
Distributed Systems

Week 6, Lecture 2

Logistics
  Any questions regarding programming assignment 2?

  Important things coming up:
  Next Tuesday: Book assignment #2 assigned.
  11/18/08: No Class – I will be in Austin at SC08.
  11/25/08: Term exam!

  Post-Thanksgiving: Term paper presentations.
  15 Students * 2 Days = ~10 min. each.
  We’ll talk more about this more in the next two weeks.

  Finals week: Project due, project presentation. Your chance
to show off what you did.

Today
  Distributed file systems.
  Last time, we talked about replication.

  There is quite a bit of conceptual overlap with the issues
that arise in file systems and replicated systems.

Basic file systems
  A basic file system (not distributed) provides an

abstraction layer between user applications and data
stored on a device (disk, memory, etc…).

  In a distributed file system, a similar abstraction layer is
provided.
  Transparent access to files on storage medium, potentially

accessed via a network.
  Provide an interaction mechanism that closely resembles that

of local file systems.

Why?
  What is useful about a distributed file system?

  We saw last time that one can address performance,
reliability, and fault-tolerance through replication.

  Even without replication, a remote file system is a good
choice for management.
  Imagine an organization with 100 machines that all work with

files you need to back up.
  You can either run around with 100 external drives or tapes,

or you can centralize the storage on one machine that you
backup and protect.
  E.g.: RAID – a basic replication-like service at the hardware level.

Parts of a file system

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Contents
  The FS contains data and metadata.

  Metadata: Owners, permissions, associations, etc…

  FS translates names to actual physical files.

  Naming is our most common experience with FS’s.
  /usr/local/bin/foo

  URLs are a generalization of the same hierarchical file naming
concept, except they roll into the naming scheme the host of
the data, and the protocol required to access it.

Transparencies
  Distributed file systems, where a network sits between

the client and the holder of the file, seek to provide
certain transparencies:

  Access: Familiar operations make sense. (e.g.: open())
  Location: It shouldn’t matter to the user where the files are.
  Mobility: Physical files can be moved on the server without

the client being aware of it. (e.g.: Splitting a partition)
  Performace: The file service should attempt to hide

performance variability on the file server.
  Scaling: Expansion of the service to handle greater capacities

(both w.r.t. storage and client counts) should be invisible to the
client.

Critical issue
  How do we deal with concurrency control?

  Potential instance of two users accessing a single file.
  Maybe updating it.

  How do we deal with this conflict?

  Typically, file systems impose or provide a locking
mechanism.

Locking schemes
  Advisory locking

  Application developers responsible for acquiring file locks.
  If they don’t, data corruption is possible.

  Mandatory locking
  If a file is locked, the file system forces other programs that try

to open the file to try to acquire the lock.
  FS tries to protect against careless app. writers.

  Rule of thumb:
  Windows = Mandatory locking
  UNIX systems = Advisory locking

File locking
  FileLock class in Java

  C: (As usual, a bit more tedious)

/* open file */
int fd = open(“file”, O_RDWR);

/* acquire lock */
flock lock = { F_WRLCK, SEEK_SET, 0, 0, 0 };
fcntl(fd, F_SETLK, &lock);

Heterogeneity
  Distributed file systems can help with heterogeneous

systems.
  Different hardware architectures.
  Different operating systems.

  NFS is an example of a distributed file system that
provides this.
  In fact, NFS was one of the main users of SunRPC and used the

external data representation we talked about many weeks ago
to deal with the issues of different data representations.

Security
  Distributed file systems also must pay careful attention to

security.
  On a single machine with a non-shared file system, user

permissions and access control lists are typically sufficient.
  Things get a bit trickier when the client and server are

two different machines.
  Authentication of requests from the client.
  Signatures on requests and responses (to defeat impersonation

attacks).
  Potential encryption (e.g.: transport over SSL).

NFS
  NFS is one of the oldest distributed file systems.
  Originated in the mid-1980s at Sun Microsystems.
  Released as an open standard early on to encourage third

party products adopting it.
  Based on SunRPC with XDR.

  Designed with client/server symmetry – a client can
become a server to share it’s files.

  Big emphasis on OS and hardware neutrality.

AFS
  Andrew File System
  Developed at CMU in the mid/late 1980s.
  Focus on reducing network overhead.

  Based on whole-file caching.

  Originally implemented on top of BSD and Mach, but has
made it’s way into other operating systems since.

Components of a File Service

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Components
  Flat file service: Map Unique file IDs to concrete files.
  Directory service: Map names to UFIDs. Also maintain

logical structure (e.g.: directories).
  Client module: Interface provided to user applications.

E.g.: UNIX-style file operations for NFS.

  Interface between client module and file service uses
some RPC layer to make functions like read(), write(),
create(), delete(), get/setAttribute() available to clients.

Security mechanisms
  Server side authentication required.
  Want to avoid stateful servers.
  So, two approaches:

  1. Authenticate with server, get a token back representing
successful authentication and pass that with subsequent
interactions.

  2. Pass user information with each call and authenticate for
each operation.

  Clearly #2 is easier at the cost of some low overhead.
NFS and AFS choose #2.

Directory services
  Directory service has a simple RPC interface exposed to

the client.
  Lookup, AddName, UnName, GetNames.

  Since interface with flat file service is based on fileIDs,
clients must interact with the directory service to resolve
names into fileIDs.
  Also to discover set of possible names (e.g.: ls).

Concrete example: NFS
  Based on SunRPC over either TCP or UDP.
  Server accepts connections from any client, responds only

if they authenticate validly.
  Uses a virtual filesystem module to hide the

implementation of the file system from the client.
  Other file systems use the VFS module too, not just NFS.
  These other file systems are not necessarily distributed.

