
CIS 630

Distributed Systems

Lecture 2

Distributed System Models

 Architectural models

 Concerned with placement of parts and their relationships

 Defines how these parts map down onto the network and

computers.

 Fundamental models formalize properties of the

systems (e.g.: correctness, reliability, etc…)

 Distributed system characteristics addressed by:

 Interaction model

 Failure model

 Security model

Difficulties For / Threats To Dist. Sys.

 Widely varying models of use

 Workload has wide variation

 Poor connectivity of some parts of system

 Applications have different requirements

 Bandwidth and latency

 Wide range of system environments

 Heterogeneous hardware, OS, networks

 Varying network performance

 Widely differing system scales

 Internal problems – clocks, data, component failure

 External problems – attacks, data integrity, secrecy

Lamport’s Definition of a DS

 Lamport once defined a distributed system as:
 “One on which I cannot get any work done because some

system I never heard of has crashed.”

 Applications need to adapt gracefully in the face of
partial failure.

 An example of a distributed system technology that
will lead to Lamport’s issue is NFS. How many of us
have ever seen a set of workstations freeze because
the NFS server failed?

 Distributed file systems are hard, especially with respect
to adaptation to failure.

Architectural Models

 Ensure that the structure meets requirements.

 Simplify and abstract functions of individual components
of a distributed system. Then consider:

 How these are placed amongst a set of networked computers.
We seek to define useful patterns to drive data distribution,
workload distribution.

 Inter-relationships between components, their functional roles
and communication patterns.

 Classification aids in simplification.

 Servers, clients, peers.

 Classification identifies responsibilities, behavior, workload and
failure properties.

 Analysis is used to specify placement based to meet
objectives.

System Architectures

 This is concerned with the division of responsibilities.

 Between system components (apps, servers, processes)

 Placement on computers in the network

 Implications for performance, reliability, and security.

 Types

 Client-server model

 Services provided by multiple servers

 Proxy servers and caches

 Peer processes

 Mobile code / agents / spontaneous networking

 Networked computers / thin clients

Client/Server Model, Multiple Servers

 We’re all familiar with this one. The web is the most

widespread with browsers (clients) and web servers

(servers).

 The model defines the interaction relationship.

 Service: A task a machine can perform

 Server: A machine that performs that task when requested

 Client: A machine that requests the service

 The model allows chaining and hierarchy

 Servers may be clients of other servers.

 Example: WWW server using files provided by a file server.

 Service types

 Directory service, print service, file service, …

Client/Server Model, Multiple Servers

 Services may be implemented by distributed

processes.

 May require distributed resources (such as the WWW)

 May choose to partition and distribute for reliability

 Replication can be used to:

 Increase performance

 Increase availability

 Improve fault tolerance

Clients Invoke Individual Servers

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A Service Provided by Multiple Servers

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server

Server

Server

Service

Client

Client

 Example: load

balancing very heavily

used web servers by

delegating clients to

different servers based

on individual server

load or client proximity.

More on Client/Server Model

 Clients
 Generally block until server responds or a timeout occurs.

 Typically invoked by end users when they require service.

 Interacts with users through a user interface.

 Interacts with client middleware through middleware API
to abstract above underlying network connectivity to
server.

 Server

 Implements services.

 Usually waits for incoming requests.

 Usually a program with special privileges.

 Invoked by server middleware.

 Provides error recovery and failure handling services.

Software Layers

 Software architectures refers to the structuring of
software

 Layers and services (“service layers”).

 We will see an instance of this soon with the networking
middleware.

 Platform

 Lowest-level hardware and software layers (e.g.: OS).

 Middleware

 Layer of software that provides abstraction above potential
heterogeneity via a convenient programming model.

 Building blocks for building software.

 Raises the level of communication activities through
communication abstractions and mechanisms.

 Makes distributed nature of system transparent.

Software and Hardware Layers

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Common middleware packages

 Remote procedure call (RPC)

 Group communication (Isis)

 Object-oriented

 CORBA: Common Object Request Broker Architecture

 Java RMI: Remote Method Invocation

 Microsoft DCOM: Distributed Common Object Model

 Packages provide higher-level application services

 Naming, security, transactions

 Persistent storage, event notification

Middleware limitations

 End-to-end argument (Saltzer, Reed, Clarke, 1984)
 Some communications-related functions can be

completely and reliably implemented only with the
knowledge and participation of the application standing at
the endpoints of the communication system. Therefore,
providing that function as a feature of the communication
system itself is not always sensible.

 This runs counter to the view that all communication
activities can be abstracted away by middleware
layers.

 Correct behavior in distributed programs depends
upon error measures and security at all levels.

 Example: fault tolerant, reliable, end-to-end transfer

Functional View of Middleware

 Information exchange services
 Message passing

 Application-specific services

 Specialized services

 Example: Transaction, replication services for distributed DB.

 Example: Groupware services for collaborative applications.

 Management and support services

 Name services and registries for locating distributed
resources dynamically.

 Administration of resources distributed over a network.

 Monitoring performance and behavior of distributed set of
resources.

Production Middleware

 Single-service components

 HTTP for retrieving documents remotely

 Sun RPC for remote procedure call

 SSL for secure socket layer

 Integrated middleware environments

 Integrates multiple components into a single coherent

package.

 Examples: CORBA, DCOM, .NET, Java

