #3 posted.
On transactions for shared memory concurrency.



Book

» Today we do ch. 14.

» Next week, we head into Ch. 15 and then back to
Ch. 8.



Distributed Transactions

» In general, data items belonging to a service may
be distributed among several servers
» Client transactions involve multiple servers
directly by requests made by a client
Indirectly via requests made by servers

» Distributed transaction
any transaction whose activities involve multiple servers

» Client transactions that involve multiple servers
iIndirectly may be modelled as nested transactions



Requirements

» Atomicity
either all of the servers involved commit
or all of them abort
coordinator ensures the same outcome
depends on protocol chosen
“two-phase commit protocol” is common

» Concurrency control
local control to ensure transactions are serializable
must be serialized globally
extention of concurrency control methods



Structuring of Distributed Transactions

» Simple distributed transaction
client makes requests to more than one server

each server carries out the client’s requests without
Invoking operations on other servers

each transaction accesses servers’ data items
sequentially

when locking Is used, a transaction can only be waiting
for one data item at a time
» Nested transaction
server invokes operations on other servers
hierarchy of nested transactions
Hierarchical or flattened commit protocols.



Coordinator of a Distributed Transaction

» Distributed servers need to coordinate their actions
when the transaction commits

» Client sends OpenTransaction request to server

» Server returns transaction 1D
must be unique within a distributed system
server ID + unique ID within server

» First server in the transaction become coordinator
responsible for committing or aborting
responsible for adding other servers (workers)
records list of worker, coordinator ID



AddServer Transactional Service Function

» AddServer(Trans, Server ID of coordinator)
Informs server involved Iin transaction Trans

» AddServer must be used by the client before any

operations are requested in a server not yet joined

supplies transaction ID
supplies transaction coordinator ID

» Receipt of AddServer
Initializes local transaction

sends NewServer request to coordinator
NewServer(Trans, Server ID of worker)



Coordination and Transaction Completion

» Coordinator and workers knowing each other
enables them to collect information needed at
commit time

» Distribution of servers in a transaction can be made
transparent to user-level programs
record ID of server that opens transaction
Issue AddServer when new server joins with ID
» CloseTransaction or AbortTransaction
called when transaction ends



Atomic Commit Protocols

» Transaction end when client requests that the
transaction should be committed or aborted
» One-phase atomic commit protocol

coordinator communicates the commit or abort request to
all the servers in the transaction

continue repeating request until all had acknowledged
» One-phase atomic commit is inadequate

client requests a commit

does not allow server to unilaterally abort

servers must be able to abort in certain situations



Two-Phase Commit Protocol

» Designed to allow any server to abort its part of the
transaction

» Due to atomicity, if one part of a transaction is
aborted, the whole transaction must be aborted

» First phase

each server votes for transaction to be committed or
aborted

once a server votes commit, it cannot abort
server must ensure it can commit before voting
transaction is said to be a prepared state



Two-Phase Commit Protocol (continued)

» Second phase
every server carries out the joint decision

If any one server votes to abort, then the decision must be
to abort

Think of the majority function as being boolean AND.
If all servers vote to commit, then the decision is to
commit the transaction
» The problem is to ensure that all the servers vote
and that they all reach the same decision
simple with no errors

protocol must work correctly in face of failures, lost
messages, temporary loss of communication



More Two-Phase Commit Protocol

» Aclient’s request to commit/abort directed to
coordinator
» Client abort or server transaction abort
coordinator informs workers immediately
» Two-phase commit protocol comes into play when
client asks coordinator to commit
» First phase (commit)
coordinator asks workers if they are prepared
coordinator tells workers to commit (abort)
server-to-server operations



More Two-Phase Commit Protocol

» Voting phase and completion phase

» Apparently straightforward protocol could fail due to
one or more of the servers failing or due to a
breakdown in communication

» Each server saves information relating to the two-
phase commit protocol in permanent storage

Permanent storage here is non-volatile, temporary space
essentially.

» Timeout actions are included in the protocol

various stages at which a server cannot progress its part
of the protocol until it receives another request or reply
from one of the other servers



Timeouts

» Worker votes Yes and waits for coordinator to report
on the outcome

» Worker is uncertain of the outcome and cannot
proceed
» Worker makes GetDecision request

get reply to continue protocol
wait for reply

» Worker could obtain decision cooperatively
distributed agreement algorithm
useful when coordinator has failed
still need to get out of uncertain states



Timeouts (continued)

