
Concurrency and correctness

 Concurrency opens the door for potential

correctness issues not present in sequential code.

 We need mechanisms to protect data and state to

maintain consistency during execution.

Protection mechanisms

 Locks
 Acquire/release protocol. Blocking acquire if lock

unavailable.

 Semaphores [Dijkstra]

 Counters with increment/decrement rules, blocking
decrement unless value is positive. Can be more flexible
than boolean locks.

 Monitors [Brinch-Hansen/Hoare]
 Encapsulation of locks and data within an object.

 Transactions
 Speculative execution of critical code with rollback and

commit capabilities.

Transactions

 Recall the mutual exclusion problem. Why was it

important?

 Concurrently executing processes potentially

executing some block of code that, if executed by

more than one process at the same time, could

result in correctness problems.

 So, mutual exclusion was used to protect it.

Transactions

 Transactions are another mechanism to deal with
concurrency and sensitive blocks of code.

 The idea originated in the databases community, but
has since found applicability in more general
contexts.
 Example: Software transactional memory.

 Example: Transactional memory hardware

 Sun “Rock” processor.

 Adds new instructions for starting, committing, and determining
failure of transactions.

 Fixed bound store queue for transactions.

 Hardware can detect situations resulting in a failure (eg: context
switch, TLB misses, store queue overflow, etc…).

Transactions

 So what is a transaction?

 A sequence of operations that are to be:

 Free of interference by processes other than the one

executing them.

 Executed as a successful whole, or not at all.

 No partial execution.

 The proper term for this is atomicity.

Requirements

 The database community has come up with a set of

requirements for transactions:

 Atomicity

 Consistency

 Isolation

 Durability

 ACID

Atomicity

 The essential property is that of atomicity.

 What is an atomic operation?

 It is an operation that is indivisible.

 For sequences of operations, they are atomic if to any

outsider, they appear to be a single operation.

 Consider the bank account update. An atomic

implementation of that would make it appear to external

observers that the balances on both accounts changed

simultaneously, eliminating the possibility of seeing any

intermediate, inconsistent state.

Consistency

 The state of the system that starts in a legal state

before a transaction will remain in a legal state

afterwards.

 This is hard to maintain in a general transaction

system beyond just databases.

 “Legal” state requires too much semantic information from

the specific application for a general system to verify.

 On the other hand, one can set constraints in a database

definition to represent what is considered to be “legal”, so

there is more hope of enforcing consistency in this more

restricted world.

Isolation

 “What happens in the transaction stays in the

transaction.”

 Any intermediate computations performed by the

transaction are not visible outside the transaction.

The intermediate computations could represent

inconsistent state, and we want them totally hidden.

 Think of the intermediate balance computations during

the bank transfer. We want these totally isolated and

never visible to other processes.

Durability

 When the transaction completes, the initiator of the

transaction is guaranteed that the result will persist.

 The durability of the result is only as durable as the

system it is stored in.

 Durability doesn’t mean that the data can’t be destroyed.

 But, the system will do it’s best to keep it around as long

as it should be.

 Examples: RAID storage, replication of servers, writing to

nonvolatile storage.

 Clearly durability typically involves making more than one copy

on different storage media.

Transactions

 So what is special about this that plain mutual exclusion
doesn’t already do?

 Simple – transactions do NOT force the acquisition of a
lock to enter the section.

 Locking is conservative : make it impossible to do something
dangerous.

 Transactions focus on undoing what was intended to be
atomic in the event that another process intruded in
during the transaction.

 So, we basically are more optimistic and only worry about
cleaning up after conflicts.

Transaction primitives

 Open: this tells the underlying support infrastructure

that a transaction is to be started.

 Close: this tells the support infrastructure that it is

done, and the results are to be committed if the

transaction was successful.

 Close yields a success or failure result. Failure means

the transaction was aborted.

 Abort: This tells the system that the transaction has

gone sour and needs to be aborted. Any work done

since the open transaction occurred needs to be

undone.

Recoverable objects

 The terminology the book uses for persistent objects

is “recoverable objects”.

 Recovery means that after a crash, the objects can

be resurrected.

 We consider that any data that has successfully lived

through a commit is in a place where it can be

considered recoverable.

