
Logistics

 Programming assignment 2
 Let’s go over it now to make sure any initial questions get

addressed.

 Organizing extra meeting time

 I’m out for SC08 conference in mid November.

 I owe you a lecture.

 The proposal: We meet next week one evening from 6-
7:20 pm.

 Topic: Concurrent programming and threading. Useful for
programming assignment #2 and the final project.

 Free food to entice you to come. Pizza?

Multicast

 Multicast is a generic group communication

operation.

 IP multicast is simply one instance of it.

 The basic primitives are:

 Multicast(m,g) where m is a message, and g is a

group of participating processes.

 Deliver(m) delivers the message on the process that

received it.

 Messages in a multicast system are annotated with

the sender and group that they are intended for.

Basic multicast

 This is the easiest multicast scheme.

 For all processes in the group, the sender sends a
point-to-point message.

 Delivery is achieved with the basic receive operation.

 Unlike IP multicast, we assume the communication is
reliable.
 One can use IP multicast to implement this if a layer is

placed over the UDP messages to do retries, duplicate
handling, and order enforcement.

 Not efficient in it’s basic form. Bottleneck on the
sender side.

Reliable multicast

 In basic multicast, we can see the following occur:
 Sender starts it’s sequence of sends.

 Part of the way through, it dies.

 Some set of group members never get the message.

 Reliable multicast adds what is known as an
Agreement property.
 If any member of the group delivers m, then all of the

correct (not failed) processes in the group will eventually
deliver m.

 We can achieve this on top of basic multicast.

Reliable multicast

 Start: Everyone initializes their received set to empty.

 The originator of the message uses basic multicast

to send to the entire group, including itself.

 On the basic deliver occurring on a process q:

 If the message is not in the received set on q:

 Add it to the set

 If q wasn’t the originator of the message, basic multicast it to the

group.

 Successfully deliver the message reliably.

Reliable multicast

 Good property: As we can see, processes can die,

but if any of them successfully delivered it, then

everyone will eventually see it.

 Bad property: The message gets sent by every

member of the group to everyone else!

 Not really efficient.

Ordered multicast

 Ordering requirements on when messages are

delivered.

 FIFO ordering: If a correct process says multicast(g,m)

and then multicast(g,m’), then every correct process that

delivers m’ will deliver m before m’.

 Causal ordering: if multicast(g,m) happens before

multicast(g,m’) then any correct process that delivers m’

will deliver m before m’.

 Note that the happens before relation holds on the group, not

just a process.

 Total ordering: If a correct process delivers m before m’,

then any other correct process that delivers m’ will deliver

m before m’.

Consequences

 Causal ordering implies FIFO ordering (due to their
happens-before relation in a single process).

 FIFO and causal orderings are only partial orders.

 For time reasons, we won’t go into these algorithms
today.
 When you read the book though, you should see that use

of logical clocks (either Lamport or Vector) makes it
possible to negotiate the necessary ordering by attaching
stamps to messages as they are moved around and
ordered.

Consensus

 Goal: A set of processes agree upon a value after one or
more propose one.

 Consensus is hard. In fact, situations can exist in which
consensus cannot be achieved.

 These situations are actually not rare or unexpected.

 Assume a set of processes communicating by messages.

 Here is the wrinkle: Consensus must be reachable in
the presence of faults.

 Assume some number of failures.

Consensus problems

 Every process starts undecided.

 Processes propose a value.

 Communication occurs, and a decision value is

reached.

 Processes reach the decided state when they

receive this final decision message.

Properties

 Termination: Eventually every correct process sets

its decision variable.

 Agreement: All correct processes in the decided

state will have the same decision variable value.

 Integrity: If a value is agreed upon, then the value

was proposed by some process.

 Validity: If all processes propose the same value,

then every correct process chooses that value.

Simple case

 No failures.

 Everyone multicasts proposed value to everyone

else.

 Everyone collects these until all processes see all

proposals.

 Some majority function is evaluated to determine the

winner, or some special value if no majority winner

exists.

Byzantine generals problem

 Proposed by Lamport.

 Three or more generals are to agree to attack or

retreat.

 One general, the commander, issues the order.

 The others, are to decide to attack or retreat.

 The complication: one or more generals can be

treacherous – faulty.

 E.g.: Tells one general to attack, another to retreat.

 Differs from “pure” consensus because one special

process initiates the orders.

Interactive consistency

 Like consensus, except a vector of values per

process is agreed upon.

 E.g.: Let each of a set of processes obtain the same

information about their respective states.

Relationships

 These are all related:

 IC from BG: Run BG N times, once with each process acting as

commander. In other words, one BG run per vector entry.

 C from IC: Run IC, and then compute the majority function on

each element of the vector on all processes.

 BG from C: Commander sends proposed value out and to

itself. All processes then run consensus.

 In systems with potential crashes, consensus is

equivalent to totally ordered multicast.

 All processes multicast their value.

 Each process chooses the first value that it delivers.

 Total order and reliability of RTO multicast key.

Synchronous consensus

 Assume f failures tolerated.

 Everyone initializes a values array v[1] to their value,
and creates an empty prior-step array, v[0] = {}.

 For f+1 rounds:
 B-Multicast the values that are in the current values are in

v[i] and not in v[i-1].

 Set v[i+1] to v[i]

 Accumulate up received messages from others, union
received value set with v[i+1].

 Increment i.

 After f+1 rounds, assign the decided upon value on
each process to the minimum of v[f+1].

Byzantine generals problem
 What is the main idea behind this problem?

 How to detect a system that is faulty.
 Either by malfunction of lying.

 Proofs that the book refers to for impossibility of detection for
N<=3f, where f is the number of failures and N is the number
of participants.

 Example: Three generals (X,Y,Z). Commander X tells Y to
attack, Z to retreat. Y tells Z attack, Z tells Y retreat. Y and Z
can’t tell if the commander was lying, or if the other general is
lying.
 With 4 you can tell who was lying assuming only one liar.

 Easier to figure out if signatures used.
 Z can forward message from X to Y, and Y can tell if Z is honest if

the signature is preserved and that X told Z something different
than it told Y.

Asynchronous consensus

 Asynchronous systems have no known bounds on

times.

 So, a very long message wait period can look like a

failure.

 Methods exist to work around this, through fault

detection, fault masking, etc…

 In any case, consensus in an arbitrary asynchronous

system is impossible.

