
Using IDLs

 To generate this thin layer between the caller and the

RMI subsystem, and the RMI subsystem and the

callee, you invoke an IDL compiler.

 It emits the code that both sides link against such

that the method calls are transparently made through

RMI.

 The benefit is transparency from the code

perspective.

 The cost is some extra work at compile time to build

and link this extra layer of code.

 See page 189 for details on this layer of code.

Object models

 To understand the impact of being distributed on a

distributed object system, we’ll briefly revisit the

Java/C++ object model.

Object model for Java/C++

 Object references: Instances of objects are referred
to through references to their locations in memory.
Object references are first class values, so they can
be passed around and returned.

 Interfaces provide the signature an object provides
without specifying the implementation.
 E.g.: Java Interfaces, C++ class definitions

 Actions are performed by callers invoking methods
on objects. A method invocation can:

 Change the state of the receiver

 Create a new object.

 Result in other methods in other objects being called.

Object model for Java/C++

 Exceptions: Error conditions can result in exceptions

being thrown. Exceptions are passed up the call

graph from callee to caller until a method provides

code to catch the exception.

 Garbage collection: In languages like Java, memory

is not explicitly deallocated most of the time, so the

runtime system is responsible for identifying memory

no longer referred to and deallocating it

automatically.

 C++ does not have garbage collection, although “smart

pointers” can help alleviate the need for explicit

deallocation.

Distributed objects

 A distributed object program is composed of clients

and servers.

 Servers manage instances of objects accessible in the

distributed system.

 Clients invoke methods on these objects. Clients may

contain objects themselves, but not necessarily ones that

can be accessed by other processes.

 The request/reply protocol discussed earlier can be

used to dispatch method calls from clients over the

communication subsystem to servers, perform the

computation, and reply with the result.

Distributed object model

 Distributed objects don’t inherit the object model of

their parent languages completely. The distributed

nature of the program adds constraints that may

change the meaning of the base model.

Remote object references

 We saw earlier that a remote object reference is a

structure that encapsulates the address/port

information of the server and some unique identifier

of the actual instance within that server that the

remote object reference refers to.

 What changes? Method calls act the same as local

object references.

 Access to public data may be restricted though.

Some systems provide this for remote references if a

proper setter/getter pattern is followed. Otherwise,

they prohibit it.

Remote invocation illustration

invocation invocation

remote

invocation
remote

local

local

local

invocation

invocation

A
B

C

D

E

F

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Interfaces

 The interface that is callable remotely is either:

 Described by an IDL

 This is true with CORBA, SunRPC, Babel.

 Provided by extending an interface

 This is how Java works with the Remote interface.

Actions

 For local objects, actions occur as they would in a

non-distributed case.

 For remote object references, the RMI system helps

make the remote invocation occur.

 Actions leading to instantiations of new objects will result

in the new object being in the process that “owns” the

method, not the caller.

Garbage collection

 In garbage collected languages, distributed objects

must “play well” with the native garbage collector.

 I.e.: Remote object references should respect the

reference counting scheme that the server uses.

 Distributed garbage collection requires tracking

references on both sides.

Basic Distributed Garbage Collection

 Client has a proxy object for concrete object existing
on server.
 When client GC sees that proxy object isn’t reachable

anymore, it notifies server that the remote reference count
should be decreased.

 Server maintains list of known clients that hold
references to local objects.

 GC collects an object after both remote and local
references are all zero.

 Leases on objects allow server to deal with clients
that vanish without proper removeRef() calls.

 Otherwise, client crashes could cause server-side
memory leaks.

Exceptions

 Nothing really special for exceptions. If an exception

occurs on the remote side, the RPC system must

respect the “throws” property of a method to

transport the Exception to the client to handle.

 Easily achieved in responses to client.

 Additional exceptions may be used to deal with RMI-

related error conditions on the client side, such as a

timeout on a method invocation.

Invocation semantics

 When describing the request/reply protocols, we

noticed that the potential for request or reply loss

could lead to multiple function invocations on the

server side (or none at all).

 We have three different invocation semantics that

are used to describe what an RMI system can

provide with respect to how many times a remote

method can be invoked.

Invocation semantics

 Maybe invocation semantics: The remote method

may be executed one or zero times.

 Omission failure may result in request never arriving.

 Crash of server may cause result to never be delivered.

 After the caller times out, it can’t know whether or not the

action actually occurred. If the result arrives after the

timeout, this is considered to be a non-completion by the

caller since it has moved on.

 Useful in applications where occasional failures to

execute remote methods can be tolerated.

Invocation semantics

 At-least-once semantics: The caller receives a

result if the method was executed at least once, and

an exception otherwise.

 If a method executes and the caller never receives the

message, resulting in a retry, we may see the method

executed multiple times.

 If the method is idempotent, this is fine.

 If not, this could lead to correctness problems.

 These semantics clearly are OK if all operations on the

server side are idempotent.

Invocation semantics

 At-most-once semantics: If a result is received by

the caller, it knows the method executed exactly

once. If the method does not execute, and

exception occurs.

 Requires all fault-tolerance measures to be in places to

guarantee safe delivery of the request and result.

 Works for operations that are not idempotent.

 Java RMI uses at-most-once semantics. CORBA allows

at-most-once, and maybe semantics only in the case

where no return value results from the operation.

 SunRPC provides at-least-once semantics.

Implementation details

 To make RMI happen, the software is broken up into

many interacting pieces.

object A object Bskeleton

Request
proxy for B

Reply

CommunicationRemote Remote referenceCommunication

modulemodulereference module module

for B’s class

& dispatcher

remote
client server

servant

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Implementation details

 Communication module

 The communication module is concerned with the

request/reply protocol, such as maintaining the requestID

counter and talking to the underlying UDP or TCP layer.

