
Distributed Systems

Shared vs Distributed Memory
  Standard systems you encounter in your daily life come in one of

two forms: shared or distributed memory.

  Shared memory: A relatively small number of processors are
attached to a common memory subsystem.
  Any processor can address any location in memory directly.
  Memory subsystem deals with certain important concurrency control

issues, such as cache coherence.

  On the other hand, in a distributed system, we typically have
distributed memory.
  Memory owned by a subset of processors that can directly address it.
  Other processors must send request to processor that owns a block of

memory so it can perform memory accesses on behalf of the requestor.

Shared vs. distributed memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Mem

Mem

Mem

Mem

Shared memory
  Shared memory is attractive. Why?

  It is easy to write code that runs very fast.
  Distributed systems have to suffer performance hits due to network

latency and bandwidth.
  Distributed systems require two classes of operations for local versus

remote data.
  The primary difficulty in shared memory comes from concurrency

control to deal with correctness.

  Performance is also hard to predict in a distributed environment due
to potential external sources of resource consumption.

  Distributed systems also have to tolerate link or node failures.
  These are very rare in shared memory systems, and typically mean you

have bigger problems with your computer.

Distributed Shared Memory
  Shared memory is programmable – we all accept that. Just

write code in your favorite language, addressing memory just
like you always have.

  DSM brings this abstraction to the distributed world. Treat
remote nodes as holding memory in a deeper level of the
memory hierarchy than you do in the single machine.

  Hide the message passing or other techniques for doing
remote addressing from the user under a runtime library or
compiler.
  This also means that by hiding it from you, it can be implemented

better than had you coded it by hand.

Target Audience
  When is DSM a good choice?

  Typically when you want to run a single program in a
distributed system without explicitly dealing with the
layer that binds the distinct nodes together.
  Furthermore, when you want to be able to run the same code

in a non-distributed system.
  Either single CPU or in a shared memory system.

  Programs targeting parallel shared memory machines map
easily onto DSM.

UMA, NUMA, and DSM
  In small SMPs, memory access times are uniform. All memory accesses to

main store take the same amount of time.
  As SMPs get large, the cost for hardware to support UMA becomes

expensive, so memory access time becomes non-uniform. Hierarchy of
memory: tightly coupled processors have UMA, groups of those have
slightly higher latency, groups of these have even more, and so on.

  DSM is similar to NUMA – remote machines are just a very high latency
memory.

SGI Origin 2000
128 CPUs in NUMA
configuration.

Cray-link interconnect supporting NUMA.

NUMA
  NUMA architectures. Indicated switches that bridge distributed memories into a

single NUMA memory are very expensive as CPU count scales.

Switch Switch Switch

NUMA and performance
  Performance optimization is hard on NUMA machines.
  The same issues arise in DSM.

  Locality!

  Best performance is when the memory you access most
frequently is nearby.

  Caching can help, but as we’ll see later, granularity of caching
can cause false sharing and poor performance.
  Sometimes worse than performance with no cache at all!

  Also difficult to anticipate when memory access pattern is a
runtime property, not a static one.

Message passing and DSM
  Programming typically is asynchronous. “get” and “put” are

one sided.
  Intended to be similar to operations like “x=a[4]” and “a[4]=y”

respectively, where “a” is a DSM shared variable, and “x” and “y” are
local to the accessor.

  In DSM, variables may be shared. This makes some
correctness issues arise, as the owner of the data may see the
data modified without their consent.
  One sided operations don’t require explicit participation of the user

app. code on the other side – runtime layer takes care of that behind
the scenes, for better or worse.

  Requires protection, just like in threading with critical sections and
mutual exclusion.

Efficiency
  The book states that DSM programs can be made to perform

as well as the equivalent explicit message passing program.
  This is likely true, but only for specific cases. In general, DSM

does not scale well.
  This is one of the reasons you don’t see it used frequently in

practice.

  One of the primary reasons for this is that DSM systems
typically try to make the programmer as unaware as possible
of the distribution of memory underneath their program.
  This means coherence protocols in software, and other consistency

mechanisms. Those can be very network intensive, and will not scale
well.

Implementations
  NUMA can be considered a hardware form of DSM.

  These perform well, but at the cost of $$$. They can be
expensive.

  Paged virtual memory uses the VM system to hide remote
memory behind a well defined region of the address
space of each process.
  This provides transparency to the app, but requires support at

the OS level.
  Middleware solutions are the most portable and least

intrusive on the platform. No OS or hardware support
necessary.
  Sometimes can take advantage of hardware features though,

such as DMA from network devices.

DSM and abstraction
  One of the key features of a DSM system is abstraction.

  Provide the same abstraction to the programmer as the
existing language that they are working in.

  This is intended to address usability from the perspective
of the programmer.
  Easier to manage parts of a program if all data is addressed

equally, instead of some via variables and others via explicit
send/receive calls.

Types of DSMs
  Byte-oriented

  Distributed shared memory addressed at the byte level, just
like any other variable in a language like C.

