
Logistics

 Teams stabilized.

 Programming assignment 1 posted.

 Due Oct. 21, 2pm.

 Feel free to e-mail me if you have issues during the

exercise.

 Today:

 Wrap up TCP, discuss RMI.

 Probably won’t get through RMI today entirely. We’ll spill

into next week a little.

 I built in some wiggle room in the schedule.

Questions summarizing weeks 1-2

 Any questions about the material over the last 2

weeks?

 You should consider the lectures so far as intended

to lay a foundation upon which the really interesting

stuff happens in distributed systems.

TCP stream communications

 The abstraction TCP provides is that of a stream of bytes
between sender and receiver.
 Versus the bounded length datagrams of UDP.

 What does this mean?
 TCP handles bundling data into IP packets, so application-level

message sizes are sent. Packetization is hidden.

 TCP acknowledges receipt of messages. So, if a message is
lost (i.e.: no ACK before a timeout), TCP automatically
retransmits it.

 Flow control: Backs of rate sender transmits data if receiver is
slower.

 Prevents reordering and duplication by attaching IDs to each
packet.

 Once a connection is established, it persists so both sides can
read and write to it.

Caveats

 What is put into the stream must be read out in the same
order on the other end.

 E.g.: Writing an int and then a double requires reading an int,
then a double. If this cooperation doesn’t occur, the data is
likely to be interpreted incorrectly.

 Blocking: If a sender is throttled due to flow control, a
send may block. A receive may block if no data has
arrived yet.

 Threads

 Typically, a server accepts() a connection and spawns a thread
to deal with that connection so it can listen for new ones.

 Polling via select() is an alternative. This can have lower
overhead and work on systems without threads, but it is trickier
to manage.

TCP failure model

 TCP retries address omission failures, and checksums
address corruption and arbitrary failures. The protocol
masks these by defining how retries and retransmissions
are handled.

 If a connection is truly bad and the data simply cannot be
properly transmitted (i.e.: resend limit exceeded), the
TCP layer may break the connection.

 TCP will notify both sides when they attempt to use the
socket that it is no longer valid.

 This means a bad communication channel (network failure) is
indistinguishable from a process failure on the other side.

 A process can’t tell if recently sent messages were received
properly.

Uses of TCP

 Most familiar protocols are built on top of TCP.

 HTTP

 SMTP

 FTP

 Why? These protocols require reliability and TCP

allows them to gain it without each application or

higher level protocol being responsible for

implementing it themselves.

 Typically the cost paid for TCP overhead versus

UDP is acceptable for this benefit.

Java socket API : Server side

 Servers create a ServerSocket object to bind to a
local port and listen for incoming requests.

 The accept() method on the ServerSocket
blocks until a request arrives, and the result is a
Socket object representing the connection.

 The Socket provides access to InputStream and
OutputStream objects for reading and writing.

 If a server wishes to be able to handle more than
one connection at a time, one can bundle the
handling of the Socket IO in a Java Thread.

 Figure 4.6 has an example of this.

Java socket API: Client side

 Clients create Socket objects by passing in the

hostname and port of the server to connect to.

 Like the server side, the Socket object provides

InputStream and OutputStream objects for I/O.

 Java Sockets conveniently encapsulate name

resolution when you create them, so you can provide

a symbolic name and port without having to explicitly
look up the InetAddress first.

Java socket API: Error conditions

 In the event of a failure in some part of the process,

Java exceptions allow for processes on either side of

the connection to gracefully deal with them.

External data representations

 In a previous lecture we pointed out that heterogeneity
is a challenge in designing and implementing distributed
systems.

 One of the reasons is that not all systems choose to
represent information the same way internally.
 Does the most significant byte of an integer come first or last?

 Does a system use 8-bit ASCII or 16-bit Unicode?

 Are floating point numbers represented the same way?

 Are arrays stored contiguously following row or column major
ordering?

 All of these prohibit the direct sharing of raw data
between systems. You need to put data into a common
form that every participant agrees upon in advance.

External data representations

 We call this agreed upon form the external data

representation. Some packages abbreviate this to

XDR.

 The act of putting data into this agreed upon form is

called marshalling.

 The intermediate form can be either:

 A fully specified data format. E.g.: All text will be Unicode,

all integers will be big-endian, etc…

 The native format of the sender, with a header that the

receiver can read to determine what format the sender

assumed.

Common representations

 CORBA common data representation

 Java Object serialization

 XML

 A popular older one is the IETF standard XDR format

intended to live at the presentation layer of the stack

(between the application and lower level protocols).

 See RFC 1832 for information.

 NFS and other tools based on ONC RPC use this XDR.

 Open Network Computing, Remote Procedure Call : a close

relative of SunRPC.

Common features of XDRs

 Platform-neutral representation of primitive types

(ints, floats, etc…).

 Recursive representation of structured types.

 C structs.

 C++ classes, Java classes.

 Unions, enumerations.

 Metadata beyond the type and contents.

 Array lengths, dimensions.

 String lengths.

Java serialization

 Serialization flattens an object and it’s contents

(potentially other objects) into a form that can be

transmitted to another system.

 Deserialization is the inverse operation of restoring

the objects in memory.

 Serialization can also be used to “freeze” objects to

store for later, such as in a file. It isn’t restricted to

communication uses.

Java serialization

 How does it work?

 Instance variables are written out in a platform-
neutral format, along with their datatypes and
names.

