
Logistics

 Programming assignment 1: All graded but 2.
 For next assignment.  Please turn in your files in a single 

archive (tar, zip, rar) that contains a directory with your 
last name, under which the sources and documents go.

 So far, no problems.

 Today:
 Onwards through transactions.

 Tomorrow:
 Reminder: Deschutes rm. 200, 6pm.  Pizza.

 Pizza preferences?  Any constraints?  (e.g.: Veg?)



Abort

 The abort operation is the important thing that 

distinguishes a transaction from a critical section 

protected by mutual exclusion.

 Abort states that anything that a transaction has 

done up to the abort is not visible.  The transaction is 

to have effectively not happened from the 

perspective of other clients.

 The abort may require cleanup to occur.

 There are many reasons why an abort may occur.



Reasons for an abort

 Crashes

 Both server and client side.

 Deadlock prevention

 Upon detection of deadlock, or potential deadlock, abort a 

transaction to un-wedge things.

 Internal logic

 Transaction makes decision that it should not continue the 

transaction.



Crashes

 Say a server crashes, and a new one is started in it’s 

place.

 Remember that we’re assuming that we have a 

permanent, recoverable store on the server.

 So, the new server can abort any outstanding open 

transactions that were around when the first server died.

 Restore state of objects before the crash occurred.  We assume 

that these were stashed away somewhere safe at the 

openTransaction() step.

 If a client crashes, the server can detect it (via a 

timeout or lease expiration) and abort the defunct 

transaction.



Crashes

 What about the client perspective?

 Obviously nothing to do if the client crashed.
 It’s the server’s problem.

 But if the server crashes, and a new one arrives, the 
server will have aborted the transaction.

 Client must be informed.

 We assume that during a transaction, the client issues 
operations with an associated transaction ID.

 The server could recognize this ID as defunct and issue 
an exception.

 The client can act accordingly, such as starting at the 
openTransaction() step again.



Correctness problems

 We can see concurrency-related correctness 

problems in different forms.

 Lost update: An update is missed by interleaving a 

read/update/write across two processes such that one 

update is lost.

 R1;R2;U1;U2;W1;W2 = Only update 2 would be committed!

 Inconsistent retrievals: Retrieval of a partially updated 

value during a transaction.

 Bank transfer example.

 So, we design transaction protocols to prevent 

these.



What do we desire: serial equivalence

 Ultimately what we want is a set of concurrent 

operations that have exactly the same effect as if 

they had executed serially.

 This does not prohibit interleaving or concurrent 

execution though.

 It turns out only certain combinations of operations 

can cause a conflict that would result in a deviation 

from execution equivalent to the serial case.



Read and Write: The troublemakers

 The operations that cause all of the trouble are those 

that access the store.

 Consider two threads and the three possible 

combinations of these operations.

 Read/Read: Clearly no problem.  The data isn’t 

modified so it doesn’t matter if the two processes 

read it.

 Read/Write: These can conflict.  The result of the 

read depends on it’s relative position with the write.

 Write/Write: Similarly, the final value is dependent 

on which write occurs last.



Conflicting operations

 Dirty reads

 Reading the intermediate values of a transaction from the 

outside.

 What if the transaction aborts?  Then the read value 

should have never existed.

 Premature writes

 Writing to a value being used by another transaction.

 What if the writer aborts?  Then it caused a perturbation 

that should never have existed.



Methods for avoiding conflicts

 Locking

 Optimistic control

 Timestamp ordering



Locking

 Elements that a transaction uses are locked as the 

transaction requires them.

 Other transactions will block if they try to access 

these elements while another transaction is 

executing.

 Locks removed when transaction completes.

 Potential for deadlock.

 Similar to basic semaphore or locking to protect 

critical sections, except lock acquisition and release 

is typically hidden by the transaction software layer.



Optimistic control

 Run through the transaction without locking.

 At the end, check to see if any other transactions 

have accessed data in a conflicting way.

 If so, abort, clean up, and let the client restart.

 This type of scheme avoids locking overhead.

 Works best when conflicts aren’t probable.

 Depending on how the intermediate transaction data 

is stored the mechanism to abort and retry may vary.



Timestamp ordering

 Data is owned by a server.

 Server records access times (for both reads and 

writes) of objects that transactions touch.

 Use this to determine if an operation can occur right 

away, be delayed, or cause a problem resulting in an 

abort.

 E.g.: A write occurs with a timestamp before the most 

recent write – abort because that means the transaction is 

out of date.



Nested transactions

 Transactions within transactions.

 This would appear in a library-like context, where 

complex transactions are built out of simpler pieces 

that themselves use transactions.

