
Distributed systems 

Week 6, Lecture 1 



Logistics 
  Remember: Prog. Assign. #2 delayed. 

  Note on reading #3. 
  Don’t get bogged down in the programming languages details.  

Focus on content directly talking about transactions.  
Ignore section 5.  Skim the rest. 

  Goal of this reading: Expose you to a real context where 
transactions are having a real impact outside databases. 
  Transactions can be tedious. It’s easy to blow them off as a topic of 

relevance to a small community, like the databases world.   
  STM is interesting because it is an example of transactions in a 

context that may impact all of us in the not-so-distant-future. 
  Don’t get scared by the Haskell. 



Before we dive into Ch. 15 
  Two discussion points: 

  1. Programming assignment #2 Q and A. 
  2. Revisiting concurrency control 



PA2 notes 
  So far, some of you have turned in the code for the Linda 

example. 
  The trickiest routine I’ve seen so far is the blocking in() 

method. 
  In: Attempt to read a tuple of a specific type, block until one 

appears of that type. 

  There are three approaches to achieve this. 
  Busy waiting 
  Wait()/Notify() 
  Typed pending lists 



Blocking in() 
  Busy waiting 

  Spin in an infinite loop where the loop body is a synchronized block that scans the tuple 
space for a matching tuple. 
  This is bad w.r.t. performance.  Serializes everything. 

  Wait()/Notify() 
  A thread can voluntarily give up it’s lock in a synchronized block by calling wait().  Another 

thread can cause it to come back to life by calling notify(). 
  This is better, as the thread looking for a tuple will go to sleep until a new tuple comes 

along.  No guarantee though that the new tuple is what it was looking for. 

  Typed pending lists 
  Similar to wait()/notify(), but callers go into a blocked waiting state where they are awoken 

if and only if a tuple that matches the type they are looking for arrives. 

  I did not specify which of these I wanted you to implement, so I will not penalize 
you if you choose an inefficient method.  I would prefer you to attempt to try for 
the method that achieves the best performance though. 



Wait and notify 
  A thread in a synchronized block will call wait(), allowing it to 

go to sleep and other threads to acquire the lock it had. 
  Another thread may call notify() to wake up threads that went 

to sleep on a wait() call. 
  Threads that were wait()-ing are then able to attempt to 

reacquire the lock. 
  Other threads may acquire it first.  There is no guarantee that the 

wait()ing thread will get the lock after a notify().  Some other thread 
may slip in.  The awakened thread will just block in this case. 

  Wait() and notify() are methods in Thread that are OK to use, 
but dangerous to overload. 

  There is a version of wait() that allows threads to timeout on 
a wait call.  This is not likely to be of use here. 
  Life can get complicated using this. 



Annoyances 
  RMI requires you to explicitly set up security policies to 

allow connections between clients and servers. 
  For example, a server might say: 

  My only advice is to follow the guidance in the Java RMI 
tutorial.  You can also turn up tips for making this work on 
different systems (like Windows) by Googling with the 
exception name.  I searched for this and got good results: 
  java.security.AccessControlException RMI 

grant codeBase "file:/home/you/src/" {

    permission java.security.AllPermission;

};




Reviewing concurrency control 
  Concurrency control is required when more than one unit of 

execution (thread, process, remote process, etc…) may access 
data in a manner in which order of accesses makes a difference 
in maintaining some correctness property of the system. 

  An underlying assumption here is that the sequence of 
operations that we consider is large, far more than a single 
instruction. 
  In other words, coarser granularity than hardware can support 

atomicity for. 

  Two methods discussed: 
  Critical sections and mutual exclusion. 
  Transactions. 



Mutual exclusion 
  The simplest case is enforcing mutual exclusion in a critical 

section.  In other words, one and only one process in the CS 
at any given time. 

  Critical sections don’t only correspond to blocks of code.  
They correspond to the variables that the blocks are working 
on. 
  So, if “balance” is a sensitive data element to protect, all 

manipulations of it and computations based on it may need to fall 
within critical sections with mutually excusive access. 

  Acquire lock at front of CS, release at end. 
  Benefit: Easy to implement. 
  Problem: Prone to deadlock, serialization of concurrent 

execution. 
  Serialization just means performance will be suboptimal. 
  Typically we want to avoid this, as serialization kills scalability. 



