
Logistics

 Class web page relatively complete.

 Project description, paper description, schedule through

week 4, etc…

 I will post papers as they are assigned.

 Project teams assigned. Slight reshuffling late

Monday after a couple of people dropped at the last

minute.

 Programming assignment #1 will be assigned

Thursday.

Today

 Finish chapter 3 on networking principles.

 Get into chapter 4, talking about TCP/IP and

interprocess communications.

Network principles

 What are some of the important principles in network

technologies?

 Packet transmission

 Data streaming

 Switching schemes

 Protocols

 Software layers and protocol “stacks”

 Routing algorithms and hardware

 Congestion control

 Internetworking

Packet transmission and streaming

 Data is moved from one point to another in two

different ways typically.

 Packets: Data moves through the network in fixed length

packets that contain the contents of the message, and

information relevant for routing and transport protocols.

 Streaming: Data flows through the network in a more

continuous fashion with guarantees and bounds on

performance measures like latencies. Popular for

multimedia applications.

Switching schemes

 Broadcast

 Send to everyone, rely on intended receiver to accept message
and others to toss it out.

 Example: Ethernet

 Circuit switching

 Inspired by old telephone switching techniques.

 A path through the network is set up and data streams through.

 Packet switching

 Store-and-forward

 Frame relay

 Similar to circuit switching + packet switching

 Store only enough of packet to make routing decision and then
pass data through like a circuit switched network.

Protocols

 A protocol defines a set of rules and formats used

when processes communicate with each other.

 Two important parts:

 1. Specification of the sequence of messages that are to

be exchanged.

 2. Specification of the format of these messages.

 Protocols exist for many different levels of

abstraction, from low-level blocks of bits on the wire

to high-level, application specific abstractions (like

HTTP, SMTP, FTP, etc…)

Protocol layers

 Network software protocols are separated into well

defined layers.

Layer n

Layer 2

Layer 1

Message sent Message received

Communication

medium
Sender Recipient

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Protocol layers

 The layers are based on abstractions.

 Low levels: Abstraction above the wire protocol.
 E.g.: Ethernet

 Middle levels: Abstraction of raw data transmission
and reliability.

 E.g.: TCP, IP, UDP

 Higher levels: Abstractions related to specific
activities.
 E.g.: FTP, HTTP

 Highest levels: Abstractions related to specific
applications.
 E.g.: Web services

Standard stack: ISO OSI

 Open Systems Interconnection stack, standardized

by ISO.

 7 layers

 Application

 Presentation

 Session

 Transport

 Network

 Data link

 Physical

ISO OSI

Application

Presentation

Session

Transport

Network

Data link

Physical

Message sent Message received

Sender Recipient

Layers

Communication

medium

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

ISO OSI Layers

Layer Description Examples

Application Protocols that are designed to meet the communication requirements of

specific applications, often defining the interface to a service.
HTTP, FTP , SMTP,

CORBA IIOP

Presentation Protocols at this level transmit data in a network representation that is

independent of the representations used in individual computers, which may

differ. Encryption is also performed in this layer, if required.

Secure Sockets
(SSL),CORBA Data
Rep.

Session At this level reliability and adaptation are performed, such as detection of

failures and automatic recovery.

Transport This is the lowest level at which messages (rather than packets) are handled.

Messages are addressed to communication ports attached to processes,

Protocols in this layer may be connection-oriented or connectionless.

TCP, UDP

Network Transfers data packets between computers in a specific network. In a WAN

or an internetwork this involves the generation of a route passing through

routers. In a single LAN no routing is required.

IP, ATM virtual
circuits

Data link Responsible for transmission of packets between nodes that are directly

connected by a physical link. In a WAN transmission is between pairs of

routers or between routers and hosts. In a LAN it is between any pair of hosts.

Ethernet MAC,
ATM cell transfer,
PPP

Physical The circuits and hardware that drive the network. It transmits sequences of

binary data by analogue signalling, using amplitude or frequency modulation

of electrical signals (on cable circuits), light signals (on fibre optic circuits)

or other electromagnetic signals (on radio and microwave circuits).

Ethernet base- band

signalling, ISDN

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Protocol stacks: Pros and Cons

 Pro:

 Abstraction allows for different layers to be swapped in

and out.

 Separation of concerns.

