
Distributed Systems 



Shared vs Distributed Memory 
  Standard systems you encounter in your daily life come in one of 

two forms: shared or distributed memory. 

  Shared memory:  A relatively small number of processors are 
attached to a common memory subsystem. 
  Any processor can address any location in memory directly. 
  Memory subsystem deals with certain important concurrency control 

issues, such as cache coherence. 

  On the other hand, in a distributed system, we typically have 
distributed memory. 
  Memory owned by a subset of processors that can directly address it. 
  Other processors must send request to processor that owns a block of 

memory so it can perform memory accesses on behalf of the requestor. 
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Shared memory 
  Shared memory is attractive.  Why? 

  It is easy to write code that runs very fast. 
  Distributed systems have to suffer performance hits due to network 

latency and bandwidth. 
  Distributed systems require two classes of operations for local versus 

remote data. 
  The primary difficulty in shared memory comes from concurrency 

control to deal with correctness.   

  Performance is also hard to predict in a distributed environment due 
to potential external sources of resource consumption. 

  Distributed systems also have to tolerate link or node failures.   
  These are very rare in shared memory systems, and typically mean you 

have bigger problems with your computer. 



Distributed Shared Memory 
  Shared memory is programmable – we all accept that.  Just 

write code in your favorite language, addressing memory just 
like you always have. 

  DSM brings this abstraction to the distributed world.  Treat 
remote nodes as holding memory in a deeper level of the 
memory hierarchy than you do in the single machine. 

  Hide the message passing or other techniques for doing 
remote addressing from the user under a runtime library or 
compiler. 
  This also means that by hiding it from you, it can be implemented 

better than had you coded it by hand. 



Target Audience 
  When is DSM a good choice? 

  Typically when you want to run a single program in a 
distributed system without explicitly dealing with the 
layer that binds the distinct nodes together. 
  Furthermore, when you want to be able to run the same code 

in a non-distributed system. 
  Either single CPU or in a shared memory system. 

  Programs targeting parallel shared memory machines map 
easily onto DSM. 



UMA, NUMA, and DSM 
  In small SMPs, memory access times are uniform.  All memory accesses to 

main store take the same amount of time. 
  As SMPs get large, the cost for hardware to support UMA becomes 

expensive, so memory access time becomes non-uniform.  Hierarchy of 
memory: tightly coupled processors have UMA, groups of those have 
slightly higher latency, groups of these have even more, and so on. 

  DSM is similar to NUMA – remote machines are just a very high latency 
memory.  

SGI Origin 2000 
128 CPUs in NUMA 
configuration. 

Cray-link interconnect supporting NUMA. 



NUMA 
  NUMA architectures.  Indicated switches that bridge distributed memories into a 

single NUMA memory are very expensive as CPU count scales. 

Switch Switch Switch 



NUMA and performance 
  Performance optimization is hard on NUMA machines. 
  The same issues arise in DSM. 

  Locality! 

  Best performance is when the memory you access most 
frequently is nearby. 

  Caching can help, but as we’ll see later, granularity of caching 
can cause false sharing and poor performance. 
  Sometimes worse than performance with no cache at all! 

  Also difficult to anticipate when memory access pattern is a 
runtime property, not a static one. 



Message passing and DSM 
  Programming typically is asynchronous.  “get” and “put” are 

one sided. 
  Intended to be similar to operations like “x=a[4]” and “a[4]=y” 

respectively, where “a” is a DSM shared variable, and “x” and “y” are 
local to the accessor. 

  In DSM, variables may be shared.  This makes some 
correctness issues arise, as the owner of the data may see the 
data modified without their consent. 
  One sided operations don’t require explicit participation of the user 

app. code on the other side – runtime layer takes care of that behind 
the scenes, for better or worse. 

  Requires protection, just like in threading with critical sections and 
mutual exclusion. 



Efficiency 
  The book states that DSM programs can be made to perform 

as well as the equivalent explicit message passing program. 
  This is likely true, but only for specific cases.  In general, DSM 

does not scale well. 
  This is one of the reasons you don’t see it used frequently in 

practice. 

