
Logistics

 Any questions about last night’s discussion?

 Slides will be posted with the main lecture slides.

 Programming assignment?

 Project?

 Paper?

 NOTE: Programming assignment #2 due date pushed

back two days until next Thursday at 5pm.

 Originally was due Tuesday at 2pm.

 Research paper #3 posted.

 On transactions for shared memory concurrency.

Book

 Today we do ch. 14.

 Next week, we head into Ch. 15 and then back to

Ch. 8.

Distributed Transactions

 In general, data items belonging to a service may

be distributed among several servers

 Client transactions involve multiple servers

 directly by requests made by a client

 indirectly via requests made by servers

 Distributed transaction

 any transaction whose activities involve multiple servers

 Client transactions that involve multiple servers

indirectly may be modelled as nested transactions

Requirements

 Atomicity

 either all of the servers involved commit

 or all of them abort

 coordinator ensures the same outcome

 depends on protocol chosen

 “two-phase commit protocol” is common

 Concurrency control

 local control to ensure transactions are serializable

 must be serialized globally

 extention of concurrency control methods

Structuring of Distributed Transactions

 Simple distributed transaction

 client makes requests to more than one server

 each server carries out the client’s requests without

invoking operations on other servers

 each transaction accesses servers’ data items

sequentially

 when locking is used, a transaction can only be waiting

for one data item at a time

 Nested transaction

 server invokes operations on other servers

 hierarchy of nested transactions

 Hierarchical or flattened commit protocols.

Coordinator of a Distributed Transaction

 Distributed servers need to coordinate their actions

when the transaction commits

 Client sends OpenTransaction request to server

 Server returns transaction ID

 must be unique within a distributed system

 server ID + unique ID within server

 First server in the transaction become coordinator

 responsible for committing or aborting

 responsible for adding other servers (workers)

 records list of worker, coordinator ID

AddServer Transactional Service Function

 AddServer(Trans, Server ID of coordinator)

 informs server involved in transaction Trans

 AddServer must be used by the client before any

operations are requested in a server not yet joined

 supplies transaction ID

 supplies transaction coordinator ID

 Receipt of AddServer

 initializes local transaction

 sends NewServer request to coordinator

 NewServer(Trans, Server ID of worker)

Coordination and Transaction Completion

 Coordinator and workers knowing each other

enables them to collect information needed at

commit time

 Distribution of servers in a transaction can be made

transparent to user-level programs

 record ID of server that opens transaction

 issue AddServer when new server joins with ID

 CloseTransaction or AbortTransaction

 called when transaction ends

Atomic Commit Protocols

 Transaction end when client requests that the

transaction should be committed or aborted

 One-phase atomic commit protocol

 coordinator communicates the commit or abort request to

all the servers in the transaction

 continue repeating request until all had acknowledged

 One-phase atomic commit is inadequate

 client requests a commit

 does not allow server to unilaterally abort

 servers must be able to abort in certain situations

Two-Phase Commit Protocol

 Designed to allow any server to abort its part of the

transaction

 Due to atomicity, if one part of a transaction is

aborted, the whole transaction must be aborted

 First phase

 each server votes for transaction to be committed or

aborted

 once a server votes commit, it cannot abort

 server must ensure it can commit before voting

 transaction is said to be a prepared state

Two-Phase Commit Protocol (continued)

 Second phase

 every server carries out the joint decision

 if any one server votes to abort, then the decision must be

to abort

 Think of the majority function as being boolean AND.

 if all servers vote to commit, then the decision is to

commit the transaction

 The problem is to ensure that all the servers vote

and that they all reach the same decision

 simple with no errors

 protocol must work correctly in face of failures, lost

messages, temporary loss of communication

More Two-Phase Commit Protocol

 A client’s request to commit/abort directed to

coordinator

 Client abort or server transaction abort

 coordinator informs workers immediately

 Two-phase commit protocol comes into play when

client asks coordinator to commit

 First phase (commit)

 coordinator asks workers if they are prepared

 coordinator tells workers to commit (abort)

 server-to-server operations

More Two-Phase Commit Protocol

 Voting phase and completion phase

 Apparently straightforward protocol could fail due to

one or more of the servers failing or due to a

breakdown in communication

 Each server saves information relating to the two-

phase commit protocol in permanent storage

 Permanent storage here is non-volatile, temporary space

essentially.