 This is recursively applied to other objects that are
contained within the object being serialized.

 References are serialized by assigning unique
handles to each instance of an object, ensuring that
multiple references to the same instance will be
stored as the same handle.
 Obviously we can’t store the actual reference address

and hope it will be correct when the object is deserialized.
Hence the use of handles.

Java serialization

 How do you make an object serializable?
 Implement the “serializable” interface.

 For the most part, you don’t need to explicitly write the
code to write the raw serialized bytes representing the
object or putting an object back together from the stream.

 You generally can assume that if an object came from the
Java standard library, it is serializable.

 Java has a nice facility called “reflection” that allows you
to interrogate objects to find out about their class
definition and structure at runtime.

 This is how the serialization system can automatically scan
through an object and determine the types and names of the
fields.

XML representations

 Document markup language.

 You can represent structured data by creating elements
and attributes on the elements. The elements can
contain other elements.

 E.g.:

<person id=“12345”>

<name>Bill</name>

<place>Eugene</name>

<age>55</age>

</person>

XML representations

 Most data is represented as a string equivalent.

 Occasionally binary data (such as hashes or

security-related data) must be included. How? It is

encoded using a Base64 encoding.

 Base64 encoding uses the alphanumeric characters , +, /

and = to represent binary data.

 Every 6 bits assigned a character in a-z A-Z 0-9 + /

 Usually encoded as messages with multiples of 24 bits,

so the = character is used to pad the 6, 12, or 18 bits that

may remain.

XML representation

 XML provides for schemas that are XML descriptions

of the elements, attributes, and nesting relationships

of a specific type of XML document.

 Schemas can be used to validate that an XML

document is well-formed.

 Typically this is performed by the XML parser. You, the

end-user, are not responsible for implementing this check.

Considerations for XDRs

 Pro:

 Standardized external representations eliminate a

significant hurdle to heterogeneous systems.

 Con:

 Performance. One must encode and decode data on

either endpoint , which takes time.

 Lack of a single standard.

 IETF XDR, Java serialization, CORBA CDR, etc…

 Limits interoperation between distributed systems build using

different middleware packages.

Remote object references

 Systems like CORBA and Java allow for distributed

programs in which processes can refer to objects that

actually are stored in the memory of another process.

 This is achieved through remote object references.

 Remote object references aren’t that hard to represent.

 Address of host containing the object.

 Port of the host attached to the process containing the object.

 A time and object number representing a unique identifier of the

object.

 Invocations on the object instance are made over the

network.

Client-server communication

 Given an object instance, what can we do with it?
 Look at it’s data.

 Invoke methods on it.

 So, naturally we are interested in invoking methods on
remote object references.
 Remote method invocation.

 Note that we usually don’t have access to instance
variables remotely without going through a method
interface (e.g.: setter/getter).

 How do we make this happen? RPC exchange
protocols.

Request-reply protocol

 The protocol defines the set of messages passed
back and forth from the client (caller) to the server
(callee).

 doOperation : Used by the client to invoke remote
operations given a remote object reference.

 getRequest : Used by the server to retrieve requests
submitted by clients and execute them.

 sendReply : Used by the server to respond to the request
with the reply, possibly containing return values. Client
unblocks when reply received.

Request-reply protocol

Request

ServerClient

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute

method

message

select object

sendReply

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Message structure

 Messages have a simple structure:

 Seems redundant with TCP, right? This is intended

to go over UDP too.

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Considerations: Over TCP or UDP?

 Requests are followed by replies. So, a reply is
essentially an acknowledgement.
 TCP ACKs are redundant.

 Establishing a connection requires message
exchange in addition to the request/reply pair.

 Wasteful communication overhead.

 Majority of RPC calls pass few and small arguments
and return values.
 Flow control largely unnecessary.

 So, Request-Reply for RMI is perfectly fine over
UDP.

Failure model

 Omission failures, obviously when over UDP.

 Reordering possible.

 The requestID is incremented for each message, so

it is both unique and monotonically increasing.

 Can be used to put messages back in order on other side

and identify duplicates.

 Timeouts on doOperation on the client side lead to

interesting questions.

Timeouts

 Timeouts in doOperation can result from:
 Request never getting to the server. Resending is

harmless.

 Replies never getting back to the client.

 The first case isn’t hard to deal with. The server can
keep track of the most recent message ID it has
received from each client host and throw out
duplicates.

 The second case is harder. The reply getting lost
means the computation occurred already. What to
do?

Operations

 A server can either maintain a history or not.

 If it maintains a history, this is easy – just resend the reply

when the client asks for it again without recomputing.

 If there is no history, the server has to recompute.

 Recomputation poses a problem if the computation

is not idempotent. Idempotent means that the

operation can be performed repeatedly with the

same result each time.

 Special measures need to be implemented if an operation

provided over RPC is not idempotent.

Exchange protocol variants

 Request (R): Client sends a request once, and
never looks for a reply.

 Request/Reply (RR): Client sends a request, and
the server responds with a reply that the client
consumes.

 Request/Reply/Acknowledge (RRA): RR with a
client to server acknowledgement sent after the
reply. The client doesn’t block on the acknowledge,
and the server considers an acknowledgement for
requestID “X” to imply acknowledgement for “X-1”
and below in the event that their acknowledgements
were lost.

Example of a request/reply protocol

 HTTP