  One of the primary reasons for this is that DSM systems 
typically try to make the programmer as unaware as possible 
of the distribution of memory underneath their program. 
  This means coherence protocols in software, and other consistency 

mechanisms.  Those can be very network intensive, and will not scale 
well. 



Implementations 
  NUMA can be considered a hardware form of DSM. 

  These perform well, but at the cost of $$$.  They can be 
expensive. 

  Paged virtual memory uses the VM system to hide remote 
memory behind a well defined region of the address 
space of each process. 
  This provides transparency to the app, but requires support at 

the OS level. 
  Middleware solutions are the most portable and least 

intrusive on the platform.  No OS or hardware support 
necessary. 
  Sometimes can take advantage of hardware features though, 

such as DMA from network devices. 



DSM and abstraction 
  One of the key features of a DSM system is abstraction. 

  Provide the same abstraction to the programmer as the 
existing language that they are working in. 

  This is intended to address usability from the perspective 
of the programmer. 
  Easier to manage parts of a program if all data is addressed 

equally, instead of some via variables and others via explicit 
send/receive calls. 



Types of DSMs 
  Byte-oriented 

  Distributed shared memory addressed at the byte level, just 
like any other variable in a language like C. 

  Page-based schemes typically support this. 

  Object-oriented 
  Objects are shared and their contents manipulated by external 

processes via get/set methods, and possibly higher level 
abstractions (such as queue push/pop methods). 

  RMI would be an example of this, although acquisition of the 
remote objects requires special calls that only apply to remote 
objects.   
  Not all objects treated equally. 



Types of DSMs (2) 
  Immutable data 

  Linda! 
  The tuple space is the shared memory, and it is viewable by all 

participants. 
  Operations are the “put” and “take” (out/in) operations of Linda. 
  Data in the tuple space is never modified.   

  If a process wants to modify an element, it must extract the tuple from 
the tuple space and put another in it’s place with the modified data. 

  You implemented a tuple space where the space existed within a 
single process.  The Linda model doesn’t prohibit the tuple space 
from being distributed itself, as long as the semantics of the tuple 
space are maintained. 



Synchronization 
  Like threads, when multiple execution contexts share a 

common store, concurrency control mechanisms are 
necessary to prevent detrimental non-determinism. 

  So,  most DSM systems provide abstractions such as locks 
and semaphores so programmers can use standard 
locking disciplines to protect critical sections and data. 

  Virtual memory based systems can deal with atomic 
instructions such as testAndSet, but at a potentially 
high performance cost. 



Consistency 
  Consistency is all about ensuring that a set of 

concurrently executing processes have a view of the 
world that makes sense. 
  A system that provides consistency prevents concurrent 

processes having conflicting views of the state. 

  The issues that arise are the same as those we saw for 
replication schemes.  We may desire sequential 
consistency or linearizability. 

  One interesting weaker consistency model that we may 
desire is called coherence.  This is what is provided in SMPs 
with respect to the cache. 



Caches and hierarchical memories. 
  Think about a simple SMP.  Typically we have a single 

shared memory, but distinct caches on each processor. 

  This isn’t very different from a distributed shared 
memory.  The caches are local to each processor, and the 
shared memory is remote relative to the caches. 



Caches and hierarchical memories 
  What issue arises? 

  Say a processor P1 reads a memory from the shared 
store, and then modifies it. 

  This modification occurs in the local cache of the 
processor.  Only when an operation that invalidates the 
cache line occurs does the modified data get flushed to 
main memory. 

  Now, what if another processor reads the address that is 
cached at P1?  We would want that data to be accessed 
by P2. 



Caches and hierarchical memory 
  Clearly we would want to have P2 see the updated version 

that P1 holds in it’s cache. 
  On the other hand, if P2 reads an address that P1 has never 

seen, P1 never should care if P2 reads or writes to it if P1 
never accesses it. 
  Reads or writes to distinct addresses that don’t reside on a common 

cache line don’t have any constraint on ordering. 