 Con:

 Performance degradation. All messages must traverse

stack on both receiver and sending side.

 Results in observed performance in applications being

less than the advertised performance of the hardware.

Encapsulation

 Lower levels encapsulate messages from higher

levels.

Presentation header

Application-layer message

Session header

Transport header

Network header

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Encapsulation

 What is nice about encapsulation?

 The message being encapsulated isn’t treated as
anything more than data by the wrapper.

 This allows you to design layers without having to
specify much at all for the other layers.

 We see this in action daily:
 HTTP over TCP/IP over ethernet.

 FTP over TCP/IP over ethernet.

 AppleTalk over ethernet.

 Ok, this one is a bit old. Just an example of multiple
protocols over ethernet.

Ports and addressing

 The transport layer is responsible for providing ports and
addresses.

 Ports are essentially mailboxes or addressing units on a
single machine that is associated with a specific program.

 Program “foo” wants to receive data, so it opens up port 1234
from the outside world.

 Outside processes connect to 1234, and don’t have to know
much about the process “foo”.

 Addresses are provided for hosts also to allow them to
find each other.

 The combination of a port and a host address allows
processes to find other processes in a well defined,
organized way.

Routing

 Routing algorithms and hardware are what determine the
path packets take through the network to get from the
originator to the receiver.

 The network is considered to be a graph with nodes
being routers, switches and hosts. The edges are the
links between them. The edges are typically weighted
with a cost of traversing the path based on performance
characteristics of the link.

 A route is a path through this graph.

 Routes can be computed statically or dynamically.
Adaptive routing is a dynamic scheme that addresses
changing conditions in the network due to load variations
and failures within the network.
 The internet is based on adaptive routing for the most part.

Routing algorithms

 In ch. 3.3, you will see an example of a simple

algorithm for routing.

 Tables are maintained at routers that represent the

link to take to get closer to the destination.

Traversing a link is often called taking a “hop”.

 Routers periodically update their tables based on

conditions changing, and exchange them with each

other.

 The routing algorithm must deal with undesirable

states such as forming loops, and routing around

parts of the network that vanish.

Congestion control

 Congestion control addresses dynamic loads on the

network.

 If a burst of activity occurs, we can find parts of the

network get bogged down and we risk things like

packet loss and buffer exhaustion.

 Congestion control algorithms are built into protocols

and network layers to gracefully deal with this.

 Techniques might include holding packets when a

node further along the path gets saturated, or

dynamically scaling message delays or timeouts.

Internetworking

 Integrated networks composed of many subnetworks

connected together.

 The internet is a prime example of this.

 Internetworking requires a method to find hosts on

different subnets (addressing), and a protocol for

communicating between subnets (such as IP).

 These live above the actual subnet technology so

that heterogeneous types of networks can all

interoperate.

Protocols for the Internet

 The main internet protocols originated in the 1970s

on the ARPANET project.

 The TCP/IP protocol was an important development

of that project.

 TCP: Transmission Control Protocol

 IP: Internet Protocol

 The internet protocols are an example of a

successful solution to the openness issue we

discussed last time. The open standards allowed for

widespread adoption, and the internet we see today.

TCP/IP and the protocol stack

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network interface

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

TCP/IP and encapsulation

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Application message

TCP header

IP header

Ethernet header

Ethernet frame

port

TCP

IP

Successful abstraction

 The TCP/IP specification is nice because it doesn’t

specify anything about what happens below the

Internet datagram layer.

 IP packets can be encapsulated within packets that

are transmitted over most every lower level network

technology.

Transport protocols

 The dominant transport protocols are TCP and UDP.

 TCP

 Transport Control Protocol

 Connection-oriented, reliable protocol

 UDP

 User Datagram Protocol

 No guarantee of reliable transmission

 These are layered above IP.

IP addressing

 Network layer protocol.

 Responsible for routing and addressing.

 We are all likely familiar with IP addresses : the

numeric addresses of machines on the internet, such

as 128.223.32.35.

 The addressing problem was one of the early

challenges to building large scale, scalable

networks.

IP addressing

 IP addresses are built out of four octets, or 8-bit

numbers.
7 24

Class A: 0 Network ID Host ID

14 16

Class B: 1 0 Network ID Host ID

21 8

Class C: 1 1 0 Network ID Host ID

28

Class D (multicast): 1 1 1 0 Multicast address

27

Class E (reserved): 1 1 1 1 unused0

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

IP addressing

 IP assigns one address to each host in the Internet.

