
Synchronization algorithms

 Let’s start assuming a synchronous system model.

 Remember: This means known bounds for drift rate,

transmission delays, and execution times.

 Say we have two processes A and B, and B wants to

synchronize it’s clock with that of A.

 A sends it’s time t to B.

 B receives it after some transmission time ttransmit

A B

Synchronization algorithms

 Ideally, B would simply set it’s clock to t+ttransmit.

 Why can’t we do this?

 We don’t know ttransmit.

 Why? Even though this is a synchronous system, we

only know the bounds.

 The actual transmission time can vary.

 The maximum time can be hard to determine.

 The minimum time can be estimated.

 Measure round trip ping time over and over to

characterize distribution of times.

Estimating bounds

 Four example ping sequences.

Uncertainty

 Our uncertainty is quantified as:

 U=(max-min)

 So, if a network provides consistent timings even in
the presence of load variations, uncertainty will be
low.
 LANs can look like this.

 Those local pings varied by about 0.02 ms.

 If it doesn’t, uncertainty can be high.

 The Internet usually looks like this.

 Google varied by about 2ms, LANL by about 3, China about 25.

Uncertainty

 t+max : Skew of u units.

 t+min : Skew of u units.

 t+((min+max)/2) : Skew of u/2 units.

 Why?

 min and max are a full u units from each other.

 (min+max)/2 is in the middle, so u/2 from the endpoints.

 Optimum bound on skew for N clocks:

 u(1-1/N)

 [Lundelius, Lynch 84]

Asynchronous systems

 The maximum is unknown. So, the best we can do:

 ttransmit = min + x, x≥0

 Sampling can yield a distribution and we can

estimate a reasonable max.

 Of course, we are assuming reliability – without that, max

can be infinite.

Cristian’s Algorithm

 Given a time server, how do we synchronize the

clock of a single node to it.

 And what is the expected accuracy of this

synchronization?

Client
Time

Server

What time is it?

Time is t.

Cristian’s Algorithm

 The client records the time between when it sends

the request and receives the reply containing the

time t of the server. Calls this the roundtrip time

(Troundtrip).

 A rough approximation of the one way time is simply

Troundtrip/2. This assumes approximately equal

overhead both directions.

 So, the client can estimate the time to be:

2

roundtripT
t

Cristian’s Algorithm

 Now, recall that we have a minimum possible

message time (Tmin) between the client and server.

 The best the time server can do is measure the time

at Tmin after the request was sent.

 The latest possible time the server can do so is Tmin

before the reply arrives at the sender.

 Why?

 Both of these assume the fastest possible traversal of one

of the paths.

 If both paths took longer than Tmin, then the actual time

measures by the server would be somewhere in between.

Cristian’s Algorithm

 So, we have a bound on the time that the receiver

sees the response:

 A little algebra and we can see that the interval is

Troundtrip – 2Tmin wide.

 So, our accuracy is:

],[minmin TTtTt roundtrip

 min

2
T

Troundtrip

Cristian’s Algorithm

 One can address variability by making multiple

requests, and taking that which has the minimum

round-trip time.

 This reduces the width of the bounds, increasing

accuracy.

Berkeley Algorithm

 Useful for coordinating a set of machines on a LAN.

 All nodes send their time to a single master node.

 The master, using round trip timing for each node

(like in Cristian’s algorithm) computes an average

time. Outliers are eliminated.

 The average should compensate for the fact that some

clocks run slow and some fast.

 The master then informs the nodes how much +/-

that they need to adjust their local clocks.

NTP

 NTP is a general purpose time synchronization

protocol for the Internet, not smaller networks.

 The goal:

 A service to allow clients on the Internet to synchronize

accurately with UTC.

 Provide redundant servers to deal with potential losses of

connectivity.

 Provide a scalable protocol that allows for frequent

resynchronization to deal with drift.

 Include authentication mechanisms to ensure that the

timing information originates from trusted servers.

NTP

 Based on a hierarchy of
computers.
 Messaging via UDP.

 The levels in this
hierarchy are called
strata, and the level
number is the stratum
number.

 A set of servers
connected in one of
these hierarchies is a
synchronization subnet. Figure source: http://en.wikipedia.org/wiki/Network_Time_Protocol

Under creative commons license.

http://en.wikipedia.org/wiki/Network_Time_Protocol

NTP

 Machines in one layer synchronize with those above.

 Machines within a single layer can synchronize with

each other.

 Useful when the higher level servers vanish for some

reason.

 As the stratum number increases, the error

increases.

 This makes sense. There is some uncertainty in level N

synchronized with level N-1. These add up.

Synchronization methods

 Three modes of synchronization between NTP

servers:

 Multicast

 Procedure-call

 Symmetric

NTP: Multicast synchronization

 Servers periodically send time via multicast.

 Clients receive time, and set their clocks to it with

some small amount of delay.

 Good for small, local fast networks where high accuracy

isn’t required.

 E.g.: A lab of computers where you want the time of day to be

sufficiently correct.