  A coherence scheme provides this.  It is weaker than 
sequential consistency, as it focuses only on ordering of writes 
to the same place in memory by multiple processors. 
  Writes to distinctly different places in memory are independent. 

  SMPs implement this in hardware. 



Coherence in SMPs 
  We mentioned this briefly earlier in the term. 

  Cache coherent SMPs use protocols in hardware to maintain 
coherence. 

  Cached data decorated with a few bits of state, beyond the 
simpler clean/dirty required in a single processor cache. 

  Coherence protocol defines how these states change and 
when memory moves from cache to memory and memory to 
cache based on observed transactions on the shared memory 
bus. 

  For large systems, such as NUMA SMPs, CC-NUMA protocols 
require more sophisticated schemes (such as directory-based 
protocols) when no shared memory bus exists that each cache 
can snoop on. 



Coherence protocol: MESI example 



Weak consistency 
  If the DSM system is aware of synchronization used to 

protect data, then it can relax it’s consistency model. 

  Say a data element is protected by a lock.  Then assuming 
the other processes obey the locking discipline, there is 
no reason to propagate updates to other participants 
until the lock protecting it is released. 

  Schemes that are unaware of synchronization primitives 
must be paranoid and propagate updates right away. 



Weak consistency (2) 
  The “weak” in this model means that updates don’t propagate 

immediately, but at the end of critical sections. 

  So, memory can be inconsistent when a processor is in a 
critical section, but the locking discipline means that other 
accessors won’t see the inconsistency since the 
synchronization scheme prevents them from accessing critical 
sections anyways. 

  I see this as having the same spirit as a transaction – briefly 
allow part of the system to become inconsistent, but in a very 
controlled manner that has a well defined mechanism to 
restore everything to a consistent state. 



Updates 
  The critical component of a DSM system (as in a 

replication system) is how to propagate updates. 
  Two schemes are most common: 

  Write-update: 
  When writes occur, the updated data is propagated. 

  Write-invalidate: 
  When writes occur, a notification that any other version of the 

data is invalid is sent. 
  Propagation only occurs when reads occur.  Multiple writes 

may occur before propagation actually happens. 



Virtual memory: 1 page refresher 
  Apps get illusion of flat, contiguous address space.  Under the covers, the 

system maps this address space all over memory, possibly to disk or into 
other apps. 
  e.g.: mapping a file into memory. 

  Memory partitioned into pages (possibly a few K each) 

  Page faults occur when an app requests an address that is not in physical 
memory, and the system replaces an existing page that isn’t in use with the 
one requested. 
  High overhead, especially if the paged data is out on disk. 

  VM support provided in operating system. 

  DSM works by mapping part of the address space to hold distributed data.   
  Faults, paging out, and read/write permissions on a page related to the underlying 

get/put protocol. 



Granularity 
  Like cache-based memories, we care about the granularity 

of memory regions that operations like invalidations apply 
to. 

  In a cache, these apply to cache lines. 
  In a page-based DSM, these apply to pages.  Pages can be 

quite large. 
  It is entirely possible that two processes will work with 

memory that resides in the same page, yet do not actually 
conflict. 



Granularity (2) 
  Too coarse of a granularity can cause invalidations to 

result unnecessarily, even if processes aren’t conflicting on 
the shared memory. 

  This is known as false sharing. 
  Can result in thrashing. 

  This isn’t unique to distributed systems.   
  Tightly coupled programs written poorly in a cache 

coherent SMP can see this at the cache line level. 
  The need to avoid this is part of the `folklore’ of parallel 

programming.  Parallel programmers typically learn to write 
programs in a form that avoids this. 

  Writing code to avoid this isn’t hard really.  It’s just something a 
first-time SMP programmer can accidentally wander into. 



Page-based scheme 
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Pages and writes 
  Write updates are high overhead for paging schemes, so 

page fault schemes don’t mesh well with write-update. 
  From a performance perspective. 

