Jumping ahead

- Now we're on to chapters 11 and 12.
- Chapter 11: Time and Global States
- Chapter 12: Coordination and Agreement

Time

- Time plays an important role in distributed systems.
- Maintaining consistency of distributed data.
, E.g.: Timestamps to serialize transactions.
- Authentication protocols.
- Elimination of duplicate updates.
- Typically we are concerned with the order of operations that occur on different nodes relative to each other.
- How do we do this if there is no shared, universal clock that all nodes can refer to?
- Even worse, how do we synchronize with each other if messaging times and clock behaviors are variable?

Relativity

- The relative ordering of events is intimately tied to the observer and what is being observed.
- For example, we have two event producers A and B, and two event consumers, X and Y and a fixed speed of light.
- Assume as an outside-of-the-universe observer, we can determine for certain that A and B produce their events at the same time.
- To X, equidistant from both, they appear simultaneous. To Y, they see B happen before A.

Relativity

- So, because the speed at which information can propagate has a fixed, finite upper bound, two different observers can come to two different conclusions about the same sequence of events.
- How does this impact distributed systems?
- Ability to know order of two events on different nodes.
- Ability to know if two distributed events occurred simultaneously.
- This is an issue with fast-paced games.

Clocks

- Let t be "real time".
- A clock is a physical device attached to a computer that oscillates at a certain frequency counting these oscillations.
- Let $H_{i}(\mathrm{t})$ be the clock value on node i at time t .
- This could be a cycle counter, tick counter.
- The software clock translates this into an approximation of real time:

$$
C_{i}(t)=\alpha H_{i}(t)+\beta
$$

- Scale and offset.
- The clock resolution is the amount of real time that elapses between two adjacent clock ticks.
- Successive events are guaranteed to get a unique time if they occur at times further apart than a single clock tick.

Clocks: Drift and Skew

- Skew: The instantaneous difference between two clocks.
- Drift: Two clocks that count at different rates will have a growing skew. They drift relative to each other.
- Imprecision in clock manufacturing can cause this.
b Changes in the environment can affect oscillation times (e.g.: temperature fluctuations).
- Relativistic effects. Time dilation occurs in the presence of a gravitational field.
- GPS requires this sort of correction because the GPS satellites are in a different part of the Earth's gravitational field than receivers.
, Quartz crystals are common oscillators in computers and other devices. They have a drift rate of $10^{\wedge}-6$ seconds per day. That's one second for every $1,000,000$ seconds, or 11.6 days.

Synchronization

- There are two types of time synchronization.
- External: Synchronization with an external authority that is connected directly to an external time source, such as an atomic clock or radio receiver.
- Internal: Synchronization of a set of clocks with each other to some known accuracy. Allows us to observe event intervals amongst the set of participants, but not outsiders or real time.

External synchronization

- Given some synchronization bound D>0 and a source S of UTC.
- Condition: For all participants $\mathrm{i}=1 \ldots \mathrm{n}$ and all real times t over some interval:

$$
\left|S(t)-C_{i}(t)\right|<D
$$

- If this condition holds, then we can say that the clocks $\mathrm{C}_{\mathrm{i}}(\mathrm{t})$ are accurate to within the bound D .

Internal synchronization

- Given some synchronization bound $\mathrm{D}>0$ and a set of N interacting nodes.
- Condition: For all nodes i and j :

$$
\left|C_{i}(t)-C_{j}(t)\right|<D
$$

- for all real times t over some interval.
- If this condition holds, then we can say that the clocks C_{i} agree within a bound D .

Internal vs. external synchronization

- Internal synchronization does not imply external synchronization because of inherent drift from the external source.
- On the other hand, if all N nodes are synchronized with bounds D to the source S, then all N nodes are internally synchronized with bound 2D.
- Why 2D? Each node is within D of the source S. A node can be +D or -D. So, in the extreme case one node is +D and the other is -D. That is 2D apart.

Drift rates and intervals

- Given a bounded drift rate ρ, we can say that the error in measuring the interval between real times t and $t^{\prime}\left(t^{\prime}>t\right)$ is bounded by:

$$
(1-\rho)\left(t^{\prime}-t\right) \leq H\left(t^{\prime}\right)-H(t) \leq(1+\rho)\left(t^{\prime}-t\right)
$$

- This forbids large jumps in the clock under normal operating conditions (where the drift rate bound holds).

Monotonicity

- $\mathrm{t}^{\prime}>\mathrm{t}$ implies $\mathrm{C}\left(\mathrm{t}^{\prime}\right)>\mathrm{C}(\mathrm{t})$
> I would make this weaker, where $\mathrm{t}^{\prime}>\mathrm{t}$ implies $\mathrm{C}\left(\mathrm{t}^{\prime}\right)>=\mathrm{C}(\mathrm{t})$ if t '- t is less than the clock resolution.
- Monotonicity simply states that given two points in real time, the order relationship between them will be preserved by the software clock.
- Interestingly, monotonicity can be violated when a clock 'flips over' as the finite representation of the clock overflows.
- Fortunately, this is rare, and we can detect it.