Transactions 
  Transactions are less aggressive. 
  Surround the block of sensitive code with a transaction stating 

it should execute atomically. 
  Acquire locks only when necessary during atomic section. 
  Release at the end. 
  Write data off to the side, write to main store only at end 

when you can show that doing so will not result in consistency 
problems with other threads. 

  Benefits: More concurrency, less serialization. 
  Higher degree of concurrency = more scalable. 

  Problems: Still prone to deadlock in some cases; more 
complex to implement. 



Onwards 
  Into Ch. 15. 

  Replication 

  This is a fairly digestible topic. 

  I will deviate a little from the book here to give you 
examples in systems that you likely have really used. 
  I’ll talk a little about Coda, but not the other two.  Those you 

can get through the reading. 



Replication 
  Replication is a common technique in distributed systems 

for addressing: 

  Performance 
  Workload balancing via multiple servers providing the same 

data ; caching. 

  Availability 
  Multiple servers reduces probability of data being completely 

unavailable. 

  Fault tolerance 
  Dealing with failures 



Replication 
  Any system based on replication seeks transparency from 

the point of view of the client. 

  Clients should not know that data is replicated. 

  What makes this difficult? 
  For static data: 

  Nothing.  This is easy. 
  For dynamic data:  

  Maintaining consistency in the replicated set.  
  This is especially difficult if updates from participants in the replicated 

set synchronize infrequently. 



Replication examples 
  We all (should) have had direct experience with 

replication. 

  Where?  Version control systems! 
  RCS, CVS, SVN, Git, Mercurial, etc… 

  Recent developments in version control systems have 
definitely taken on a more sophisticated distributed flavor. 
  More about this later today.   



Replication basics 
  We have a set of objects we want to manage.  The objects are 

logical objects. 
  We maintain a set of instances of these objects stored on 

servers.  These are the physical objects. 
  Physical copies are called replicas. 

  A replication system allows clients to work with the logical 
objects by hiding the translation of the logical objects to the 
physical instances that they correspond to. 
  On the client side, we have a front-end that the client interacts with. 
  The server that manages the physical objects are called replica 

managers.  The front-end talks to these on behalf of the client. 



Failure model 
  In this discussion, we only consider crash failures and network 

partitioning. 
  Crashes:  A replica manager goes away. 
  Network partitioning: Components of the system stop being 

connected for some period of time. 

  Some VC systems also address the arbitrary/byzantine failure 
case. 

  An example of network partitioning in the version control 
case is your laptop.   
  You check out a version of the source repository onto your laptop 

and get onto a plane. 
  You interact with your local copy without being connected to the 

repository server. 



Client/server interactions 
  Clients interact with a front-end. 

  VC example: You are the client, SVN command line tool is the 
front end. 

  The front-end interacts with replica managers via: 
  Direct interaction with one replica manager, which in turn 

interacts with other managers. 
  Multicast to a set of replica managers. 

  Choice of interaction method is application dependent. 



Interactions 
  Interactions with the replica manager come in two 

flavors: 

  Read operations 
  Requesting an object. 

  Update operations 
  Providing a new version of an object to the replica manager. 
  Requires the set of replica managers to coordinate ordering 

when multiple updates occur simultaneously. 



Coordination schemes 
  How to coordinate multiple updates? 

  Replica managers can choose from a few different 
ordering disciplines: 

  FIFO: Order updates in order that they appear at front-ends.  
If Front-end requests A before B, any replica manager that 
handles B must handle A before it. 

  Causal: Replica managers obey happened-before ordering of 
requests from front-ends. 

  Total: If a replica manager handles A before B, then all replica 
managers that handles B will handle A first. 



Execution and agreement 
  Replica managers will execute requests from front-ends. 
  Tentative execution is possible if it is necessary to later 

undo the requests. 
  If replica managers obey a transactional discipline, this is 

necessary. 
  Why? 
  Remember: Two phase commit protocol in distributed 

transaction requires tentative commits during first voting phase 
to store potential commit to nonvolatile store before second 
phase where, upon unanimous vote, actual commit occurs. 

  Agreement amongst replica managers is consensus 
amongst the set on the effect of a request. 



Group communication 
  Replication is an inherently group-based operation. 

  Group is both client(s) and replica managers. 

  A key concern is membership in the group. 
  Membership can change (participants come and go) 
  Failures may occur (participants may vanish) 
  Notification (participants may wish to be notified upon changes 

to replicated data) 
  Think subscription model discussed a couple weeks ago. 

