
Objectives

 Resume discussion of models

 Talk a bit more about architectural models

 Talk about fundamental models

 Begin our discussion of network technologies

 Today: a birds-eye view of the issues and general

concepts.

 Next week: sockets and RMI to give you exposure to

specific network technologies.

 After next week, you will be given your first programming

assignment for hands on work with RMI.

Architectural model

 Recall:
 The architectural model is concerned with:

 What are the components of the system?

 What are their roles?

 Where are they located?

 From this, we can break distributed systems up into some
coarse and familiar classes:

 Client/server

 Peer-to-peer

 Multiple servers

 Proxy servers

 Etc…

Proxy Servers and Caches

 Proxy servers are used to increase availability and
performance of services by reducing the load on the
network and servers.
 Separation of service functionality.

 Sharing of proxy server among clients.

 A cache stores recently used data objects closer to
users of the objects than the actual objects
themselves.
 Cache is checked first when data requested.

 If present in cache, data provided from there.

 Otherwise, fetched from actual server.

 Cache must provide facility to check if page is up-to-date,
especially if server is unaware of presence of cache.

Example: Web Proxy Server

Client

Proxy

Web

server

Web

server

server
Client

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Peer-to-peer

 Unlike client/server, peer-to-peer is based on a set of
processes with equal status in the distributed system who
cooperatively perform some sequence of operations to
achieve a goal.
 No distinction between clients and servers.

 Code in peer processes maintains consistency of
application-level resources and synchronizes application-
level actions when necessary.

 No dedicated machines.
 This may not be strictly true, especially considering popular

P2P services like BitTorrent with trackers. These aid in finding
peers initially though, and do not necessarily participate directly
in the P2P activity.

 Examples: BitTorrent, Gnutella, “Bonjour” chat programs,
file sharing.

Peer-based distributed application

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

Process Peer Model

 What about idle or lightly loaded workstations?

 Sharing of computing resources

 Either let idle machine sit idle

 Or run useful jobs on unused computing resources

 Alternatively

 Treat machines as collection of CPUs and memory

 Assign processes to run on resource on demand

 Users won’t need heavy duty workstations locally

 GUI locally

 Remote machine for heavy processing

 Computational model of Plan9

Thin clients

 Systems that run code remotely but provide user

interactivity locally.

 X-terminals were a form of this. The thin client ran

an X server, and displayed programs running

remotely.

 We see this today in systems like remote desktop

services such as VNC.

 Examples: Apple Remote Desktop, “GotoMyPC.com”.

 Today we see systems where the web browser is the thin

client, with the app running elsewhere but displayed in an

applet or service running in the browser.

Grid computing

 Addresses the issue of making costly resources

available to a wide user base.

 Provide users seamless access to:

 Storage capacity

 Compute capacity

 Network bandwidth between storage and computing

 Growing in popularity for scientific computing.

 On demand resource allocation

 Adaptive to variations in load and reliability

Cloud computing

 Transparent access for users to compute and storage
resources for a metered cost.

 Virtualization: Multiplex hardware resources transparently to
multiple users.

 Reliability: Through redundancy on cloud provider end.

 (Outages may occur though)

 Performance can be tuned dynamically.

 Provider can add resources to the cloud to scale it.

 Transparent access via network technology.

 Primarily driven by economic factors. You buy the
cycles/space that you need, and the leftovers are used
by others instead of wasted. Your cloud usage can grow
as your load changes.

 Example: Amazon cloud services.

Variations on Client/Server Model

 Mobile code moves between computer systems.

 Applets are a well-known and widely used example.

 Example: Java applets, Flash apps.

 Helps to achieve better performance

 Eliminates some delays and variability due to network

communication

 Accessing services means running code that can

invoke their operations

 Pull model: client initiates

 Push model: server initiates

Web Applets

a) client request results in the downloading of applet code

Web

server

Client
Web

serverApplet

Applet code

Client

b) client interacts with the applet

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Multi-Tier Client/Server Architectures

 Two-tier architecture

 Common from 1980s to 1990s

 UI on user desktop

 Application services on server

 Example: old text-based business applications. Does anyone

remember those old telnet-based apps to login to a VMS system

with text menus and interface?

 Performance deteriorates with large user communities

 Server can get overloaded managing connections.

 Legacy services may end up running in environments poorly

adapted for networking.

 Databases are performance hogs.

Multi-Tier Client/Server Architectures

 Three-tiered architectures address issues with two-tier.

 Client

 User interface

 Some data validation and formatting

 Middle tier

 Queuing and scheduling of user requests

 Transaction processing

 Connection management

 Format conversion

 Backend server

 Database

 Legacy application processing/interface

Architectures

 We have briefly seen the major, common system

architectures that you will encounter in practice.

 So, when one is designing a distributed system to

address some problem or provide a service, how do

we determine which architectural model or pattern is

best?

 Look at the sorts of requirements that will drive the

design.

Design requirements

 Performance

 Responsiveness (especially for interactive services)

 Throughput

 Load balance

 Quality of service

 Reliability

 Security

 Performance

 Adaptability to changes in resource availability.