 Has significant issues.

 One way message, so no round trip timing to help figure out

latencies and corresponding delays.

 Only works if your network supports multicast.

NTP: Procedure-call mode

 Very similar to Cristian’s algorithm.

 Clients send a request to a time server, and measure both

the round trip time and the response from the server.

 Better accuracy than multicast.

 Also works on networks without multicast support.

 Pairs of messages sent to estimate the time more

accurately.

 We’ll go through this exchange in a couple slides.

NTP: Symmetric mode

 This is used in strata with low numbers close to the

root servers, where high degrees of accuracy are

important.

 Symmetric mode is similar to procedure call mode,

except that the servers maintain a small history of

synchronization information for each server that it is

synchronizing with.

 This allows it to deal with outliers and determine which

host it can trust to give the most accurate time at any

given point.

 It also allows it to switch servers that it trusts as

conditions vary.

NTP: Message Exchange

 Recall, NTP is UDP based.

 In procedure-call and symmetric modes, we

exchange message pairs and acquire four time

readings.

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NTP: Message Exchange

 Each message exchanged has three pieces of timing
information.
 Time of send and receive of last NTP message.

 T(i-3), T(i-2)

 Time of send of current message.

 T(i-1)

 The receiver knows T(i) since it is the time when the
message arrives.

 If a message is lost, that is fine, as the timing
information is still valid in those received.

 Since one of the times in the message is that of the
receiver, it can also easily pick out reordered
messages.

NTP: Message Exchange

 Let t and t’ be the actual transmit times of message m
and m’ respectively, and o be the actual offset of the two
machines.

 We know:
 T(i-2) = T(i-3) + t + o

 T(i) = T(i-1) + t’ + o

 NTP is interested in calculating the offset between two
machines. Now, note that the total delay time d is the
sum of transmission times (t+t’). A little algebra yields:
 d = (t+t’) = T(i-2)-T(i-3) + T(i) – T(i-1)

T i

T i-1T i -2

T i - 3

Server B

Server A

Time

m m'

Time

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

NTP: Message Exchange

 We can compute the offset o(i) of the clocks as the

average difference in the times at the endpoints of

both messages.

 o(i) = (T(i-2)-T(i-3) + T(i-1) – T(i)) / 2

 So, the true offset is:

 o = o(i) + (t’ – t) / 2

 Thus the offset can be shown to be in the range:

 o(i) – d(i)/2 <= o <= o(i)+d(i)/2

 o(i) estimates the offset, d(i) measures the accuracy

of the estimate.

NTP: Servers

 As mentioned earlier, the servers maintain some

amount of state about their peers in order to choose

the best peer and minimize error.

 The values <o(i), d(i)> are stored for each peer and

maintained for a history of eight exchanges.

 The NTP servers compute something known as the

filter dispersion to quantify the reliability of a server.

 This is a statistical measure of the reliability of the data.

 Choosing the minimum dispersion peer is best.

 The description of this in RFC1305 is quite interesting actually.

See pages 35 and 36 in the RFC document.

 http://www.eecis.udel.edu/~mills/database/rfc/rfc1305/rfc1305b.pdf

Logical time and logical clocks

 Lamport observed that since you can’t perfectly

synchronize a set of distributed clocks, you can’t rely

on physical time to determine the actual order of two

events within a distributed system.

 Logical time and clocks are a way to address this.

Often we care about determining the order of events,

not necessarily the precise physical time at which

they occurred.

 Lamport paper is research paper #1 to read.

Brief intermission

 I posted research paper #1.

 Lamport’s classic 1978 paper.

 As discussed in lecture 1 (see first block of slides for

lecture 1), you are expected to read the paper and

write a two page summary discussing the content of

the paper.

 This is practice in reading and distilling information from

research papers for your term paper.

 Plus, the papers dive deeper into important topics than

the book does.

Logical time

 Logical time is related to physical causality.

 Causality: A cause yields an effect, and the effect

must occur after the cause. This imposes a partial

ordering on events in the physical world.

 In our case, we care about reasoning about events

occurring on distributed computers.

 We base the idea on two concepts:

 The order that we say two events within a process

occurred is the order observed by the process itself.

 When a message is sent from process A to process B, the

send event occurs before the receive event.

Lamport’s “happened before” relation

 Lamport calls this ordering the “happened before”

relation.

 The definition is composed of a few simple rules.

We denote “happened before” as the arrow →.

 HB1: If a process observes local events e → e’, then we

can conclude that e → e’ globally.

 HB2: For any message m, send(m) → receive(m).

 HB3: If e, e’, and e’’ are events such that e → e’ and

e’ → e’’, then we can conclude e → e’’.

Example:

 Consider this example:
 Here, the following is true: a → b, b → c, c → d, d → f.

We can conclude things like a → f from our HB definition.

 On the other hand, we cannot conclude a → e or e → a
from the happened-before relation. We say a||e, which
we read as “a and e are concurrent”.