NFS Architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system
NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file system Virtual file system

O
th

er

 fi
le

 s
ys

te
m

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

NFS mounting services
  Servers export a set of local file systems to clients.
  Clients mount these, just like any other file system, although

with additional information in the mount command to indicate
where the file server is.

  Supports hard mounting and soft mounting.
  Hard mounting: Clients block until request is fulfilled, retrying until

it finishes.
  Soft mounting: No blocking if requests not fulfilled after a few

retries, FS indicated failure.
  Hard mounting more common. Why? Sloppy application

developers don’t always check error conditions when
accessing files, so many apps run unpredictably when failures
occur.

  Hard mounting causes familiar NFS-related hangs. Next time
an NFS server wedges up on you, blame sloppy programmers.

Automounting
  When a remote file system is accessed before it is

mounted, the automounter will automatically issue the
request to the server to perform the mount.

  After a period of inactivity, the automounter can unmount
the filesystem.

  Implementation of automounting may vary, either through
the use of user-space processes and symbolic link tricks,
or actual mounting via kernel-level automounters.

Caching
  One of the most important parts of NFS: caching.

  This makes NFS a viable distributed file system from a
performance perspective.
  NFS isn’t perfect though. More on that later.

  File systems typically cache data in memory.
  Exploit locality of operations to avoid costly accesses to slow

disk.

  NFS provides this too.
  Server side caching is implemented just like regular file

system caching, to avoid costly disk access.

Caching
  Complications arise with write operations though.
  Clients who write to the filesystem need some assurance that

their writes actually made it to nonvolatile store.
  Two methods:

  Write-through: When a client writes, the data is stored in the
server cache AND written to disk before a response is issued.

  Write/commit: Write operations go to cache only. When file
closed, or explicit commit command is issued, then data is pushed to
nonvolatile store.

  Commit added in NFSv3.
  Write through addresses independent failures. If server

crashes, clients are allowed to continue assuming the data
actually was safely stored.

Caching
  Client side caching is possible too.

  Complication is that clients must be able to determine if their
cached copies of files are out of date.

  Timestamps are used. Cached data has two timestamps:
  Tc : Time when cache entry was last validated.
  Tm : Time when entry was last modified on the server.

  At any given time T, an entry is considered valid if T-Tc is less
than some “freshness interval” t or the modification time at
the server matches that recorded in the cache.

  So what does this imply?

Caching
  In the limit, smaller freshness intervals cause NFS to provide

one-copy consistency.
  Lower t = higher network and server load.

  Whenever a cached entry is used, the client first checks to see
if the freshness constraint holds.

  If so, it then contacts the server to check the modification
timestamps.

  Does not guarantee consistency. This is ok though, as most
applications will rarely suffer from accessing inconsistent data.

  This is a hard lesson to learn sometimes, when people use the
filesystem assuming consistency.
  Beware when developing apps to not assume filesystems provide

consistency!

Caching
  Writes are kept in the local cache until they are flushed

out to the server.
  Explicit close
  sync operation
  Daemons to help implement read-ahead and delayed-write will

also cause flushes to occur.

NFS locking
  NFS does not guarantee that locking is available via the

server. Older servers sometimes don’t support it.
  Mounting requires you to specify “nolock” option.

  Specialized daemon (lockd) is used to forward fcntl() lock
requests to the server.
  lockd is actually part of the RPC layer. (rpc.lockd)

  Only support for advisory locking.
  Client and server lockd architecture has provisions to

recover from crashes.

NFS performance
  For most general use cases, NFS performance is

acceptable for users.
  Observations of real workloads show higher incidence of

reads versus writes, so write-through overhead isn’t that
bad.

  Frequent network traffic to check timestamps (getattr)
due to caching.

  Large number of “lookup” calls to the directory service
expected.

  Some tuning can be performed for caching to find
freshness timeout values that fit a given workload and
client environment.

AFS
  AFS built for scalability, potentially in wide-area network

environments.
  Whole-file operations are the basis of AFS.

  Serving of whole files.
  Caching of whole files.

  Shared, infrequently updated files will be cached in clients.
  Very large caches will let users acquire most of the files

they will need in cache.

Design motivations
  AFS designed based on observed, measured workloads.
  Observations:

  Files typically tiny.
  Reads far more common than writes.
  Sequential access common, random access rare.
  Reads/write most commonly originate from only one user.

  Shared files typically only modified by one user.

  Files are referenced in bursts.
  If a file has recently been referenced, it is likely to be referenced again

soon.

More recent interesting FS developments

  FUSE: Filesystem in Userspace
  Allows for new file systems to be installed by users

without requiring direct kernel manipulation.
  No recompilation, no kernel modules.

  Some of the more interesting FUSE-based filesystems out
there are distributed file systems.

  My favorite: SSH-fs.
  Extremely useful.
  What does it do? Allows me to bring a remote file system into

my locally addressable file-space using SSH only.
  So remote side doesn’t have to be running anything special.

Plan9
  Developed at Bell labs by the UNIX designers.
  Goal of plan9 was to distribute tasks amongst sets of

machines instead of assuming single big machines.
  Based on name-space concept.

  Filesystem is a hierarchical namespace.
  Unlike UNIX, everything is a file.

  Devices, networks, graphics, etc…
  A program that provides services is a file-server, and it

introduces files into the namespace related to operations
it provides or performs.

  Based on a protocol called 9P.
  Implementation of 9P available in Linux called v9fs.

