
Logistics

 Teams stabilized.

 Programming assignment 1 posted.

 Due Oct. 21, 2pm.

 Feel free to e-mail me if you have issues during the

exercise.

 Today:

 Wrap up TCP, discuss RMI.

 Probably won’t get through RMI today entirely. We’ll spill

into next week a little.

 I built in some wiggle room in the schedule.

Questions summarizing weeks 1-2

 Any questions about the material over the last 2

weeks?

 You should consider the lectures so far as intended

to lay a foundation upon which the really interesting

stuff happens in distributed systems.

TCP stream communications

 The abstraction TCP provides is that of a stream of bytes
between sender and receiver.
 Versus the bounded length datagrams of UDP.

 What does this mean?
 TCP handles bundling data into IP packets, so application-level

message sizes are sent. Packetization is hidden.

 TCP acknowledges receipt of messages. So, if a message is
lost (i.e.: no ACK before a timeout), TCP automatically
retransmits it.

 Flow control: Backs of rate sender transmits data if receiver is
slower.

 Prevents reordering and duplication by attaching IDs to each
packet.

 Once a connection is established, it persists so both sides can
read and write to it.

Caveats

 What is put into the stream must be read out in the same
order on the other end.

 E.g.: Writing an int and then a double requires reading an int,
then a double. If this cooperation doesn’t occur, the data is
likely to be interpreted incorrectly.

 Blocking: If a sender is throttled due to flow control, a
send may block. A receive may block if no data has
arrived yet.

 Threads

 Typically, a server accepts() a connection and spawns a thread
to deal with that connection so it can listen for new ones.

 Polling via select() is an alternative. This can have lower
overhead and work on systems without threads, but it is trickier
to manage.

TCP failure model

 TCP retries address omission failures, and checksums
address corruption and arbitrary failures. The protocol
masks these by defining how retries and retransmissions
are handled.

 If a connection is truly bad and the data simply cannot be
properly transmitted (i.e.: resend limit exceeded), the
TCP layer may break the connection.

 TCP will notify both sides when they attempt to use the
socket that it is no longer valid.

 This means a bad communication channel (network failure) is
indistinguishable from a process failure on the other side.

 A process can’t tell if recently sent messages were received
properly.

Uses of TCP

 Most familiar protocols are built on top of TCP.

 HTTP

 SMTP

 FTP

 Why? These protocols require reliability and TCP

allows them to gain it without each application or

higher level protocol being responsible for

implementing it themselves.

 Typically the cost paid for TCP overhead versus

UDP is acceptable for this benefit.

Java socket API : Server side

 Servers create a ServerSocket object to bind to a
local port and listen for incoming requests.

 The accept() method on the ServerSocket
blocks until a request arrives, and the result is a
Socket object representing the connection.

 The Socket provides access to InputStream and
OutputStream objects for reading and writing.

 If a server wishes to be able to handle more than
one connection at a time, one can bundle the
handling of the Socket IO in a Java Thread.

 Figure 4.6 has an example of this.

Java socket API: Client side

 Clients create Socket objects by passing in the

hostname and port of the server to connect to.

 Like the server side, the Socket object provides

InputStream and OutputStream objects for I/O.

 Java Sockets conveniently encapsulate name

resolution when you create them, so you can provide

a symbolic name and port without having to explicitly
look up the InetAddress first.

Java socket API: Error conditions

 In the event of a failure in some part of the process,

Java exceptions allow for processes on either side of

the connection to gracefully deal with them.

External data representations

 In a previous lecture we pointed out that heterogeneity
is a challenge in designing and implementing distributed
systems.

 One of the reasons is that not all systems choose to
represent information the same way internally.
 Does the most significant byte of an integer come first or last?

 Does a system use 8-bit ASCII or 16-bit Unicode?

 Are floating point numbers represented the same way?

 Are arrays stored contiguously following row or column major
ordering?

 All of these prohibit the direct sharing of raw data
between systems. You need to put data into a common
form that every participant agrees upon in advance.

External data representations

 We call this agreed upon form the external data

representation. Some packages abbreviate this to

XDR.

 The act of putting data into this agreed upon form is

called marshalling.

 The intermediate form can be either:

 A fully specified data format. E.g.: All text will be Unicode,

all integers will be big-endian, etc…

 The native format of the sender, with a header that the

receiver can read to determine what format the sender

assumed.

Common representations

 CORBA common data representation

 Java Object serialization

 XML

 A popular older one is the IETF standard XDR format

intended to live at the presentation layer of the stack

(between the application and lower level protocols).

 See RFC 1832 for information.

 NFS and other tools based on ONC RPC use this XDR.

 Open Network Computing, Remote Procedure Call : a close

relative of SunRPC.

Common features of XDRs

 Platform-neutral representation of primitive types

(ints, floats, etc…).

 Recursive representation of structured types.

 C structs.

 C++ classes, Java classes.

 Unions, enumerations.

 Metadata beyond the type and contents.

 Array lengths, dimensions.

 String lengths.

Java serialization

 Serialization flattens an object and it’s contents

(potentially other objects) into a form that can be

transmitted to another system.

 Deserialization is the inverse operation of restoring

the objects in memory.

 Serialization can also be used to “freeze” objects to

store for later, such as in a file. It isn’t restricted to

communication uses.

Java serialization

 How does it work?

 Instance variables are written out in a platform-
neutral format, along with their datatypes and
names.

