
Remote method invocation

 RMI, and it’s predecessor RPC (remote procedure 
call) are abstractions concerned with a programming 
model for distributed systems.

 RPC was first: basic procedure calls.

 RMI is the object oriented equivalent.  Methods are 
procedures associated with object instances.

 Most modern systems are RMI.

 RMI is a middleware layer, built on top of 
request/reply protocols, XDRs, and point to point 
communications.



Transparency

 In week one, we discussed the notion of 

transparencies.

 RMI aims to provide what is called location 

transparency.

 By this, we intend that the caller not be aware of whether 

the procedure runs in the local process or within a remote 

one.

 RMI sometimes also attempts to provide 

transparency with respect to the languages on either 

end of the call.



Interfaces and language heterogeneity

 In RMI, we are concerned only with the interface of 
the method.

 The interface is what a method provides to a caller.

 For example:
 int sum(Array<int>, i);

 How do we read this?
 Sum is a function that takes an array of integers as input, 

and returns an integer containing their sum.

 This is an abstract interface representation.  The 
RMI middleware is then responsible for binding it to 
the appropriate languages.



Interfaces and binding

 int sum(Array<int>, i);

 C:

 int sum(int *i, int length);

 Java:

 int sum(int i[]);

 Fortran:

 function sum

 INTEGER :: sum

 INTEGER, DIMENSION(:) :: I



Interfaces and binding

 How does this help?

 On the caller side, the RMI system provides a thin 

layer that exposes the correct interface signature for 

that language.

 Behind this layer, the arguments are packaged into 

an XDR format and sent to the server.

 The server has a similar layer, that unpacks the 

arguments and invokes the actual method in the 

appropriate way for it’s implementation language.



Interface Definition Languages

 Interface Definition Languages (IDLs) provide this 

language-neutral method for describing interfaces to 

be provided via RMI.

 CORBA IDL

 SunRPC IDL

 Babel SIDL (Scientific IDL)

 Java does not require an IDL for RMI.  Java RMI 

only talks to Java, so no need.  Reflection provides 

enough information about the class method 

signatures to make the calls on both sides.



IDLs

 IDLs have limits.  For example, sometimes they 

prohibit passing pointers and references back and 

forth because you cannot directly address memory in 

a remote process without going through a well 

defined interface.

 IDLs also limit types to a subset that is reasonable to 

represent in all languages.

 E.g.: Some languages have a native COMPLEX type.  

Most don’t.


