
Interprocess communication

 How do two processes communicate with each 

other?

 This is the fundamental building block of distributed 

systems.

 Other techniques, like remote method invocation, are 

implemented on top of this layer.  They are just an 

abstraction above raw interprocess communication.



Interprocess communication (IPC)

 IPC (chapter 4) and RMI (chapter 5) are all about 

middleware.  They are the abstraction layer above 

lower level protocols that actually move data 

between processes.

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   

©  Pearson Education 2005 



Interprocess communication

 IPC is all about message passing.

 Message passing involves two sides:

 Sender: The source of the outgoing message.

 Receiver: The destination of the outgoing message.

 Typically processes on the endpoints use send and 

receive operations in their API to perform this action 

of sending or receiving.

 C sockets

 Java sockets



Characteristics of IPC

 Synchronous vs. asynchronous messages

 Message destinations

 Addressing, ports.

 Reliability

 Ordering



Synchronous vs. asynchronous comms.

 Synchronous messaging: Both sender and receiver 

synchronize for every message.

 This is achieved by blocking on the paired send/recv until 

the communication is complete.

 Asynchronous messaging: One or both sides does 

not synchronize with the other.

 Send or receive does not block, and immediately returns 

before the communication completes.

 Sometimes the difference is called blocking vs. non-

blocking communications.



Asynchronous communications

 Clearly some issues arise that aren’t present in the 

synchronous case.

 Consider first how a synchronous receive works.  

 The receiver makes a call to recv() and provides a 

buffer into which it wants the message to be placed.  

 E.g.: recv(src, &buf, BUFSIZE, …);

 When the recv() completes and the receiver 

unblocks, the buffer will be guaranteed to have the 

message in it (or some error code will have occurred 

to indicate a problem).

 What about asynchronous?



Asynchronous communications

 In the asynchronous receive, the receive is posted 

and the buffer provided, but the call returns 

immediately.

 No guarantee on what the buffer actually contains.  It will 

get filled in by the communications subsystem when the 

message arrives at some point in the future.

 So, with asynchronous messaging, one needs to 

take care to check if communications have 

completed before using the contents of the buffers.

 Similar issue arises on sending side.  Need to make 

sure buffer has been transmitted and safe to 

overwrite if using asynchronous sends.



Asynchronous communications

 The book talks about today’s systems not providing 

these forms of receive.  This isn’t universally true.

 The point of asynchronous messaging is to overlap 

computation with communication.

 Instead of blocking, do useful work while the messages 

transmit.

 This is tedious to write.  BUT, some systems do 

provide it.

 Most common in high performance computing, 

where every cycle is precious.

 Example: MPI immediate send/receive calls



Message destinations

 Clearly the IPC layer must allow you to identify 

where a message is intended to go.

 Typically this uses the address/port scheme that 

TCP/IP systems use.

 E.g.: www.cs.uoregon.edu:80 == Named host can be 

resolved into IP address, 80 is the port on the machine 

associated with the web server process.

 Other abstractions exist beyond the simple host/port 

scheme.

 E.g.: Group communications.

http://www.cs.uoregon.edu/


Sockets

 Sockets are used for TCP and UDP to represent the 
endpoints of communications.

 Sockets are associated with a port on a host.
 So, messages sent to a specific address and port will end 

up in a specific socket on that port, if one is open.

 Processes may use multiple ports for 
communications, but each port is associated with 
one process only for receiving purposes.

 Many processes are allowed to send to the same 
port.

 E.g.: One web server process listens to port 80 on the 
web server, but many hosts can send HTTP requests to 
that port on the server.



Sockets

message

agreed port
any port

socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   

©  Pearson Education 2005 

 Two processes agree on a port for sending data to, but 

the port out of which the data flows from the sender 

doesn’t matter.



Finding hosts by name

 One of the first things you care about as a programmer is 
finding hosts on the network to connect to.

 Internet “Domain Name Service” resolves symbolic 
names to the IP addresses assigned to the host.

 Java: java.net.InetAddress
 InetAddress.getByName() : Given a name, return an 
InetAddress object representing the IP address(es).

 InetAddress.getAddress() : Get the raw byte array for 
the address.

 C: Not as straightforward.
 struct sockaddr_in addr;

 addr.sin_addr.s_addr = inet_addr(hostname);

 And some other junk



UDP Datagrams

 Once we can find hosts, we want to talk to them.

 UDP is a simple way.  UDP allows data to be transmitted 
from a sending process to a receiving process without 
any acknowledgement of success or retries in the event 
of failure.

 The endpoints bind sockets to their local address and 
some port.

 The server binds to the port that is known to clients so they can 
find it.

 The clients bind to any free local port to send out of.

 The receive operation returns the data plus the 
information about who sent it in case the receiver wants 
to reply.



Blocking semantics

 Send: Blocks until data is safely handed to the underlying 
IP and UDP protocols.

 Receive: Blocks until a packet arrives.  

 Timeouts can be set in the event that a datagram is lost and 
never arrives.

 Sometimes multiple threads used so one thread can block on 
the receive and others can work while it waits.  Polling is often 
also possible to check if data is available before going into the 
blocking receive to avoid threading.

 Messages that arrive before the receive operation is 
invoked are queued at the socket level.  The application 
programmer isn’t responsible for the queue.

 Messages that arrive for a port that no process has open are 
discarded.



UDP failure model

 Recall the failure model from the fundamental 

models.

 Omission failures: UDP doesn’t guarantee 

messages will make it, so they are occasionally 

dropped.

 Ordering: UDP doesn’t force messages to be 

delivered in order.

 Applications using UDP often provide application-

level checks to deal with these.



Uses of UDP

 Applications where you want lower overhead and 

occasional omission failures are OK.

 E.g.: Internet domain name services, Voice over IP

 VoIP is an interesting example.  Losing a packet 

representing some tiny duration of sound is easily 

compensated for at playback.

 Where does overhead come from?  

 Statefulness of connection on sender/receiver sides 

 Transmission of extra messages for setting up a connection

 Latency for the sender.



Java UDP

 See chapter 4.2 for sample code.

 Key points:

 java.net.DatagramSocket : This sets up the sockets 

on the endpoints of the communication.

 java.net.DatagramPacket : This represents the data 

that is sent, including the network information about the 

sender.

 You can see in Figure 4.4 how the receiver uses the 

network information and data in the received datagram to 

construct a packet to echo back to the original sender.