 Timeout actions are included in the protocol

 various stages at which a server cannot progress its part

of the protocol until it receives another request or reply

from one of the other servers

Timeouts

 Worker votes Yes and waits for coordinator to report

on the outcome

 Worker is uncertain of the outcome and cannot

proceed

 Worker makes GetDecision request

 get reply to continue protocol

 wait for reply

 Worker could obtain decision cooperatively

 distributed agreement algorithm

 useful when coordinator has failed

 still need to get out of uncertain states

Timeouts (continued)

 Worker can be delayed when carried out all client

requests, but not yet received CanCommit? from

coordinator

 worker can decide to Abort unilaterally

 Coordinator may be delayed waiting for votes from

the workers

 may decide to abort the transaction

 announce AbortTransaction to the workers who have

already sent their votes

 tardy workers voting Yes will be ignored

Performance of Two-Phase Commit Protocol

 All goes well (N servers)

 N-1 CanCommit? messages and replies

 N-1 DoCommit messages

 proportional to 3N

 time cost: three rounds of messages

 HaveCommitted not counted

 Worst case

 arbitrarily many server and communication failures

 can tolerate succession of failures

 guarantees to complete eventually

Performance (continued)

 Considerable delay to workers in uncertain states

 Occurs when the coordinator has failed and cannot

reply to GetDecision requests from workers

 Three-phase commit protocols have been designed

to alleviate delays

Distributed Concurrency Control

 Collection of servers of distributed transactions

 jointly responsible for ensuring transaction performed in

serial equivalent manner

 T before U at one server, it must be in that order at

all servers

 Mechanisms

 locking

 timestamp ordering

 optimistic concurrency control

Distributed Deadlocks

 A global wait-for graph can in theory be constructed

from local ones

 There can be a cycle in the global wait-for graph that

is not in any single local one

 distributed deadlock

 deadlock iff there is a cycle in the wait-for graph

 Detection of distributed deadlock requires a cycle to

be found in global transaction wait-for graph

distributed among the servers

 local wait-for graphs

 communication required between servers

Distributed Deadlock Solutions

 Centralize deadlock detection

 one server is global deadlock detector

 collects local wait-for graphs

 builds global wait-for graph and finds cycles

 decides how to resolve deadlock

 inform servers as to the transactions to be aborted

 Issues

 centralized approach has poor reliability

 transmitting local wait-for graphs is high

Phantom Deadlocks

 Deadlock detected but not really a deadlock

 Information about wait-for relationships between

transactions eventually collected in one place

 Chance that transaction holding a lock will release it

during deadlock detection algorithm and no deadlock will

actually exist

 Simple phantom deadlocks will not arise if two-phase

locks are used

 Recall: two phase locking involves grow then shrink phase, with no

releases followed by more lock acquisitions.

 A phantom deadlock could be detected if a waiting

transaction in a deadlock cycle aborts during the

deadlock detection procedure

Edge Chasing (Path Pushing)

 Global wait-for graph not constructed

 servers involved each know some edges

 Servers attempt to find cycles by forwarding

messages called probes

 follow edges of the graph throughout system

 contains transaction wait-for relationships representing a

path in the global wait-for graph

 When should a server send out a probe?

 At any point, a transaction can be either active or

waiting at just one of these servers

Edge Chasing (Path Pushing) (continued)

 Coordinator records active or waiting for a data

item and workers can get this information

 lock managers inform coordinators when transactions

start waiting or become active

 Coordinator informs workers when transaction is

aborted and locks can be released and edges

removed in local wait-for graphs

 Edge chasing has three steps:

 initiation: sending out probes on waiting events

 detection: receiving probes and detecting cycles

 resolution: aborting transactions to break deadlock

Edge Chasing (Path Pushing) (continued)

 Initiation

 T waits for U where U is waiting to access a data item at

another server

 send probe containing edge <TU> to server where U is

blocked

 if U sharing a lock, probes sent to holders of lock

 Detection

 receive <TU> : check to see if U also waiting

 if so, transaction it waits for is added to the probe

<TUV> and probe is forward if necessary

Edge Chasing (Path Pushing) (continued)

 Before a server transmits a probe to another

server, it consults the coordinator of the last

transaction in the path to find out whether the latter

is waiting for another data item elsewhere

 Most often servers send probes to transaction

coordinators which then forward them to the server

of the data item the transaction is waiting for

 Deadlocks should be found provided waiting

transactions do not abort and there are no failures

 2(N-1) messages sent for a cycle involving N

transactions

Recovery

 Recovery necessary for failure atomicity and

durability of transactions.

 Recovery manager helps make this happen.

 Saves objects in permanent store for committed

transactions.

 Restores server objects after a crash.

 Manage layout of permanent store to improve

performance of recoveries.

 Clean up and optimize space usage of permanent store.

Recovery and permanent store

 In distributed transactions, we have a two (or more)

phase protocol.

 Before actual commit occurs, distributed servers

agree that they are prepared to commit.

 This must be recorded to permanent store before sending

their response to the coordinator.

 The recovery manager also maintains a list of

objects and corresponding values created by active

transactions.

 “Tentative versions” of objects.

 Commitment causes tentative versions to replace

committed versions.

Common technique: Logging

 Historical record of transactions performed by a

server.

 Values, transaction statuses, intention lists.

 Ordered by order in which transactions occurred (started,

committed, aborted).

 Think of the log as a sophisticated version history

repository.

 Maintain historical record of changes and operations.

 Allow restoration of the most recent valid snapshot of the

system when recovering from crash.