 The classes of addresses were intended to meet the
needs of different organizations.

 Class A: Huge organizations (e.g.: NSFNet), 2^24 hosts per
subnet.

 Class B: Large organizations with more than 255 hosts.

 Class C: Less than 255 hosts.

 Class D: Multicast

 Class E: Reserved for future use.

 In recent times, this scheme has reached the limits of
scalability. It turned out not to be the most efficient use of
the address space for the modern Internet. Then again,
the ARPANET designers never saw much of the current
usage pattern in the future of their network.

IP packet structure

 The IP protocol is complex, but the basic structure

has the form:

 The IP packet has enough information for a router in

the network to make decisions related to how to

move the packet from the source to the destination.

 Deeper details on the packet structure in Chapter

3.4.2 and 3.4.3 for routing.

dataIP address of destinationIP address of source

header

up to 64 kilobytes

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Intermediate solutions for scalability

 As I mentioned last week, solutions exist to allow the
internet to scale with large numbers of personal area
networks and local area networks.

 Network Address Translation (NAT) enabled routers
(such as your Linksys wireless router at home) use
reserved addresses, such as 192.168.1.x, for your
devices, hiding them behind a single “real” IP
address that it holds.

 This removes the need for these devices to have
their own IP addresses in the global pool, allowing
for single real IP addresses to be multiplexed to
multiple devices.

NAT at work
83.215.152.95

Ethernet switch

Modem / firewall / router (NAT enabled)

printer

DSL or Cable
connection to ISP

192.168.1.xx subnet

PC 1

WiFi base station/
access point 192.168.1.10

192.168.1.5

192.168.1.2

192.168.1.1

192.168.1.104 PC 2
192.168.1.101

Laptop

192.168.1.105

Game box

192.168.1.106

Media hub

TV monitor

Bluetooth
adapter

Bluetooth
printer

Camera

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

IPv6

 IPv4 is the current IP in use on the Internet. IPv6

was designed primarily to tackle the address

exhaustion of IPv4.

 128-bit address space.

 Tananbaum: 7x10^23 IP addresses per square meter of

Earth.

 Huitema: More conservatively, 1000 IP addresses per

square meter. (Including oceans)

 Either way: IPv6 has far more address space than

IPv4.

Migrating IPv4 to IPv6

 Given that IP is the fundamental protocol of the

Internet, changing it is not easy.

 The approach: build “islands” of IPv6 routers

between IPv4 ones, and slowly grow the IPv6 ones.

 Fortunately, the IPv4 address space is embedded in

the IPv6 space, so IPv6 routers can handle IPv4

traffic.

 There is no real technical issue here: it’s just a

matter of time to get developers and device

manufacturers to switch over.

Process-to-process communication

 IP is concerned with host-to-host communication.

 Distributed systems require process-to-process

communication above this.

 TCP and UDP serve this purpose.

 TCP and UDP handle dispatching packets to ports

on a host once IP delivers the data.

UDP

 UDP is very basic.

 UDP is very close to the IP layer, so it incurs less
overhead than TCP.

 UDP is unreliable. Beyond a checksum to deal with
data integrity, UDP doesn’t guarantee that a packet
won’t be dropped.

 There is no acknowledgement that messages are
received.

 Has a use in specific applications if the developers
can benefit from the lower overhead in the presence
of unreliability.

TCP

 TCP provides reliable transport.

 Stream-oriented, so arbitrarily long messages can be
sent (vs. the fixed length messages of UDP).
 Handshaking occurs to establish a bidirectional channel

between processes on either end of the connection.

 Sequencing: One can determine the position of packets in
the larger stream.

 Flow control: As mentioned earlier, one of the design
concerns with networks is congestion control. TCP
defines a method for timing out and retrying transmission
when congestion occurs.

 Buffering is provided by TCP.

 Checksums for data integrity checks.

Naming

 The internet also provides domain name services.

 Named entities in the network are called domains.

 The symbolic name of a domain is, obviously, a

domain name.

 Host and subnet names are prefixes on these

domains.

 Hierarchical naming.

 E.g.: www.cs.uoregon.edu

http://www.cs.uoregon.edu/