  Address expansion (map logical group name to actual 
participant addresses) 



IP multicast 
  IP multicast (IPM) doesn’t quite cut it for this membership 

model. 
  IPM allows dynamic membership 
  IPM performs address expansion 
  IPM does not provide notification when members come and go 
  IPM does not help with delivery coordination when 

membership changes during messaging operations. 

  So, IPM may be a protocol to build upon for replication, 
but additional higher-level work may need to be built to 
provide all of these functions. 



Exclusion 
  Group membership services may choose to exclude 

members when they become suspected of failure. 
  This may require a member to rejoin as a new member if 

it becomes excluded. 
  This can be very disruptive.  Requires failure detection 

mechanisms to be careful to avoid false exclusions when 
possible. 
  Failure detector must take care to avoid false exclusions. 

  Partitioning of networks leads to tricky situations. 
  Sometimes it is OK to run with a partial set of members. 
  Depends on application and nature of replicated data. 



View-synchronous group comm. 
  A view is a set of processes at a given point in time that 

are associated with a group that can be reached from 
processes within that group. 
  V0(g) = {p}; V1(g) = {p,p’}; V2(g) = {p} 

  The point of views is to: 
  Formalize the dynamic membership of groups. 
  Be able to say things about legality of certain interactions 

under changing membership conditions. 



View-synchronous group comm. 
  Agreement: Correct processes deliver the same sequence of 

views and the same set of messages in any given view. 
  In other words, if a process delivers m in view v(g), then all other 

correct processes that deliver m do so in view v(g). 

  Integrity: If p delivers m, then it will not deliver m again.  P 
must be in the group the message m was targeted to, and the 
sender of m must also be in the view in which p delivers m. 

  Validity:  If the system fails to deliver a message to a process, 
the members of the group that succeeded to deliver the 
message will deliver a new view with the failed process 
excluded immediately after the view in which the message was 
delivered. 



Delivering a view 

Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    
©  Pearson Education 2005  

p 

q 

r 

p crashes 

view (q, r) view (p, q, r) 

p 

q 

r 

p crashes 

view (q, r) view (p, q, r) 

a (allowed). b (allowed). 

p 

q 

r 

view (p, q, r) 

p 

q 

r 

p crashes 

view (q, r) view (p, q, r) 

c (disallowed). d (disallowed). 
p crashes 

view (q, r) 

These diagrams should look familiar from our discussion of 
cuts back when we talked about global states. 



Correctness criteria 
  Say we have a set of clients executing operations on a single 

server. 
  The single server will serialize the client operations. 
  We can establish a canonical execution of the set of 

operations against a single ‘virtual’ single image of the shared 
objects. 

  Clients see a view of the shared objects that is consistent with 
this virtual view. 

  What we wish to do is establish criteria for allowed 
interleavings that preserve correctness properties assumed on 
the clients. 
  Think of the bank account examples earlier in the term. 



Linearizablity and sequential consistency 

  Linearizability and SC are properties of a system. 
  In both cases, we start with the constraint that: 

  An interleaved sequence of operations meets the specification 
of a (single) correct copy of the objects. 

  This means that the interleaved sequence yields an end result 
equivalent to only one process executing the sequence of 
operations. 

  Linearizability: 
  Order of operations in interleaving is consistent with real times 

at which the operations occurred in actual execution. 
  Sequential consistency: 

  Order of operations in interleaving is consistent with the 
program order in which each individual client executed them. 



SC vs Linearizability 
  Linearizability is stricter than sequential consistency.  

Why? 
  Linearizability speaks of consistency with respect to the real 

time that operations occurred in actual execution. 
  This is hard to implement practically due to issues we already 

saw a few weeks ago related to tightly synchronizing clocks to 
come to a globally consistent view of time. 

  SC relaxes the constraint a bit, and instead simply says 
that the operations must occur in interleavings that 
preserve program order w.r.t. each client. 

  Practical constraints make SC more common in practice.  
In some cases, even SC isn’t preserved if the system can 
tolerate the impact it would have on the data. 



Passive vs. active replication 
  Passive: 

  Front-ends interact with a primary 
replica manager. 

  Primary RM interacts with backup 
RMs. 

  Failure of primary RM results in 
promotion of a backup RM to take on 
it’s role. 