 The key issue is how commits and aborts interact 

between the different transaction levels.



Nested transactions

 A transaction may commit or abort ONLY after it’s 
child transactions have completed.

 When subtransactions complete, they make an 
independent decision to commit provisionally or 
abort.  Aborts are final.

 When a transaction aborts, all of it’s subtransactions
abort.  Even those that have committed must abort.
 Hence use of term “commit provisionally”

 When a subtransaction aborts, the parent may 
choose whether or not to abort.  It is legal for the 
parent to commit in some cases.

 E-mail example from book.



Locking

 One approach to transaction implementation is to 

acquire a lock for any object used during a 

transaction.

 Exclusive locking allows a transaction to put a lock 

on a critical piece of data before it uses it, unlocking 

it when the transaction is done.

 This will force other transactions to block on 

accesses to this critical data if another transaction 

already has them.

 This is not deadlock proof.



Two-phase locking

 A disciplined way of maintaining serial equivalence.

 Locks are acquired but not released until the end of 

the transaction.

 Growing and shrinking phases.

 If this was not true, then unintended interleavings of 

transactions could occur, violating serial 

equivalence.

 Reminder: Serial equivalence means the transactions 

running concurrently behave as if they had been run in a 

serial fashion without concurrency.



Read vs write locks

 Locks can be separated into classes with different 

rules.

 Read lock: Acquire a lock when attempting to read 

an object.  If no write lock exists for the object, other 

transactions can be granted a read lock too.

 Shared lock.

 Write lock: Not shared.



Read/write lock interactions

 Say a transaction has a read lock.  Then another 

transaction must wait until the first commits before 

acquiring a write lock on the same object.

 Similarly, assume a transaction has a write lock.  

Other transactions must wait until it commits before 

acquiring a read or write lock on the object.



Exclusive locking vs read/write

 The reason for distinguishing between read vs write 

locks is to prevent unnecessary blocking.

 Say transactions will read lots of data objects, but 

modify only a small number of them.  Why block on 

harmless shared reads?



Locks and nested transactions

 Subtransactions inherit locks from their parent.

 Parents inherit locks from children when they 

complete.

 Why?  Prevents partial results from being observable to 

the outside world.

 Say a subtransaction modifies data that it’s parent does 

not.  If the lock was released when the subtransaction

finished, the modification would be visible even though 

the full nested set of transactions wasn’t done yet.

 Bad.



Deadlock

 Deadlock occurs when a set of processes each hold a partial set of 

locks and are each blocked pending the release of one of the locks 

by a peer.

 We mentioned earlier that the growing phase of a transaction can 

lead to deadlock.

 E.g.: transaction 1 acquires lock for U and then V.  Transaction 2 acquires 

lock for V and then U.  Deadlock.



Livelock

 Livelock is similar to deadlock in that processes in 

livelock cease to make progress.

 Deadlock is characterized by blocking and sitting.

 Livelock is characterized by constant execution with 

no tangible progress.

 Example:

 TestLock(A) > Lock(A) > TestLock(B) > Fail > Unlock(A) > 

Repeat

 Livelock is one reason why protocols with retries will 

sometimes force a random delay in when the retry 

starts again to try and break this sort of behavior.



Prevention

 One method is to enumerate all objects to lock upon 

entering a transaction, and acquire all of the locks in 

a single atomic step before starting.

 Atomicity of acquisition prevents deadlock-prone ordering.

 This will work, but may be too restrictive.

 E.g.: If an access to an object occurs within a clause of an 

if-else block, and the clause is improbable, the lock will 

needlessly protect the data most of the time.



Deadlock detection

 You can write down a directed graph of processes 
that are waiting for each other.  

 Deadlock occurs when cycles exist in this graph.

 A lock manager can maintain this list of 
dependencies and check the graph for cycles each 
time a lock is requested.

 If a cycle is detected, it can break the deadlock 
situation by choosing a transaction and forcing it to 
abort.
 Choice of which to abort is system dependent.  

 Could be age of transaction, could be time spent in 
blocked state, could be based on number of locks held, 
etc…



Deadlock prevention

 Another method for deadlock prevention is to timeout 

when waiting to acquire a lock.

 If a transaction holds a lock for beyond some timeout 

period, the lock may be broken by other processes 

wishing to acquire it.

 The transaction that owns the lock that was broken will be 

aborted.

 This isn’t necessarily ideal.  Heavily loaded systems 

that cause transactions to run very slowly can cause 

a transaction to be aborted even though deadlock 

doesn’t actually exist.



More sophisticated schemes

 Novel schemes exist for locking that increase 

concurrency (reducing serialization) by introducing 

new types of locks.

