
CIS 630

Distributed Systems

Lecture 2

Distributed System Models

 Architectural models

 Concerned with placement of parts and their relationships

 Defines how these parts map down onto the network and

computers.

 Fundamental models formalize properties of the

systems (e.g.: correctness, reliability, etc…)

 Distributed system characteristics addressed by:

 Interaction model

 Failure model

 Security model

Difficulties For / Threats To Dist. Sys.

 Widely varying models of use

 Workload has wide variation

 Poor connectivity of some parts of system

 Applications have different requirements

 Bandwidth and latency

 Wide range of system environments

 Heterogeneous hardware, OS, networks

 Varying network performance

 Widely differing system scales

 Internal problems – clocks, data, component failure

 External problems – attacks, data integrity, secrecy

Lamport’s Definition of a DS

 Lamport once defined a distributed system as:
 “One on which I cannot get any work done because some

system I never heard of has crashed.”

 Applications need to adapt gracefully in the face of
partial failure.

 An example of a distributed system technology that
will lead to Lamport’s issue is NFS. How many of us
have ever seen a set of workstations freeze because
the NFS server failed?

 Distributed file systems are hard, especially with respect
to adaptation to failure.

Architectural Models

 Ensure that the structure meets requirements.

 Simplify and abstract functions of individual components
of a distributed system. Then consider:

 How these are placed amongst a set of networked computers.
We seek to define useful patterns to drive data distribution,
workload distribution.

 Inter-relationships between components, their functional roles
and communication patterns.

 Classification aids in simplification.

 Servers, clients, peers.

 Classification identifies responsibilities, behavior, workload and
failure properties.

 Analysis is used to specify placement based to meet
objectives.

System Architectures

 This is concerned with the division of responsibilities.

 Between system components (apps, servers, processes)

 Placement on computers in the network

 Implications for performance, reliability, and security.

 Types

 Client-server model

 Services provided by multiple servers

 Proxy servers and caches

 Peer processes

 Mobile code / agents / spontaneous networking

 Networked computers / thin clients

Client/Server Model, Multiple Servers

 We’re all familiar with this one. The web is the most

widespread with browsers (clients) and web servers

(servers).

 The model defines the interaction relationship.

 Service: A task a machine can perform

 Server: A machine that performs that task when requested

 Client: A machine that requests the service

 The model allows chaining and hierarchy

 Servers may be clients of other servers.

 Example: WWW server using files provided by a file server.

 Service types

 Directory service, print service, file service, …

Client/Server Model, Multiple Servers

 Services may be implemented by distributed

processes.

 May require distributed resources (such as the WWW)

 May choose to partition and distribute for reliability

 Replication can be used to:

 Increase performance

 Increase availability

 Improve fault tolerance

Clients Invoke Individual Servers

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A Service Provided by Multiple Servers

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server

Server

Server

Service

Client

Client

 Example: load

balancing very heavily

used web servers by

delegating clients to

different servers based

on individual server

load or client proximity.

More on Client/Server Model

 Clients
 Generally block until server responds or a timeout occurs.

 Typically invoked by end users when they require service.

 Interacts with users through a user interface.

 Interacts with client middleware through middleware API
to abstract above underlying network connectivity to
server.

 Server

 Implements services.

 Usually waits for incoming requests.

 Usually a program with special privileges.

 Invoked by server middleware.

 Provides error recovery and failure handling services.

Software Layers

 Software architectures refers to the structuring of
software

 Layers and services (“service layers”).

 We will see an instance of this soon with the networking
middleware.

 Platform

 Lowest-level hardware and software layers (e.g.: OS).

 Middleware

 Layer of software that provides abstraction above potential
heterogeneity via a convenient programming model.

 Building blocks for building software.

 Raises the level of communication activities through
communication abstractions and mechanisms.

 Makes distributed nature of system transparent.

Software and Hardware Layers

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Common middleware packages

 Remote procedure call (RPC)

 Group communication (Isis)

 Object-oriented

 CORBA: Common Object Request Broker Architecture

 Java RMI: Remote Method Invocation

 Microsoft DCOM: Distributed Common Object Model

 Packages provide higher-level application services

 Naming, security, transactions

 Persistent storage, event notification

Middleware limitations

 End-to-end argument (Saltzer, Reed, Clarke, 1984)
 Some communications-related functions can be

completely and reliably implemented only with the
knowledge and participation of the application standing at
the endpoints of the communication system. Therefore,
providing that function as a feature of the communication
system itself is not always sensible.

 This runs counter to the view that all communication
activities can be abstracted away by middleware
layers.

 Correct behavior in distributed programs depends
upon error measures and security at all levels.

 Example: fault tolerant, reliable, end-to-end transfer

Functional View of Middleware

 Information exchange services
 Message passing

 Application-specific services

 Specialized services

 Example: Transaction, replication services for distributed DB.

 Example: Groupware services for collaborative applications.

 Management and support services

 Name services and registries for locating distributed
resources dynamically.

 Administration of resources distributed over a network.

 Monitoring performance and behavior of distributed set of
resources.

Production Middleware

 Single-service components

 HTTP for retrieving documents remotely

 Sun RPC for remote procedure call

 SSL for secure socket layer

 Integrated middleware environments

 Integrates multiple components into a single coherent

package.

 Examples: CORBA, DCOM, .NET, Java