  Active: 
  Replica managers form a group. 
  Front-ends communicate with group 

of RMs. 

FE C 

FE C 

RM 

Primary 

Backup 

Backup 

RM 

RM 

FE C FE C RM 

RM 

RM 

Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    
©  Pearson Education 2005  



Version control systems 
  VC systems are an everyday example of a distributed 

replication system that we all are (or should be) familiar 
with. 

  In the last 10 years or so, there has been an interesting 
proliferation in VC systems with a significant focus on: 
  Large, distributed development efforts. 
  Version control management in the presence of temporary 

disconnection from the main repository servers. 

  Examples: SVN, Mercurial (Hg), Git, Darcs, Arch 



SVN 
  Basic client-server model. 
  Doesn’t facilitate distributed, replicated objects. 
  Clients acquire copies from a master server, but can only 

see modifications from other clients when those clients 
synchronize with the server. 

  Big improvement over CVS with respect to multiple 
clients: 
  Atomic commits 

  SVN wasn’t a very aggressive change, but others were… 



Mercurial 
  Mercurial is an example of a true distributed version control 

system. 
  Each client has a full copy of the repository. 

  Developers can commit to their local copy. 
  Clients can merge their repositories with each other to synchronize 

their set of objects. 
  More of a peer-to-peer style model. 

  The “merge” operation is the fundamental method of 
synchronizing clients. 

  Instead of “check in” to a centralized repository, any 
participants can merge each other’s repositories. 

  Note that merging is not necessarily automatic.  Conflicts may 
arise that need to be resolved.  Tools assist with this. 



Git 
  Similar to mercurial. 
  Maintains cryptographic signatures for histories. 

  So corruptions of a history can be detected. 

  Based on append-only database containing blobs of data and 
metadata to describe what files/directories the contents 
correspond to, digital signatures, and versioning information. 

  Interestingly, we see in Git something similar to what we 
described last time as the recovery manager. 
  Git implements a recovery manager that manages the history of 

changes and updates. 
  The update manager deals with aborting commits and rolling back 

history to undo updates. 
  This is one complaint about Git – it periodically must run some 

maintenance of the database to clean up for efficiency (time/space). 



Notes 
  Other systems 

  Darcs 
  Haskell-based distributed version control.  Based on pull/push model 

of update and synchronization. 
  Monotone 

  One of the original distributed vc systems. 

  A consistent theme in these systems is the use of hash 
signatures (eg: SHA-1) to identify versions of files. 
  Unique signature for a file. 
  If you made changes based on a file with signature A, and merge 

with another repo with the same signature file, you can 
determine the history from a common point. 



Coda, Intermezzo 
  Coda is a distributed filesystem. 

  Anyone here build their own Linux kernels?  Coda is an option. 
  Replicated servers. 
  Disconnected operation (ie: laptops can unplug for a little 

while). 
  Based on local caches of the filesystem. 
  When a system reconnects to the network, the client sends it’s 

log of operations on it’s local cache to the server(s) in order to 
resynchronize. 

  Coda uses vector timestamps on each file. 
  Used for version history, conflict detection and resolution, and 

stale replica update. 



Coda 
  Support for disconnected operation only makes sense if 

you actually have the files to operate on BEFORE 
disconnection. 
  Not safe to rely on cache.  What if a directory contains A, B, 

and C, but you haven’t accessed C before disconnect.  You 
might want it after disconnect. 

  Uses notion of “hoarding”.  You provide a list of files and 
directories to have offline, and manually hoard them with 
a command. 
  “spy” command helps analyze your usage patterns while 

connected to determine what files to hoard without manually 
writing them all down. 



Coda 
  Disconnection and reconnection manually performed with the 

“cfs disconnect” and “cfs reconnect” commands. 
  Reconnect attempts to merge changes made while offline with 

the replica managers. 
  “repair” command used when conflicts arise that cannot be 

automatically resolved. 

  Coda led to a follow-on project called InterMezzo. 
  InterMezzo didn’t go very far, but led to a project that has 

been commercialized called “Lustre”. 
  Lustre is used for parallel filesystems in clusters. 
  Interesting note: The latest big machines in DOE are moving to 

Lustre or Panasas (another parallel FS) for their filesystems. 
  Nobody uses NFS at scale anymore. 



Perfect place to leave off 
  Next time: 

  Distributed filesystems. 
  This week’s paper: Google File System (GFS) 