  Page-based schemes typically support this.

  Object-oriented
  Objects are shared and their contents manipulated by external

processes via get/set methods, and possibly higher level
abstractions (such as queue push/pop methods).

  RMI would be an example of this, although acquisition of the
remote objects requires special calls that only apply to remote
objects.
  Not all objects treated equally.

Types of DSMs (2)
  Immutable data

  Linda!
  The tuple space is the shared memory, and it is viewable by all

participants.
  Operations are the “put” and “take” (out/in) operations of Linda.
  Data in the tuple space is never modified.

  If a process wants to modify an element, it must extract the tuple from
the tuple space and put another in it’s place with the modified data.

  You implemented a tuple space where the space existed within a
single process. The Linda model doesn’t prohibit the tuple space
from being distributed itself, as long as the semantics of the tuple
space are maintained.

Synchronization
  Like threads, when multiple execution contexts share a

common store, concurrency control mechanisms are
necessary to prevent detrimental non-determinism.

  So, most DSM systems provide abstractions such as locks
and semaphores so programmers can use standard
locking disciplines to protect critical sections and data.

  Virtual memory based systems can deal with atomic
instructions such as testAndSet, but at a potentially
high performance cost.

Consistency
  Consistency is all about ensuring that a set of

concurrently executing processes have a view of the
world that makes sense.
  A system that provides consistency prevents concurrent

processes having conflicting views of the state.

  The issues that arise are the same as those we saw for
replication schemes. We may desire sequential
consistency or linearizability.

  One interesting weaker consistency model that we may
desire is called coherence. This is what is provided in SMPs
with respect to the cache.

Caches and hierarchical memories.
  Think about a simple SMP. Typically we have a single

shared memory, but distinct caches on each processor.

  This isn’t very different from a distributed shared
memory. The caches are local to each processor, and the
shared memory is remote relative to the caches.

Caches and hierarchical memories
  What issue arises?

  Say a processor P1 reads a memory from the shared
store, and then modifies it.

  This modification occurs in the local cache of the
processor. Only when an operation that invalidates the
cache line occurs does the modified data get flushed to
main memory.

  Now, what if another processor reads the address that is
cached at P1? We would want that data to be accessed
by P2.

Caches and hierarchical memory
  Clearly we would want to have P2 see the updated version

that P1 holds in it’s cache.
  On the other hand, if P2 reads an address that P1 has never

seen, P1 never should care if P2 reads or writes to it if P1
never accesses it.
  Reads or writes to distinct addresses that don’t reside on a common

cache line don’t have any constraint on ordering.

  A coherence scheme provides this. It is weaker than
sequential consistency, as it focuses only on ordering of writes
to the same place in memory by multiple processors.
  Writes to distinctly different places in memory are independent.

  SMPs implement this in hardware.

Coherence in SMPs
  We mentioned this briefly earlier in the term.

  Cache coherent SMPs use protocols in hardware to maintain
coherence.

  Cached data decorated with a few bits of state, beyond the
simpler clean/dirty required in a single processor cache.

  Coherence protocol defines how these states change and
when memory moves from cache to memory and memory to
cache based on observed transactions on the shared memory
bus.

  For large systems, such as NUMA SMPs, CC-NUMA protocols
require more sophisticated schemes (such as directory-based
protocols) when no shared memory bus exists that each cache
can snoop on.

Coherence protocol: MESI example

Weak consistency
  If the DSM system is aware of synchronization used to

protect data, then it can relax it’s consistency model.

  Say a data element is protected by a lock. Then assuming
the other processes obey the locking discipline, there is
no reason to propagate updates to other participants
until the lock protecting it is released.

  Schemes that are unaware of synchronization primitives
must be paranoid and propagate updates right away.

Weak consistency (2)
  The “weak” in this model means that updates don’t propagate

immediately, but at the end of critical sections.

  So, memory can be inconsistent when a processor is in a
critical section, but the locking discipline means that other
accessors won’t see the inconsistency since the
synchronization scheme prevents them from accessing critical
sections anyways.

  I see this as having the same spirit as a transaction – briefly
allow part of the system to become inconsistent, but in a very
controlled manner that has a well defined mechanism to
restore everything to a consistent state.

Updates
  The critical component of a DSM system (as in a

replication system) is how to propagate updates.
  Two schemes are most common:

  Write-update:
  When writes occur, the updated data is propagated.

  Write-invalidate:
  When writes occur, a notification that any other version of the

data is invalid is sent.
  Propagation only occurs when reads occur. Multiple writes

may occur before propagation actually happens.

Virtual memory: 1 page refresher
  Apps get illusion of flat, contiguous address space. Under the covers, the

system maps this address space all over memory, possibly to disk or into
other apps.
  e.g.: mapping a file into memory.

  Memory partitioned into pages (possibly a few K each)

  Page faults occur when an app requests an address that is not in physical
memory, and the system replaces an existing page that isn’t in use with the
one requested.
  High overhead, especially if the paged data is out on disk.

  VM support provided in operating system.

