CIS 630
Distributed Systems

Lecture 2

Distributed System Models

» Architectural models
Concerned with placement of parts and their relationships

Defines how these parts map down onto the network and
computers.

» Fundamental models formalize properties of the
systems (e.g.: correctness, reliability, etc...)

» Distributed system characteristics addressed by:
Interaction model

Failure model
Security model

Difficulties For / Threats To Dist. Sys.

» Widely varying models of use
Workload has wide variation
Poor connectivity of some parts of system
Applications have different requirements

Bandwidth and latency

» Wide range of system environments
Heterogeneous hardware, OS, networks
Varying network performance
Widely differing system scales

» Internal problems — clocks, data, component failure
» External problems — attacks, data integrity, secrecy

Lamport’s Definition of a DS

» Lamport once defined a distributed system as:

“One on which | cannot get any work done because some
system | never heard of has crashed.”

» Applications need to adapt gracefully in the face of
partial failure.

» An example of a distributed system technology that
will lead to Lamport’s issue iIs NFS. How many of us
have ever seen a set of workstations freeze because
the NFS server failed?

Distributed file systems are hard, especially with respect
to adaptation to failure.

Architectural Models

» Ensure that the structure meets requirements.

» Simplify and abstract functions of individual components
of a distributed system. Then consider:

How these are placed amongst a set of networked computers.
We seek to define useful patterns to drive data distribution,
workload distribution.

Inter-relationships between components, their functional roles
and communication patterns.
» Classification aids in simplification.

Servers, clients, peers.

Classification identifies responsibilities, behavior, workload and
failure properties.

Analysis is used to specify placement based to meet
objectives.

System Architectures

» This is concerned with the division of responsibllities.

Between system components (apps, servers, processes)
Placement on computers in the network

» Implications for performance, reliability, and security.

» Types
Client-server model
Services provided by multiple servers
Proxy servers and caches
Peer processes
Mobile code / agents / spontaneous networking
Networked computers / thin clients

Client/Server Model, Multiple Servers

» We're all familiar with this one. The web is the most
widespread with browsers (clients) and web servers
(servers).

» The model defines the interaction relationship.
Service: Atask a machine can perform
Server: A machine that performs that task when requested
Client: A machine that requests the service
» The model allows chaining and hierarchy
Servers may be clients of other servers.
Example: WWW server using files provided by a file server.
» Service types
Directory service, print service, file service, ...

Client/Server Model, Multiple Servers

» Services may be implemented by distributed
Processes.
May require distributed resources (such as the WWW)
May choose to partition and distribute for reliability
Replication can be used to:
Increase performance

Increase availability
Improve fault tolerance

Clients Invoke Individual Servers

V Invocation invocation @

Key:
Process: O Computer:

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

A Service Provided by Multiple Servers

o Service _ » Example: load
| | balancing very heavily
used web servers by
- //'T > : delegating clients to
J different servers based
| < | on individual server
| | load or client proximity.
| » |
e L
TG |
| |

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

More on Client/Server Model

» Clients

Generally block until server responds or a timeout occurs.
Typically invoked by end users when they require service.
Interacts with users through a user interface.

Interacts with client middleware through middleware API
to abstract above underlying network connectivity to
server.

» Server
Implements services.
Usually waits for incoming requests.
Usually a program with special privileges.
Invoked by server middleware.
Provides error recovery and failure handling services.

Software Layers

» Software architectures refers to the structuring of
software

Layers and services (“service layers”).

We will see an instance of this soon with the networking
middleware.

» Platform
Lowest-level hardware and software layers (e.g.: OS).

» Middleware

Layer of software that provides abstraction above potential
heterogeneity via a convenient programming model.

Building blocks for building software.

Raises the level of communication activities through
communication abstractions and mechanisms.

Makes distributed nature of system transparent.

Software and Hardware Layers

Applications, services

Middleware

Operating system

Platform

Computer and network hardware

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Common middleware packages

» Remote procedure call (RPC)
» Group communication (Isis)

» Object-oriented
CORBA: Common Object Request Broker Architecture
Java RMI: Remote Method Invocation
Microsoft DCOM: Distributed Common Object Model

» Packages provide higher-level application services
Naming, security, transactions
Persistent storage, event notification

Middleware limitations

» End-to-end argument (Saltzer, Reed, Clarke, 1984)

Some communications-related functions can be
completely and reliably implemented only with the
knowledge and participation of the application standing at
the endpoints of the communication system. Therefore,
providing that function as a feature of the communication
system itself is not always sensible.

» This runs counter to the view that all communication
activities can be abstracted away by middleware
layers.

» Correct behavior in distributed programs depends
upon error measures and security at all levels.

Example: fault tolerant, reliable, end-to-end transfer

Functional View of Middleware

» Information exchange services
Message passing
» Application-specific services
Specialized services
Example: Transaction, replication services for distributed DB.
Example: Groupware services for collaborative applications.
» Management and support services

Name services and registries for locating distributed
resources dynamically.

Administration of resources distributed over a network.

Monitoring performance and behavior of distributed set of
resources.

Production Middleware

» Single-service components
HTTP for retrieving documents remotely
Sun RPC for remote procedure call
SSL for secure socket layer

» Integrated middleware environments

Integrates multiple components into a single coherent
package.

Examples: CORBA, DCOM, .NET, Java