 Marshalling and the addressing of specific methods is

handled in the RMI software.

 Remote reference module

 The remote reference module manages the remote object

references, and handling their local proxies.

 Primarily acts as a translator between remote object

references and local objects.

Implementation details

 Servants

 This is the object instance on the server that actually

provides the concrete methods that are executed.

 RMI software

 Layer between the application and the communication

and remote reference modules.

 Proxies live here. Since we want to make remote objects

transparent to the caller, proxy objects sit in the client that

provide the same interface as the remote objects, but

their methods pass invocations to the comm. and remote

reference modules to be handed to the server for

execution.

Implementation details

 Dispatcher

 The dispatcher on the server side translates the

methodID from the request method into a method

invocation on the remote object skeleton.

 Skeleton

 The remote object is not called directly by the dispatcher.

Instead, an object with the same methods is placed

between the dispatcher and actual remote object. It has

the responsibility of unmarshalling the data contained

within the request message, invoking the function, and

marshalling the return values to return in a reply.

IDLs, Proxies, and Skeletons

 Remember: the IDL describes the abstract interface

that a remote object provides and that a client

invokes.

 We need a thin layer on both sides to marshal data

from the native representation for the caller or callee,

pass it to the underlying communication system, and

unmarshal and invoke methods on the other side.

 These are the proxies and skeletons.

 The IDL compiler typically creates these when the

IDL interfaces are compiled.

RPC

 Very similar to RMI, but simpler because no remote

object references are required.

client

Request

Reply

CommunicationCommunication

modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Events and notifications

 Event-based systems are ones in which an object

reacts to a change that occurs in another object.

 GUIs typically are based on events.

 An example event is pushing the mouse button.

 There is asynchronous interaction with events.

 The receiver typically has no idea when an event might

come in.

 Objects that receive events call the receipt of an

event notification.

Publish/subscribe

 Providers of events publish them.

 In the GUI world, this might be an object saying that it will

provide the “rightClick”, “leftClick”, and “mouseMove”

events.

 Objects that wish to receive events when they occur

in a specific provider will subscribe to them.

 When an event occurs, a publisher will send the

event to all subscribers.

 Event objects are called notifications.

Events and distributed systems

 Examples of events in a distributed context.

 Chat room participant leaves the chat room.

 A device joins a network.

 A data element is modified on a server that a set of clients

are watching.

 E-mail arrives.

Events and heterogeneity

 Events make systems not designed in advance to

work together actually interoperable.

Interesting event designs

 Some interesting design patterns arise in event-based

systems.

 Forwarding:

 These are subscribers who act as providers to other subscribers.

You can imagine a hierarchy of these in some cases.

 Filters:

 Subscribers who filter out events and provide those that pass the

filter to subsequent subscribers.

 Pattern subscribers:

 Some subscribers are not interested as much in individual events

as they are in patterns amongst multiple events.

 Mailboxes:

 Allows events to be cached safely in the event that the subscriber

is not available when the event occurs.

Multicast and group communications

 So far we’ve focused on point-to-point communications.

 In some cases we want group communications.

 E.g.: Sending a message to a group of processes in a single
operation, not a set of point-to-point operations.

 The simplest method (and least flexible for arbitrary sets
of machines) is the special IP host ID composed all of
ones.

 E.g.: 128.223.255.255, 192.168.1.255

 This simply broadcasts to all hosts connected to the network
specified in the NetworkID part of the address.

 One of the goals is transparency of the members of the
group to the sender. The sender just specifies the group
and message, and the multicast layer gets it to the
members.

Multicast and group communications

 Multicast is useful in distributed systems with
characteristics like:

 Fault tolerance based on replicated services

 Client messages sent to all servers providing the services, each of
which performs the same operation. If a server fails, it’s OK, since
others will have done the work.

 Discovery servers for spontaneous networking

 Use multicast IPs to dynamically find resources on a network (e.g.:
a printer).

 Data replication for better performance

 Many machines contain replicas of data, and updates are
broadcast to all data holders.

 Propagation of event notifications

 Consider a set of processes subscribed to an event to be a
multicast group.

IP multicast

 IP multicast is built on top of IP.

 A multicast group is identified by a class D IP address
(first 4 IPv4 bits are 1110).

 A client receives UDP messages on an ordinary port, and
joins a multicast group to participate.

 So, basic multicast suffers UDP-style failures.

 These multicast groups can be on the local network or
Internet.

 Those on the Internet make use of multicast routers to
propagate.

 A time to live (TTL) specifies how many multicast routers a
message can traverse through to limit how far a multicast
message goes on the Internet.

IP multicast

 Allocation of multicast addresses is a little tricky on

the Internet.

 224.0.0.1 through 224.0.0.255 are reserved.

 The rest are available for temporary purposes.

 For small local groups, a small TTL is often enough to

avoid conflicts by limiting how far the packets can go.

 Otherwise, the session directory (sd) program can be

used to start and join multicast sessions. This tool keeps

track of and broadcasts known multicast sessions to help

both find ones that a program is looking for, and

determine what multicast IPs are available.

Moving on

 So far we’ve covered:

 Basic concepts and models in distributed systems

 Networking topics: How you make processes on different

systems talk to each other.

 Abstraction layers and separation of concerns in

distributed systems.

 Remote procedure call/ remote method invocation.

 Multicast and group communication concepts.

 We’ll talk more about this soon in more detail.