  DSM works by mapping part of the address space to hold distributed data.
  Faults, paging out, and read/write permissions on a page related to the underlying

get/put protocol.

Granularity
  Like cache-based memories, we care about the granularity

of memory regions that operations like invalidations apply
to.

  In a cache, these apply to cache lines.
  In a page-based DSM, these apply to pages. Pages can be

quite large.
  It is entirely possible that two processes will work with

memory that resides in the same page, yet do not actually
conflict.

Granularity (2)
  Too coarse of a granularity can cause invalidations to

result unnecessarily, even if processes aren’t conflicting on
the shared memory.

  This is known as false sharing.
  Can result in thrashing.

  This isn’t unique to distributed systems.
  Tightly coupled programs written poorly in a cache

coherent SMP can see this at the cache line level.
  The need to avoid this is part of the `folklore’ of parallel

programming. Parallel programmers typically learn to write
programs in a form that avoids this.

  Writing code to avoid this isn’t hard really. It’s just something a
first-time SMP programmer can accidentally wander into.

Page-based scheme

Kernel

Process accessing

paged DSM segment

Pages transferred over network

Kernel redirects
page faults to
user-level
handler

Pages and writes
  Write updates are high overhead for paging schemes, so

page fault schemes don’t mesh well with write-update.
  From a performance perspective.

  Write-invalidate is more compatible, as are buffered
write-updates.
  Buffering means multiple writes may occur before an update is

propagated.

Write-invalidate protocol
  Looks like a simple cache coherence protocol actually.

Single writer Multiple reader

W
(invalidation)

R
P W writes;
none read

P R1 , P R2 ,..P Rn read;
none write

R W
(invalidation)

Note: R = read fault occurs; W = write fault occurs.

Write invalidation
  Updating processes have read/write permission to a page.

No other process may read or write to it.
  Reading pages, processes have read-only permissions to a

page.
  State transition diagram shows how writes and reads

transition between the states.
  Detail is how to achieve this.

Invalidation protocols
  How do we invalidate a page?
  One approach is to have a centralized manager that

knows the mapping of pages to the owners of them.
  Client that is writing to a page contacts manager to

acquire the copy set for the page.
  Copy set is the set of other clients that have read the page.

  The client then multicasts the invalidation request to the
clients in the copy set.

  Centralized manager sets owner of page to the client that
first makes it in to get the copy set.
  This prevents situations where two clients try to write and

invalidate at the same time.

Invalidation schemes
  Centralized manager is easy, but has a bottleneck.

  Distributed algorithms have been proposed, in which the
set of processes help find who owns a page.
  Remove performance bottleneck.
  Penalty is complexity in DSM system for determining

ownership and performing invalidations.
  Distributed algorithms can also be built to avoid dependence

on multicast.
  Good for platforms without multicast support.

Release consistency
  Sequential consistency allows the system to behave the way

programmers expect, but at a cost.
  Release consistency relaxes this to reduce the overhead.
  Exploits knowledge of synchronization primitives.

  Semaphores
  Locks
  Barriers

  Using this, the system can reason about what possible
operations can occur assuming all processes obey the locking
discipline.
  If a process uses memory without properly locking it, all bets are off.

This is considered a bug that the programmer is responsible for, not
the DSM system.

Release consistency
  Accesses are distinguished as competing vs non-competing.

  Competing accesses are those that may occur concurrently where
one is a write.

  Two reads are non-competing.
  Writes on data protected by locks are also considered non-

competing, as the competition would have occurred in lock
acquisition.

  Lock acquisitions are considered competing operations.
  These are further divided into acquire vs release operations.

  Dividing up accesses into special classes assists the DSM
system in knowing when high-overhead consistency operations
must be performed.
  Allows the DSM system to avoid overhead in a pure invalidate model.

A key observation
  Constraining overlapping operations can yield executions

equivalent to sequential consistency without requiring the
system to strictly obey sequential consistency.

  Rules:
  RC1: Before read/write on a process, all previous acquire operations

by the process must be performed.
  RC2: Before a release on a process, all previous read/write

operations by the process must be performed.
  RC3: Acquire and release operations are sequentially consistent

relative to each other.

  So, we require SC with synchronization primitives, but not
reads and writes. This reduces the overhead, as sync.
primitives will occur less frequently.

Hardware support
  DSM is a useful abstraction, but the overhead from maintaining

consistency in software can cause the overall performance to
be very poor or unpredictable.

  The goal is to provide a coherent view of a set of disjoint
memory spaces. Hardware standards were created to push
some of the work into the network layer of commodity
machines to overcome this software performance problem.

  Examples: IEEE SCI (Scalable Coherent Interface), InfiniBand.
  InfiniBand is one of the dominant high performance cluster

interconnection network technologies today.

Concluding remarks
  DSM is attractive because it gives a shared memory

programming model in a distributed system.

  Performance is difficult due to consistency constraints.

  You may encounter software layers that are somewhere
between DSM and message passing.
  Example: ARMCI – Aggregate Remote Memory Copy Interface.

