
Distributed systems

Week 7, Lecture 1

Logistics
  Book assignment #2 posted.
  Less problems per chapter than first assignment, but a few

more chapters.
  Should be somewhat shorter than last time.

  Fifth research paper eliminated.
  I said “four or five”. It’s four.

  PA#2 grading.
  I will try to have the grades back by next week. My time this

week and last week was largely swamped by this upcoming
conference.

Change to chapter schedule
  Web-services will be replaced with peer-to-peer due to

my absence next Tuesday.

Projects
  Optional project status update this Thursday.

  Intended to just let me know what the status of your
project is. Very informal.

  Take this as an opportunity to see if your team is on track
and making progress.
  ~4 weeks to go, this is a good time to check up on yourselves.
  Good time to ask me for any help – better than last minute. 

Today
  Naming services.

  Naming services play a very important role in most
distributed systems.

  How do entities find each other?
  Typically done using names.
  Concrete addresses may change. Names are intended to stay

consistent.

Naming
  Does anyone recognize the address 128.223.6.41?

  Probably not. That’s because we all call that address
“ix.cs.uoregon.edu”.

  One of the most common naming services we use is
DNS.
  Maps hostnames to IP addresses on the internet.

Naming
  Naming decouples the identifier of an object from it’s

concrete address.
  A name is bound to an address by the naming service.
  The act of looking up a name and obtaining the address is

known as resolution.

  Resolution turns a name into some attribute that
describes an object in a way that makes it accessible. It
does not return the object itself.
  E.g.: Looking up an object name in an RMI system allows the

object instance to be obtained, but the lookup itself does not
necessarily provide this instance reference.

Examples
  DNS: Maps domain names onto attributes about the server.

  IP address
  Mail host information
  Length of time that host name entry is valid.

  X500: Maps personal names onto useful attributes.
  Phone number
  Address

  CORBA/JavaRMI: Maps abstract names onto concrete remote object
instances that provide a service or present some expected API.

  Filesystem: Maps filenames onto UFIDs that are used to identify actual
data on some storage medium.
  May combine DNS with local filesystem naming in the case of a distributed

filesystem.

Combined naming
  Some names actually contain more information than just a

name/address resolution.

  E.g.: http://www.cs.uoregon.edu/index.html

  This name specifies that:
  We are looking for a file called index.html in the root directory of …
  A host on the internet called www.cs.uoregon.edu …
  Which is accessible using the HTTP protocol.

  This notation is quite powerful for having a uniform method
for locating arbitrary resources on the Internet.
  Hence their name, Uniform Resource Locators (or URLs).

URI, URL, and URN
  Uniform Resource Identifiers are used to identify resources.

These can range from web pages, e-mail addresses
(mailto:matt@cs.uoregon.edu), to telephone numbers
(tel:+1-555-555-1212).

  Uniform Resource Locators are more specific, and are used
to find resources instead of just identify them.

  Uniform Resource Names are used to identify pure
resource names instead of locations. Examples are DOI
identifiers used to identify documents.
  E.g.: doi:10.1145/1131322.1131331

Name services
  Name management is typically separated from specific

services. This facilitates openness.

  Unification: Convenient to use a consistent naming scheme
for different services.

  Integration: It is hard to predict how things will be used in a
distributed system. If all resources use a similar naming
scheme, then it is easier to integrate them in creative ways
later.
  Otherwise, integration would require building tools aware of

different naming services. This would be inconvenient and time
consuming.

Name services
  With popular naming systems, service is a primary goal.
  For example DNS:

  Replication
  Caching

  Why? The Internet is heavily reliant on operations based on
names. The naming service is quite critical.

  Consistency is a secondary concern. It is more important that
clients receive an answer to a query, not necessarily the most
up to date.
  Service providers must take this into account when updating naming

entries.

Namespaces
  The idea of a namespace is that one can organize entities

in a naming scheme such that large numbers of objects
are manageable.

  A namespace also defines the syntax of valid names.
  E.g.: “…” is not a legal DNS name.

  Hierarchic namespaces are common.
  Very good to support unanticipated growth.

  Flat namespaces occasionally used.
  Typically finite, bounded by a maximum length identifier.

Aliases
  Aliases provide mechanisms to map complex names onto

simpler ones.
  E.g.: /usr/lib/libfoo.so instead of /usr/lib/libfoo.2.0.10.so

  Also useful to allow updates in the actual entity that the
aliased name points at, transparently to the user.
  DNS aliases hide the fact that the actual host that the name is

intended to point at may change.
  Library aliases in the file system can hide actual version

numbers of libraries from the user.
  Assuming the API provided by the library hasn’t changed.
  Library aliasing sometimes uses many aliases for version-level aliasing:

  libfoo.2.0.10.so, libfoo.2.0.so, libfoo.2.so, libfoo.so

Domains
  Typically domains correspond to administrative

authorities.
  Internet authorities control who can obtain names in .edu.
  The University determines who can obtain names within

the .uoregon.edu domain.
  CIS admins control who can obtain names within the

cs.uoregon.edu domain.

