
Coordination and agreement

 Coordination:

 Given a set of processes, we want them to agree on 

some value.

 Instances of coordination problems occur all over the 

place in distributed systems.

 What is the balance of the bank account?

 Who has control over modifying the database?

 Which version of the data is up to date?



Failures

 Before proceeding, we must explicitly state what 

failure model we will assume.

 In discussing coordination algorithms, we assume:

 A reliable communication channel.

 In some algorithms, we also assume that this channel supports 

group communications.

 Processes may fail.

 We may attempt to decide if a process has failed.



Failure detection

 If we want to say whether or not a process has 
failed, we need a detection mechanism that 
determines the state that the process in question is 
in.

 Unreliable mechanism
 Unsuspected: “We recently heard from it.”

 Suspected: “Process may have failed – we haven’t heard 
from it in a while.”  (Timeout)

 Reliable mechanism
 Unsuspected: “We recently heard from it.”

 Failed: It is dead.



Failure detection

 Obviously failure detection is a hard problem that is 

somewhat circular.

 One mechanism is to place a watcher in a node that 

has the sole purpose of monitoring the processes.

 If the watcher watching a process dies, but the process 

itself lives, how do we conclude that it has failed or not?

Proc. Watcher



A fundamental coordination problem

 In any concurrent system, be it distributed, a shared 

memory parallel system, or even a concurrent 

multitasking platform, this problem comes up.

 How do we control access to code and/or data that, 

for correctness reasons, only one process can work 

with at any given time?

 This is called the mutual exclusion problem.



Mutual exclusion

 What is an example of this?  Say we have a bank 

account with primitive operators like “withdraw” and 

“deposit”.

 Now, say we write a transfer operation like this:

 What could possibly go wrong?

Transfer(amt, src, dest) =

src_balance = src.getBalance();

src_balance -= amt;

dest_balance = dest.getBalance();

dest_balance += amt;

dest.setBalance(dest_balance);

src.setBalance(src_balance);



Mutual exclusion

 Easy.  We could have two processes read the 
balance before one of them has written the modified 
balance back to the store.

 We want to ensure that only one process is allowed 
to be in the transfer operation at any given time.

 We’d call the transfer code to be a critical section.

 How do we do this in a distributed system?
 In a sequential system, we typically rely upon locks and 

atomic operations to protect critical sections.

 We don’t have those in a distributed system where we 
assume that all we have are messages.



Distributed mutual exclusion

 Consider the following to be the abstract structure of 

a critical section that we want to enforce:

 So, what we need to implement is a distributed 

mechanism with which a process can determine if it 

is safe for it to enter the region, and notify others 

when it is out.

Enter()

Do_Dangerous_Stuff()

Exit()



Requirements

 Safety:  At most one process may be in the critical 
section at a given time.
 Safety = Critical section protected.

 Liveness: Requests to enter or exit eventually 
succeed.

 Liveness = Nobody sits forever waiting to go in.

 Fairness: Ordering of entries into enter/exit request 
queues respected when granting access.
 Fairness = Everyone gets a fair chance, nobody can cut 

in line.



Evaluation criteria

 Given an algorithm to implement mutual exclusion in 

a distributed system, we can measure:

 How many messages must be sent at entry and exit.

 What delay is incurred by a process at entry and exit.

 Throughput: The rate at which the set of processes can 

process the critical section.



Important Assumption

 An underlying assumption here is that the processes 

who wish to enter the critical section obey the entry 

and exit protocol.

 If a client sees that the critical section is occupied, 

and goes ahead anyways into it, there is little these 

protocols can do to prevent it.

 We assume that the processes are correct – in other 

words, they obey the protocol.



Algorithm 1: Central server

 This is the easiest method.

 Central server controls an access token.

 When a process wants to enter critical section, it asks the 

server for the token.

 If the server has it, it gives it to the process requesting it.

 The process returns the token when it exits the critical 

section.

 Any process that arrives when the token is not on the 

server wait in a FIFO queue.



Algorithm 1: Central server

 Two messages to enter the critical section, so delay 

due to messaging.

 Even if no other process is in the critical section.

 One message to exit it.

 Asynchronous message would eliminate delay on exit.

 Critical point here is the server.  Many clients can 

cause it to slow down, and if the rate of requests to 

the CS is faster than any client executing it, we can 

see the FIFO of clients back up.



Algorithm 2: Token ring

 A token circulates amongst a set of processes.

 When a token arrives:

 If the receiver is waiting to enter the CS, enter it.  Pass 

the token along when the exit occurs.

 If the receiver is not waiting to enter the CS, just pass the 

token along.

 So, if a process wants to enter the CS, just wait for 

the token to arrive.



Algorithm 2: Token ring

 Continuous network resources required.
 Say no process wants to enter the CS for a long time.  In 

the meantime, the token circulates.