 Two-version locking:

 Read/write/commit lock.  Introduces this third type of lock.

 Hierarchic locks



Two-version locking

 Read operations: read lock acquisition successful unless a 
commit lock exists on the object.

 Write operations: write lock acquisition successful unless a 
write or commit lock exists on the object.

 Non-success in the above two cases means the transaction waits.

 Commit attempts to convert write locks into commit locks.  Any 
outstanding reads will cause the committer to wait until they 
finish.

 Consequences:

 Exclusive locking is restricted to the commit phase only.  This can 
reduce waiting time experienced by other transactions.

 Read operations can cause commit delays.  This is not so good.



Hierarchic locks

 Mixed granularity locking.

 Consider a tree relationship with the objects in a 

system:

 E.g.: matrix contains rows contains elements.

 Lock acquisition at a point in the tree applies to all 

children.

 Gives transactions flexibility to only lock what they 

need, taking advantage of structure in the data.



An aside.  Coherence protocols.

 In transaction protocols, we see a set of rules that 

define how reads and writes interact with each other 

to maintain correctness amongst a set of interacting 

transactions.

 While not exactly the same, this always reminds me 

of the protocols implemented in hardware to ensure 

coherence in shared memory machines that contain 

caches.

 The difference is that blocking doesn’t occur – instead of 

blocking, we see cache invalidations and flushes to 

memory.



Coherence protocol: MESI example



More CC methods

 Why do I bring these up?

 MESI looks like a transaction scheme, except 

instead of aborting, flushes occur.

 Sort of like a conflict forcing a transaction to close 

immediately.

 Other schemes exist that aren’t so strict.

 MOESI (used in AMD multicore processors by the way)

 “O”wned state: Allows caches to provide values.

 Why is this relevant?  It just shows that with more tedious and 

sophisticated protocols, we can get away with being a bit more 

flexible in the interest of performance.



Optimistic concurrency control

 Take advantage of low probability of conflict.

 In other words, the likelihood of two transactions 

operating at the same time on the same data is very low.

 Split transaction into three phases.

 Working, validation, update.

 Key point: Avoid lock overhead in working phase by 

adding validation step.



Three phases

 Working phase: Transaction runs as though no 

conflicts were occurring.  Writes occur to a 

transaction-local store (not visible to outside world).

 Validation phase: When the transaction is done and 

issues a closeTransaction request, the system 

checks to see if any conflicts occurred.
 If so, either abort or attempt to resolve conflicts.

 Update phase: Once successfully validated, the 

written data is committed.



Timestamp ordering

 Operations validated when they occur.

 If operation can’t be validated, abort.

 Transactions assigned timestamps when they start.

 Acquired from a single clock (e.g.: server) or globally consistent 
logical counter.

 Allows for total order to be established, avoids skew/drift 
issues.

 Ordering rule:

 A request to write is valid if the object to write was last read and 
written by earlier transactions.  A request to read is valid only if 
that object was last written by an earlier transaction.

 See fig. 13.30 / 13.31 to see examples of valid orderings and orderings that result in 
an abort for both reads and writes.



Software transactional memory
 Transactions at the code (or hardware) level.

 Many implementations arising out in the wild.
 Some in the form of libaries

 Some at the compiler level.  E.g.: Intel has a “preview release” of their 
STM C++ compiler.

 The key is the designation (typically via keywords or annotations) of 
atomic blocks.

 How you deal with shared data varies between implementations.
 Haskell “Tvars”

 RSTM smart objects/smart pointers

 Compiler analysis

 Etc…



Lock implementation

 Hardware support

 Lock instructions, test-and-set instructions, archaic 

interlocked instructions.

 Software support

 Dekker’s algorithm (1964).  Provides locking in a shared 

memory setting when all that is available is an atomic 

read and write.

 Disadvantage: Busy waits, and can be broken in out-of-order 

CPUs if not careful.  Aggressive compiler optimizations can also 

break it.

 But, it is very portable.



Distributed transactions

 Moving on to ch. 14, we look at how concepts 

related to transactions translate to the distributed 

context.



Distributed transactions

 Key difference from basic transactions:

 Objects involved in a transaction may be distributed 

amongst a set of servers.

 Commit of transaction requires set of servers to 

decide if they all commit or all abort.

 “Two-phase commit protocol”

 One server elected to be coordinator.

 Servers communicate to determine if abort or commit is 

performed.



Reminder

 6pm tomorrow.

 Topic:

 General concurrency issues.

 Thread programming in Java.

 Possibly talk about consequences of multicore and SMPs 

in distributed systems.

 Cross-box / in-box interactions and interference.

 Language-level concurrency topics.

 With an eye towards distributed systems.