  Write-invalidate is more compatible, as are buffered 
write-updates. 
  Buffering means multiple writes may occur before an update is 

propagated. 



Write-invalidate protocol 
  Looks like a simple cache coherence protocol actually. 

Single writer Multiple reader 

W 
(invalidation) 

R 
P W  writes; 
none read 

P R1 , P R2 ,..P Rn  read; 
none write 

R W 
(invalidation) 

Note: R = read fault occurs; W = write fault occurs.  



Write invalidation 
  Updating processes have read/write permission to a page.  

No other process may read or write to it. 
  Reading pages, processes have read-only permissions to a 

page. 
  State transition diagram shows how writes and reads 

transition between the states. 
  Detail is how to achieve this. 



Invalidation protocols 
  How do we invalidate a page? 
  One approach is to have a centralized manager that 

knows the mapping of pages to the owners of them. 
  Client that is writing to a page contacts manager to 

acquire the copy set for the page. 
  Copy set is the set of other clients that have read the page. 

  The client then multicasts the invalidation request to the 
clients in the copy set. 

  Centralized manager sets owner of page to the client that 
first makes it in to get the copy set. 
  This prevents situations where two clients try to write and 

invalidate at the same time. 



Invalidation schemes 
  Centralized manager is easy, but has a bottleneck. 

  Distributed algorithms have been proposed, in which the 
set of processes help find who owns a page. 
  Remove performance bottleneck. 
  Penalty is complexity in DSM system for determining 

ownership and performing invalidations. 
  Distributed algorithms can also be built to avoid dependence 

on multicast. 
  Good for platforms without multicast support. 



Release consistency 
  Sequential consistency allows the system to behave the way 

programmers expect, but at a cost. 
  Release consistency relaxes this to reduce the overhead. 
  Exploits knowledge of synchronization primitives. 

  Semaphores 
  Locks 
  Barriers 

  Using this, the system can reason about what possible 
operations can occur assuming all processes obey the locking 
discipline. 
  If a process uses memory without properly locking it, all bets are off.  

This is considered a bug that the programmer is responsible for, not 
the DSM system. 



Release consistency 
  Accesses are distinguished as competing vs non-competing. 

  Competing accesses are those that may occur concurrently where 
one is a write. 

  Two reads are non-competing. 
  Writes on data protected by locks are also considered non-

competing, as the competition would have occurred in lock 
acquisition. 

  Lock acquisitions are considered competing operations. 
  These are further divided into acquire vs release operations. 

  Dividing up accesses into special classes assists the DSM 
system in knowing when high-overhead consistency operations 
must be performed. 
  Allows the DSM system to avoid overhead in a pure invalidate model. 



A key observation 
  Constraining overlapping operations can yield executions 

equivalent to sequential consistency without requiring the 
system to strictly obey sequential consistency. 

  Rules: 
  RC1: Before read/write on a process, all previous acquire operations 

by the process must be performed. 
  RC2: Before a release on a process, all previous read/write 

operations by the process must be performed. 
  RC3: Acquire and release operations are sequentially consistent 

relative to each other. 

  So, we require SC with synchronization primitives, but not 
reads and writes.  This reduces the overhead, as sync. 
primitives will occur less frequently. 



Hardware support 
  DSM is a useful abstraction, but the overhead from maintaining 

consistency in software can cause the overall performance to 
be very poor or unpredictable. 

  The goal is to provide a coherent view of a set of disjoint 
memory spaces.  Hardware standards were created to push 
some of the work into the network layer of commodity 
machines to overcome this software performance problem. 

  Examples: IEEE SCI (Scalable Coherent Interface), InfiniBand. 
  InfiniBand is one of the dominant high performance cluster 

interconnection network technologies today. 



Concluding remarks 
  DSM is attractive because it gives a shared memory 

programming model in a distributed system. 

  Performance is difficult due to consistency constraints. 

  You may encounter software layers that are somewhere 
between DSM and message passing. 
  Example: ARMCI – Aggregate Remote Memory Copy Interface. 