 Worst case delay to get into the CS?  A process just 
passed the token along right before it wanted to 
enter the CS.  Has to wait for N message transfers to 
occur.

 Delay ranges from 0 (token is arriving) to N message 
transfers.

 One message on exit, when the token passed along.



Algorithm 3: Ricart & Agrawala

 Multicast based algorithm

On initialization
state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;



Algorithm 3: Ricart & Agrawala

 Performance

 N messages : One to request entry, N-1 to receive replies.

 May be higher if multicast isn’t supported in hardware.

 Delay is related to round trip time.



Algorithm 4: Maekawa’s Voting Alg.

 Based on the idea that clever partitioning of the 

processes into “voting sets” allows granting of 

access to critical section from only a subset of 

processes.

 The trick is that every subset has a non-empty 

intersection with every other.

 We’ll walk through this over two slides – it’s a bit 

more complex, but quite clever.



Algorithm 4: Maekawa’s Voting Alg.

 Initialization:

 Everyone sets their state to released.

 Everyone sets their voted flag to false.

 For a process p to enter the critical section:

 Sets it’s state to wanted.

 Multicast request to all processes in it’s voting set.

 Wait until it hears back from everyone in it’s voting set.

 Set it’s state to held when this occurs, and proceed into 

the CS.



Algorithm 4: Maekawa’s Voting Alg.
 On receipt of message from p on q.

 If q is in a held state or has voted
 Queue the request from p, don’t reply.

 Otherwise
 Reply to P

 Set voted flag to true.

 When p exists CS:
 Set state to released

 Multicast release to all members of voting set

 On receipt of release from p on q.
 If queued requests exist

 Pop the queue, send a reply to it.

 Set voted to true.

 Otherwise
 Set voted to false.



Algorithm 4: Maekawa’s Voting Alg.

 The benefit of this algorithm is that Maekawa

showed the optimal size of the voting sets is related 

to sqrt(N).

 So the number of messages is reduced to 

O(sqrt(N)), which is preferable to the other O(N) or 

worse solutions.

 Delay again related to round trip time.



Algorithm 4: Maekawa’s Voting Alg.

 This algorithm has a potential problem.

 Deadlock!

 V[1] = {p1, p2}.  V[2] = {p2,p3}.  V[3] = {p3,p1}

 Three processes concurrently ask for entry into the 

CS.

 Algorithm can be fixed though.



Elections

 Election: Picking some process to play a special 

role (“server” or “master”) from a set of peers.

 We saw an instance of this previously in the 

Berkeley time algorithm.

 One machine is tagged as the server, and it coordinates 

synchronizing a set of peers.

 If that machine goes away, the set of peers can elect a 

new machine to play server.



Elections

 Elected process is unique.

 If two processes call an election at the same time, only 

one process will end up being the winner.

 The result of an election is the process with the 

largest identifier.

 Identifier is some arbitrary, but likely useful piece of 

information, like 1/load.



Election requirements

 Safety

 Each process will either have an undefined elected peer, 

or all will have the same non-crashed process at the end 

of the election with the largest identifier.

 Liveness

 All processes will eventually determine who was elected, 

or crash.



Algorithm 1: Ring election

 All processes start as non-participants.

 One process calls the election.
 Marks itself as a participant.

 Sends an election message clockwise with it’s identifier 
attached.

 Receivers compare the content of the message with their 
own identifier.

 If it is greater
 Forward the message

 Otherwise
 If not already a participant

 Substitute local identifier and pass on

 Otherwise
 Don’t forward the message.

 Either way, mark self as a participant.

Why?



Algorithm 1: Ring election

 If the identifier of the received message is the same 

as the receiver, then receiver knows it was greatest.

 Mark self as non-participant.

 Send elected message with it’s identity.

 Receive elected message

 Set self as non-participant.

 Store elected identifier.

 Forward it if it wasn’t the originator of the elected 

message.



Algorithm 2: Bully algorithm

 The bully algorithm allows for crashes.

 The ring algorithm doesn’t tolerate these very well since 

everyone only knew their neighbors.

 Synchronous model assumed, with timeouts to 

detect failures.

 The basic idea is that instead of the neighbor only 

model of the ring, every process knows the 

processes above it assuming everyone has a unique 

identifier with a well defined order (<).



Algorithm 2: Bully algorithm

 A process who wants to start an election sends an 
election message to all processes above it.

 If it receives an answer from at least one, it is not the 
coordinator.

 A process that receives the election message answers 
and attempts to contact those above it.

 This proceeds until a process receives no answers.

 Either due to timeouts and process failures, or it being the 
maximum.

 This allows a single process to decide that it is 
coordinator.

 Of course, we have to deal with slow processes.  What 
happens if a process doesn’t fail but just goes slow in 
answering?