» Worker can be delayed when carried out all client
requests, but not yet received CanCommit? from
coordinator

worker can decide to Abort unilaterally

» Coordinator may be delayed waiting for votes from
the workers
may decide to abort the transaction

announce AbortTransaction to the workers who have
already sent their votes

tardy workers voting Yes will be ignored



Performance of Two-Phase Commit Protocol

» All goes well (N servers)
N-1 CanCommit? messages and replies

N-1 DoCommit messages
proportional to 3N

time cost: three rounds of messages
HaveCommitted not counted

» Worst case
arbitrarily many server and communication failures
can tolerate succession of failures
guarantees to complete eventually



Performance (continued)

» Considerable delay to workers in uncertain states

» Occurs when the coordinator has failled and cannot
reply to GetDecision requests from workers

» Three-phase commit protocols have been designed
to alleviate delays



Distributed Concurrency Control

» Collection of servers of distributed transactions

jointly responsible for ensuring transaction performed in
serial equivalent manner

» T before U at one server, it must be in that order at
all servers
» Mechanisms
locking
timestamp ordering
optimistic concurrency control



Distributed Deadlocks

» A global wait-for graph can in theory be constructed
from local ones

» There can be a cycle in the global wait-for graph that
IS not in any single local one

distributed deadlock
deadlock iff there is a cycle in the wait-for graph

» Detection of distributed deadlock requires a cycle to
be found in global transaction wait-for graph
distributed among the servers

local wait-for graphs
communication required between servers



Distributed Deadlock Solutions

» Centralize deadlock detection
one server Is global deadlock detector
collects local wait-for graphs
builds global wait-for graph and finds cycles
decides how to resolve deadlock
Inform servers as to the transactions to be aborted

» Issues
centralized approach has poor reliability
transmitting local wait-for graphs is high



Phantom Deadlocks

» Deadlock detected but not really a deadlock

» Information about wait-for relationships between
transactions eventually collected in one place

» Chance that transaction holding a lock will release it
during deadlock detection algorithm and no deadlock will
actually exist

» Simple phantom deadlocks will not arise if two-phase
locks are used
Recall: two phase locking involves grow then shrink phase, with no
releases followed by more lock acquisitions.
» A phantom deadlock could be detected if a waiting
transaction in a deadlock cycle aborts during the
deadlock detection procedure



Edge Chasing (Path Pushing)

» Global wait-for graph not constructed
servers involved each know some edges
» Servers attempt to find cycles by forwarding
messages called probes
follow edges of the graph throughout system

contains transaction wait-for relationships representing a
path in the global wait-for graph

» When should a server send out a probe?

» At any point, a transaction can be either active or
wailting at just one of these servers



Edge Chasing (Path Pushing) (continued)

» Coordinator records active or waiting for a data
item and workers can get this information

lock managers inform coordinators when transactions
start waiting or become active

» Coordinator informs workers when transaction Is
aborted and locks can be released and edges
removed In local wait-for graphs

» Edge chasing has three steps:
Initiation: sending out probes on waiting events

detection: receiving probes and detecting cycles
resolution: aborting transactions to break deadlock



Edge Chasing (Path Pushing) (continued)

» Initiation

T walits for U where U is waiting to access a data item at
another server

send probe containing edge <T—U> to server where U is
blocked

If U sharing a lock, probes sent to holders of lock
» Detection

receive <T—>U> : check to see if U also waliting

If so, transaction it waits for is added to the probe
<T—>U—>V> and probe is forward if necessary



Edge Chasing (Path Pushing) (continued)

» Before a server transmits a probe to another
server, it consults the coordinator of the last
transaction in the path to find out whether the latter
IS walting for another data item elsewhere

» Most often servers send probes to transaction
coordinators which then forward them to the server
of the data item the transaction is waiting for

» Deadlocks should be found provided waiting
transactions do not abort and there are no failures

2(N-1) messages sent for a cycle involving N
transactions



Recovery

» Recovery necessary for failure atomicity and
durability of transactions.

» Recovery manager helps make this happen.

Saves objects in permanent store for committed
transactions.

Restores server objects after a crash.

Manage layout of permanent store to improve
performance of recoveries.

Clean up and optimize space usage of permanent store.



Recovery and permanent store

» In distributed transactions, we have a two (or more)
phase protocol.

» Before actual commit occurs, distributed servers
agree that they are prepared to commit.

This must be recorded to permanent store before sending
their response to the coordinator.

» The recovery manager also maintains a list of
objects and corresponding values created by active
transactions.

“Tentative versions” of objects.

Commitment causes tentative versions to replace
committed versions.



Common technique: Logging

» Historical record of transactions performed by a
server.

Values, transaction statuses, intention lists.

Ordered by order in which transactions occurred (started,
committed, aborted).

» Think of the log as a sophisticated version history
repository.
Maintain historical record of changes and operations.

Allow restoration of the most recent valid snapshot of the
system when recovering from crash.