  And so on…

Combining namespaces
  Sometimes it is useful to take multiple disjoint namespaces and

combine them into a single unified namespace.
  Need to make sure merger doesn’t cause conflicts.

  Merging is a simple method. Assuming a hierarchical
namespace, add higher level names into which the roots of the
disjoint namespaces are bound.
  E.g.: Mount points in a filesystem.

  Some systems allow customized namespaces to be created.
  E.g.: Plan9 allows you to bring multiple directories together into a

single directory.
  Useful for treating a set of directories in a search path as a single unit.
  Makes searches consistent: looking at a directory is the same as a search

path, instead of having to treat search path variables separately.

Name server structuring
  In a simple distributed system, naming can be performed

by a single server.
  E.g.: RMI Registry

  In scalable systems though, the naming service itself must
be distributed.
  DNS would not work if there was one single server.

  Single point of failure.
  Performance bottleneck.

  What have we learned so far that would help with this?

Replication
  Replication can be used on the server side to increase

performance and be robust to failure.

  Clients can have a set of possible name servers to
contact.
  See /etc/resolv.conf on many Unix machines.
  Multiple “nameserver” lines are valid.

Iterative lookup
  Rarely does any server in a naming service know the entire

namespace, but, servers can find other servers that can help
resolve names.

  Name servers will be associated with each administrative
domain (eg: uoregon.edu). These name servers will have
details about their local domains, but may not have detailed
name information for other domains.

  Lookups to servers will sometimes result in an incomplete
response that indicates a server that should be queried that
may have further information.
  E.g.: Query to uoregon.edu for host.dept.pdx.edu returns a response

that indicates the pdx.edu or dept.pdx.edu DNS server should be
contacted to resolve the host.

Controlled lookups
  A name server can also perform this iterated resolution of a name

on behalf of the client, instead of asking the client to do it.

  Both of these schemes require that the name servers containing the
detailed information be visible to the client or server executing the
lookup.

  This may not be a legal assumption, as the servers with the
information may be hidden behind some administrative boundary
(e.g.: firewall).

  Recursive searches can deal with this. A server asks another server
for the information, and that server asks others if it cannot find it,
and so on.
  Names are returned but as they return, the information about who

resolved them is not passed back down the chain.

Iterative vs. recursive controlled lookups

1

2
3

5

1

2

3 4

4

A name server NS1 communicates with other name servers on behalf of a client

client client

Recursive
server-controlled

NS2

NS1

NS3

NS2

NS1

NS3

Non-recursive
server-controlled

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Addison-Wesley Publishers 2000

Admin.
boundary.
NS2 trusted,
NS1 and client
not.

Caching and iterative lookups
  Say I add a new host today and give it a name

“matt.cs.uoregon.edu”.

  That name will be registered in the UO DNS servers, but
likely not cached elsewhere very soon.

  Someone, somewhere may wish to find that host in the
future. Since it is not cached on their side, their DNS
server will have to seek out the information from the UO
server, or some other DNS server that has it cached.

Caching
  Caching is used to increase performance, reduce network

overhead.

  Local servers lookup unknown names from authoritative
servers when not found in their local store.
  When response received, request is answered and data is kept in

cache.

  Cached data has a “time to live” and the time when the data is
retrieved is recorded.
  Cached data is reused if within TTL limit.

  Clients are given cached data with an annotation that indicates
it is a non-authoritative answer.

DNS
  Designed in the mid-1980s.

  Replaced a crude system based on a centralized repository of
name/address mappings that was downloaded via FTP onto
computers that required tem.
  Clearly this old scheme could not scale.

  Also made it difficult to locally manage domain naming within
an organization.

  Internet designers wanted a naming scheme that had more
than host/address mappings.
  For example, DNS allows mail-related information to be looked up.

DNS
  Based on hierarchical naming, replicated data, and caching.

  Interestingly, DNS was designed for more general purpose
naming than we see today.
  Today it’s pretty much exclusively used for identifying hosts on

the Internet.

  The hierarchy of names has organizational
(.com, .net, .org) or geographical (.us, .cx, .de, .uk, etc…)
domains for very coarse grained organization.

Domain names
  Com: commercial
  Edu: educational
  Gov: US Government
  Mil: US Military
  Net: Network support

centers
  Org: Organizations not in

the above.
  Int: International

organizations.

  .us: United States
  .uk: United Kingdom
  .dk: Denmark
  .cx: Christmas Island
  .tv: Tuvalu

Name resolution
  Host names:

  Simple mapping of hostnames to IP addresses.

  Mail hosts:
  Used to see what host handles SMTP mail for a domain.
  Look up the MX record for cs.uoregon.edu, and you will see

that “vitalstatistix.cs.uoregon.edu” is the mail host.
  Multiple servers can be listed in case any are unreachable.

Other DNS services
  Some servers implement more services.

  Reverse lookup:
  Translate an IP into a name. If the IP is in the server’s domain it will

respond.