 Caching and replication

 Dependability

 Fault tolerance

 Security

Design requirements

 Looking at the requirements of a specific problem,
you can see how some architectures are more
appropriate than others.

 Example case: Quality of service is required for
serving up static web pages. They will not change
frequently, and users want almost instant responses.
 Infrequent changes: Replication is easy, as is caching in

proxies closer to users.

 Quality of service: Need fast response, so we want
information close to users. Proxies again.

 So, sounds like a proxy server mirroring one or more
servers is the right choice.

Fundamental models

 Make assumptions about the system explicit

 Make generalizations about what is possible given
these assumptions.

 These generalizations can be in the form of
 Algorithms

 Formal proofs

 Descriptions in a formal logical framework

 The generalizations are useful because they
facilitate formal analysis to draw conclusions about:
 Correctness

 Performance

 Security

Fundamental models

 We wish to capture the following aspects of

distributed systems in fundamental models:

 Interactions in the presence of delays that occur in the

real world.

 Failures

 Security

Interaction model

 How a set of processes communicate to achieve

some task.

 Similar to the model of the sequence of algorithmic

steps to accomplish something.

 In distributed systems, we call these distributed

algorithms. They are composed of:

 The steps taken by each participant.

 The messages transmitted between them to coordinate.

 Processes are assumed to have private state that is

revealed through messages only.

Interaction model

 Two big limiting factors

 Communication performance

 Latency: Amount of time to send a minimal message from point

A to point B.

 Bandwidth: Amount of information that can be transmitted per

unit time.

 Jitter: Variability in the time to deliver each of a sequence of

messages. This is very critical to consider in multimedia apps.

 A single global notion of time is impossible to maintain.

 Each computer has a single internal clock.

 Two clocks read simultaneously will yield different values. Real

clocks drift from “real time” and each other.

 Synchronization methods required to correct for drift.

Variants in Interaction Model

 Based on these limiting factors, we can coarsely

break interaction models into two classes.

 Synchronous systems

 Time to execute a step has known lower/upper bounds.

 Messages received in a known bounded time.

 Processes with local clocks drift at a known bound for the

drift rate from real time.

 Asynchronous systems

 No assumptions on bounds for three points above.

 Real systems tend to be asynchronous.

Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical

time

A

m3

receive receive

send

receive receive receive

t1 t2 t3

receive

receive

m2

m1

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Processes and Communication Channels

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

We typically assume a simplified channel when we want to reason about

communication between processes for modeling purposes.

Failure model

 Omission failures

 Communication channel fails to perform some action it

was supposed to.

 Arbitrary failure

 Any type of error can occur. These are pretty bad.

 Examples: Undetected data corruption, reordering,

duplication.

 Timing failure

 Failure to respond in some time interval. Related to

synchronous systems with expected bounds.

Masking failures

 Hiding a failure by converting it to a less-bad type.

 Checksums to change arbitrary failure into an omission

failure by determining that a packet is corrupt and must

be rejected.

 Protocols can make some failures totally vanish to the

user or application. E.g.: Retries or resends when

omissions occur.

 One of the points of middleware layers is to provide this

masking.

 Checksums on messages.

 Logical time to order messages and prevent dupes and out of

order messages.

Omission and Arbitrary Failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may

detect this state.

Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send,but the message is not put

in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.

Arbitrary

(Byzantine)

Process or

channel

Process/channel exhibits arbitrary behaviour: it may

send/transmit arbitrary messages at arbitrary times,

commit omissions; a process may stop or take an

incorrect step.

Timing Failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.

Performance Process Process exceeds the bounds on the interval

between two steps.

Performance Channel A message’s transmission takes longer than the

stated bound.

Reliability of one-to-one communications

 Validity and integrity define reliability characteristics,
related both to security and failure.

 Validity
 Any message in an outgoing buffer eventually makes it to

a corresponding incoming buffer.

 Integrity

 Message received is identical to the one that was sent
without duplication.

 Threats to integrity:

 Protocols that retransmit but don’t reject multiply transmitted
messages.

 Malicious users who inject, replay, or tamper with messages.

Security models

 Protection of objects

 Specification and enforcement of access rights.

 The enemy

 Threats to processes

 Spoofing

 Threats to communication channels

 Secure channels help address this

Communication channel

Copy of m

Process p Process qm

The enemy
m’

Instructor’s Guide for Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Detection and prevention of threats

 Cryptography and shared secrets
 Public key cryptography

 Certificates

 Authentication

 Secure channels

 A fundamental model for security may be the
handshaking and exchange of messages related to
key or certificate authentication.

 Similarly, hashes and checksums can be used to
detect threats/attacks similar to their use to detect
corruption due to hardware or software failures.

Other threats

 Denial of service (DoS) attacks

 Overwhelm a service with useless requests to prevent the

service from servicing legitimate users.

 Mobile code

 Viruses

 Worms

 Trojan horses

 Generic “malware”