 This is recursively applied to other objects that are
contained within the object being serialized.

 References are serialized by assigning unique
handles to each instance of an object, ensuring that
multiple references to the same instance will be
stored as the same handle.
 Obviously we can’t store the actual reference address

and hope it will be correct when the object is deserialized.
Hence the use of handles.

Java serialization

 How do you make an object serializable?
 Implement the “serializable” interface.

 For the most part, you don’t need to explicitly write the
code to write the raw serialized bytes representing the
object or putting an object back together from the stream.

 You generally can assume that if an object came from the
Java standard library, it is serializable.

 Java has a nice facility called “reflection” that allows you
to interrogate objects to find out about their class
definition and structure at runtime.

 This is how the serialization system can automatically scan
through an object and determine the types and names of the
fields.

XML representations

 Document markup language.

 You can represent structured data by creating elements
and attributes on the elements. The elements can
contain other elements.

 E.g.:

<person id=“12345”>

<name>Bill</name>

<place>Eugene</name>

<age>55</age>

</person>

XML representations

 Most data is represented as a string equivalent.

 Occasionally binary data (such as hashes or

security-related data) must be included. How? It is

encoded using a Base64 encoding.

 Base64 encoding uses the alphanumeric characters , +, /

and = to represent binary data.

 Every 6 bits assigned a character in a-z A-Z 0-9 + /

 Usually encoded as messages with multiples of 24 bits,

so the = character is used to pad the 6, 12, or 18 bits that

may remain.

XML representation

 XML provides for schemas that are XML descriptions

of the elements, attributes, and nesting relationships

of a specific type of XML document.

 Schemas can be used to validate that an XML

document is well-formed.

 Typically this is performed by the XML parser. You, the

end-user, are not responsible for implementing this check.

Considerations for XDRs

 Pro:

 Standardized external representations eliminate a

significant hurdle to heterogeneous systems.

 Con:

 Performance. One must encode and decode data on

either endpoint , which takes time.

 Lack of a single standard.

 IETF XDR, Java serialization, CORBA CDR, etc…

 Limits interoperation between distributed systems build using

different middleware packages.

Remote object references

 Systems like CORBA and Java allow for distributed

programs in which processes can refer to objects that

actually are stored in the memory of another process.

 This is achieved through remote object references.

 Remote object references aren’t that hard to represent.

 Address of host containing the object.

 Port of the host attached to the process containing the object.

 A time and object number representing a unique identifier of the

object.

 Invocations on the object instance are made over the

network.

Client-server communication

 Given an object instance, what can we do with it?
 Look at it’s data.

 Invoke methods on it.

 So, naturally we are interested in invoking methods on
remote object references.
 Remote method invocation.

 Note that we usually don’t have access to instance
variables remotely without going through a method
interface (e.g.: setter/getter).

 How do we make this happen? RPC exchange
protocols.

Request-reply protocol

 The protocol defines the set of messages passed
back and forth from the client (caller) to the server
(callee).

 doOperation : Used by the client to invoke remote
operations given a remote object reference.

 getRequest : Used by the server to retrieve requests
submitted by clients and execute them.

 sendReply : Used by the server to respond to the request
with the reply, possibly containing return values. Client
unblocks when reply received.

Request-reply protocol

Request

ServerClient

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute

method

message

select object

sendReply

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Message structure

 Messages have a simple structure:

 Seems redundant with TCP, right? This is intended

to go over UDP too.

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Considerations: Over TCP or UDP?

 Requests are followed by replies. So, a reply is
essentially an acknowledgement.
 TCP ACKs are redundant.

 Establishing a connection requires message
exchange in addition to the request/reply pair.

 Wasteful communication overhead.

 Majority of RPC calls pass few and small arguments
and return values.
 Flow control largely unnecessary.

 So, Request-Reply for RMI is perfectly fine over
UDP.

Failure model

 Omission failures, obviously when over UDP.

 Reordering possible.

 The requestID is incremented for each message, so

it is both unique and monotonically increasing.

 Can be used to put messages back in order on other side

and identify duplicates.

 Timeouts on doOperation on the client side lead to

interesting questions.

Timeouts

 Timeouts in doOperation can result from:
 Request never getting to the server. Resending is

harmless.

 Replies never getting back to the client.

 The first case isn’t hard to deal with. The server can
keep track of the most recent message ID it has
received from each client host and throw out
duplicates.

 The second case is harder. The reply getting lost
means the computation occurred already. What to
do?

Operations

 A server can either maintain a history or not.

 If it maintains a history, this is easy – just resend the reply

when the client asks for it again without recomputing.

 If there is no history, the server has to recompute.

 Recomputation poses a problem if the computation

is not idempotent. Idempotent means that the

operation can be performed repeatedly with the

same result each time.

 Special measures need to be implemented if an operation

provided over RPC is not idempotent.

Exchange protocol variants

 Request (R): Client sends a request once, and
never looks for a reply.

 Request/Reply (RR): Client sends a request, and
the server responds with a reply that the client
consumes.

 Request/Reply/Acknowledge (RRA): RR with a
client to server acknowledgement sent after the
reply. The client doesn’t block on the acknowledge,
and the server considers an acknowledgement for
requestID “X” to imply acknowledgement for “X-1”
and below in the event that their acknowledgements
were lost.

Example of a request/reply protocol

 HTTP