  Host information:
  This is discouraged, as it can compromise sensitive security

information.
  E.g.: Query for a known version of an OS w/ a vulnerability.

  Well-known services:
  Discover what services a host provides (e.g.: web, FTP) and the

protocol to contact them (UDP, TCP).

General naming
  Queries to DNS are made up of:

  Domain to resolve.
  Class of query.
  Type of query.

  Domain is just the name.

  Class of query. “IN” is the class for Internet domains names.
Others can exist (e.g.: Experimental DNS naming databases).

  Type of query defines what information about the domain
name is being sought. The types are related to the class.

Types
  Here are some examples for the IN class.

  A: Address (IP address)
  NS: Authoritative name server.
  CNAME: Canonical name of an alias.
  SOA: Marker for start of data for a zone.
  WKS: Well known service description.
  PTR: Domain name pointer (for reverse lookup)
  HINFO: Host info.
  MX: Mail exchange
  TXT: Arbitrary text.

Example: PDX.EDU

Scalability
  Replication and caching.

  Local DNS servers hold complete local information.
  Most queries are local, so fast, local servers perform well.

  DNS is split into zones.
  A zone is:

  Attribute data for a domain minus that which is managed by a subdomain.
(E.g.: uoregon.edu could defer to cs.uoregon.edu for CIS dept. info)

  Names and addresses of at least two authoritative servers. Authoritative
servers are most likely to be up to date.

  Names and addresses of subdomain servers.
  Zone management data.

Server relationships
  Authoritative servers can be trusted to have up-to-date data.

  Primary servers: These servers store the naming data in a file.
  Secondary servers: These servers retrieve data from primary servers

and cache it locally.

  Secondary servers update periodically (~1 day resolution) with
primary servers.

  This delay in information propagation is not uncommon to
encounter.

  Commonly seen when signing up for a new domain or moving
a domain from one host to another.
  This is acceptable, as once set up, changes are infrequent.

Hierarchy
  Root-level servers have

entries for authoritative
servers for top-level
domains (TLDs), and generic
TLDs like .com and .edu.

  These other authoritative
servers resolve names
further and pass down the
hierarchy until the names are
resolved.

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk

qmw.ac.uk

dcs.qmw.ac.uk
*.qmw.ac.uk

*.ic.ac.uk *.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk

co.uk

yahoo.com

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Addison-Wesley Publishers 2000

Discovery services
  Name/attribute mappings are not restricted to name-to-

attribute lookups only.
  Discovery services allow attribute-oriented queries.

  “Who has phone number 555-1212?”
  “What are the second floor printers?”

  Examples: LDAP, X.500, Microsoft Active Directory Services,
etc.

  Note that this is different than discovery in the sense of
spontaneous or ad hoc networks.

  In this case, we have a well known service with pre-defined
entries. Spontaneous situations attempt to infer similar
information via multicast message/response protocols.

X.500
  ISO/ITU standard
  Basis for LDAP (Lightweight Directory Access Protocol)
  Tree-based data organization

X.500 organization
  Directory information tree (DIT).

  Name tree.

  Directory information base (DIB).
  Data associated with nodes.

  Directory service agent (DSA).
  Servers. These hold DIBs, answer queries from clients.
  If a server DIB doesn’t have the data, it can ask another server

or redirect the client to another server.

  Directory user agent (DUA).
  Clients.

X.500

DSA

DSA

DSA

DSA

DSA DSA DUA

DUA

DUA

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Addison-Wesley Publishers 2000

DIB structure

... France (country) Great Britain (country) Greece (country) ...

BT Plc (organization) University of Gormenghast (organization)

Department of Computer Science (organizationalUnit)
Computing Service (organizationalUnit)

Engineering Department (organizationalUnit)

...

...

X.500 Service (root)

Departmental Staff (organizationalUnit)

Research Students (organizationalUnit)
ely (applicationProcess)

...

...

Alice Flintstone (person) Pat King (person) James Healey (person) Janet Papworth (person) ...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Addison-Wesley Publishers 2000

DIB entry

info
Alice Flintstone, Departmental Staff, Department of Computer Science,

University of Gormenghast, GB

commonName
 Alice.L.Flintstone
 Alice.Flintstone
 Alice Flintstone
 A. Flintstone

surname
 Flintstone

telephoneNumber
 +44 986 33 4604

uid

 alf

mail
 alf@dcs.gormenghast.ac.uk

Alice.Flintstone@dcs.gormenghast.ac.uk
roomNumber

 Z42

userClass

 Research Fellow

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Addison-Wesley Publishers 2000

Queries
  Read:

  Given a path to an entity and an attribute set (possibly all), read
the information for the entry.

  Filter:
  Given a base-path name (e.g.: CIS dept.), and an attribute to

match (e.g.: room number), return the set of entry names that
match the attribute.

  This list can then be read using the “read” operation.

Remaining lectures
  Peer-to-peer systems
  Distributed shared memory