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Logical clocks

 So, given this notion of logical time based on the

happened-before relation, we can build a clock that

allows us to determine the happened-before

ordering.

 “Lamport logical clock”

 It’s very easy actually. Every process starts off with

a counter initialized to the same value. A clock value

(logical time) is associated with each event. Within a

process, the times are unique and monotonically

increasing.

 The association of a logical time value with an event is

called timestamping the event.

Lamport clock rules

 Start with an initialized clock on each process with

the same value to start.

 Rule 1: The clock is incremented immediately before

an event occurs on process i.

 L(i) = L(i) + 1.

 Rule 2: When a process i sends a message m to

process j, it includes the logical time of process i,

L(i), on the message. Upon receipt of the message

(m,t), the process j assigns it’s logical clock to the

maximum of it’s local clock and the time received t.

 L(j) = max(L(j),t)

Lamport timestamps example

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Based on the rules on the previous slide, what would be the timestamps

on the endpoints of the extra message I added?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Issues

 This basic Lamport clock doesn’t solve everything.

 Consider this:

 e → e’ implies L(e) < L(e’)

 But L(e) < L(e’) does NOT imply e → e’.

 Vector clocks were invented to overcome this issue.

Vector clocks

 Same basic idea as the Lamport timestamps, except
instead of a single integer, we store a vector of integers.

 We start off with the elements all being zero for the
vectors.

 V(i,j) = 0 for all i,j = 1,2,…,N.

 Right before an event occurs and is timestamped, the
process i sets V(i,i) to V(i,i) + 1.

 The vector is sent along with messages when they are
sent, just like in the Lamport scheme.

 When a message is received on process j, we create a
new vector by merging V(j,:) with the timestamp vector on
the message.

 V(j ,i) = max(V(j,k), t(k)) for k = 1,2,…,N.

Vector clocks

 What does this mean?
 V(i,i) represents the number of events that process i has

timestamped.

 V(i,j) where i != j is the number of events that have
occurred at process j that process i has potentially been
affected by.

 Comparing the timestamps follows some simple
rules:
 V = V’ iff V(j) = V’(j) for j = 1,2,…,N

 V <= V’ iff V(j) <= V’(j) for j = 1,2,…,N

 V < V iff V <= V’ and V != V’

 Concurrent events are those where neither Va <= Vb

nor Vb <= Va are true.

Vector clock example

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Global states

 This is all about determining if some property about a
distributed system is true as it executes.

 The term “global” means the property holds for the entire
system, not just a node or subset of nodes.

 Examples:

 Distributed garbage collection.

 Dead lock detection.

 Distributed debugging.

 The difficulty stems from the lack of a globally known
time. If we knew that, we could just pick a time and have
everyone dump their state at that time to make a
snapshot of the global state.

Global state formalism

 The book presents a formalism for reasoning about

global states and whether or not they are consistent.

 We start with the notion of an event history.

 For process i, the event history is:

 We can take a finite prefix of this history as:

Global state formalism

 We can theoretically record the state of each process

immediately before each event occurs. So, the history of

states corresponding with the history of events on a

process are:

 Now, we can define a set of prefix histories of the

processes. We call this a cut, where the cut is specified

as the set of prefix lengths for all processes. We also call

this the frontier of the cut. The state right before the cut

point on each process corresponds to the global state.

(Yes, there is a case typo here.)

Global state formalism

 So, a cut simply represents a snapshot of the state

of the system with respect to events across all

processes.

 The question is whether or not a cut is consistent.

The figure shows an example of both.

m 1 m 2

p 1

p 2
Physical

time

e
1

0

Consistent cut

Inconsistent cut

e
1

1
e

1

2
e

1

3

e 2
0

e 2
1

e 2
2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Global state formalism

 Why was that an inconsistent cut?

 It showed the receipt of a message but not the send.

 So, effects existed without a cause. This isn’t meaningful.

 So, we care most about cuts that are consistent.

 A consistent cut contains all the events that happened-

before each event that it contains.

 A consistent global state is therefore the set of states

corresponding to a consistent cut.

Global state formalism

 We can think about the progression of the program

as a sequence of states.

 The progress from one state to the next corresponds

to a single event in the system and the consistent cut

that contains it on the frontier of the cut.

Runs and linearizations

 A run is a total ordering of the events in the global

history such that the local happens-before

relationship holds.

 A linearization is an ordering where the happens-

before relationship holds on the whole global history.

 A linearization is a run. Runs are not necessarily

linearizations.

 What is important about the distinction?

 Linearizations only pass through consistent global states

(they preserve the cause/effect relationship).

Global state predicates and stability

 A global state predicate is a function mapping from

the set of global states of processes to a boolean

value.

 E.g.: Is an object in a distributed object system garbage?

 A stable predicate stays true once it becomes true.

 E.g.: Object is garbage, system is deadlocked.

 An unstable predicate does not stay true.

 E.g.: Variable values in a program change, so predicates

for distributed debugging may become false after they are

true as the programs run.

