
Notes on Threads and in-box Concurrency

matt@cs.uoregon.edu

mailto:matt@cs.uoregon.edu
mailto:matt@cs.uoregon.edu

Topics

• Java threading

• Erlang

Java Concurrency

• First, Java.

• Java has two routes to concurrency, although one is much easier to use than
the other.

• Threads. (The easy one)

• Remote Method Invocation. (RMI)

Java Threads

• Threading in Java is seen in two distinct parts of the language:

• In the language itself in the form of keywords.

• Keywords are available in Java such as volatile and synchronized
that are used to control data visibility and critical section lock
management.

• In the standard library.

• java.util.concurrent.*

• java.lang.Thread

Threads

• Thread-based code in Java is most often implemented in one of two ways:

• Extending java.lang.Thread and implementing the run() method to represent
the body of the thread.

• Implementing the java.lang.Runnable interface and handing the class to a
thread wrapper that actually executes it.

• Both are similar (in fact, Thread implements Runnable). Runnable is a nice abstraction
to work with since many thread scheduling and resource pooling classes exist that take
runnable objects as arguments.

• Extending thread is, to my knowledge, most useful if you want to build fairly
complex thread-based objects with state and possibly overriding some of the
primitive thread operations. Runnable is good if you only care about run().

java.lang.Thread

• This is the basic thread object. It has a pretty detailed API of functions
related to the Thread, beyond simply the thread body implemented in run().

• You can interrupt threads, set and query scheduling priorities, yield to other
threads, and sleep.

• What is interesting is that a large portion of the API that was heavily used in
early versions of Java are now deprecated because they provide far too much
opportunity to shoot yourself in the foot (they practically encourage you to do
it). These are start(), stop(), suspend(), resume(), and others.

• The mass deprecation of functions makes me wonder if the Thread versus
Runnable separation is a legacy of the original design, but would possibly be
different in light of this late change to the API.

java.lang.Runnable

• Runnable is simple - it is an interface with a single function called “run()”
that must be implemented.

• run() is the thread body. Think of it as similar to the function pointer that
pthread_create is given to spawn off a pthreads thread, or the function
handed to the Erlang spawn function.

• A runnable object is run inside of a thread by either creating a thread with the
runnable object as a constructor argument, or by handing the runnable object
to a pooling or execution management class that spawns threads under the
covers for you.

Keywords

• The language defines two of keywords that are related to synchronization and
memory consistency.

volatile

• The volatile keyword on a variable indicates that it is shared. This tells the
compiler to:

• Restrict how memory operations are reordered with respect to the
volatile variable.

• Ensure that the data is not cached in a register or cache such that any
processor that reads the data will get the most recent value.

synchronized

• A synchronized block is used to enforce atomicity.

• Synchronized methods are equivalent to a synchronized block that
contains the entire method body.

• Synchronized blocks are made up of two parts: the lock object and the
block during which the lock must be held to execute.

synchronized (obj) {
 // some code

}

Lock object

synchronized

• A synchronized block is used to enforce atomicity.

• Synchronized methods are equivalent to a synchronized block that
contains the entire method body.

• Synchronized blocks are made up of two parts: the lock object and the
block during which the lock must be held to execute.

synchronized (obj) {
 // some code

}

Body that executes only after
the lock has been acquired.
The lock is released when

the block is exited.

synchronized

• A synchronized block is used to enforce atomicity.

• Synchronized methods are equivalent to a synchronized block that
contains the entire method body.

• Synchronized blocks are made up of two parts: the lock object and the
block during which the lock must be held to execute.

synchronized (obj) {
 // some code

}

Methods

• You’ve probably encountered this more frequently than you have with
synchronized blocks.

• A synchronized method simply means that the entire method is a
synchronized block. Unfortunately, the lock object is associated with the
class instance (the this object of the callee) containing the method.

• What does this mean?

• All methods that are synchronized will share a lock. This can have a
horrible impact on performance.

Example: Synchronized methods

 public synchronized void method1() {
 for (int i = 0; i < 1000000; i++) {
 for (int j = 0; j < 2000; j++) {
 double x = 1.4 * j;
 }
 }
 System.err.println("METHOD 1!");
 }

 public synchronized void method2() {
 for (int i = 0; i < 1000000; i++) {
 for (int j = 0; j < 30; j++) {
 double x = 1.4 * j;
 }
 }
 System.err.println("METHOD 2!");
 }

Example: Synchronized blocks

 private Object something = new Object();
 private Object somethingElse = new Object();

 public void method3() {
 synchronized (something) {
 for (int i = 0; i < 1000000; i++) {
 for (int j = 0; j < 2000; j++) { double x = 1.4 * j; }
 }
 }
 System.err.println("METHOD 3!");
 }

 public void method4() {
 synchronized (somethingElse) {
 for (int i = 0; i < 1000000; i++) {
 for (int j = 0; j < 30; j++) { double x = 1.4 * j; }
 }
 }
 System.err.println("METHOD 4!");
 }

One versus the other

Starting.
METHOD 1!
METHOD 2!
Next.
METHOD 4!
METHOD 3!

• This shouldn’t be surprising. In the first case, the slow method acquires the
lock and the fast method gets stuck waiting for it. In the second case, the
two methods use independent lock objects, so the fast methods finishes first
while the slow one trails behind.

Intrinsic locks

• What is interesting here? Every object has an intrinsic lock.

• This means there is a lock somewhere for every object. This is why one can
use any object as the lock object in the synchronized block.

• This also explains why the synchronized methods prevent reentrance into a
class from external callers. The lock object is this on the callee side.

• You should recognize the whole-object locking model for synchronized
methods, where a single lock is encapsulated in a class with locking
managed by the functions on the object.

• Can you remember what this was?

Monitors

• It’s the monitor concept.

• The monitor terminology comes up quite frequently in Java literature.

• You can tell the Java team was inspired by the monitor idea.

Reentrant intrinsic locks

• Intrinsic locks are reentrant. What does this mean?

• If a thread holds a lock, and calls a routine that attempts to acquire the same
lock, it will do so.

• This becomes especially apparent when dealing with synchronized methods
where this is the lock. What if a derived class calls a synchronized method
on a parent class that is also synchronized?

• If locks were not reentrant, this would deadlock.

Immutable objects and sharing

• Sometimes you wish to share data that isn’t mutable between threads.

• The final keyword can be used to explicitly state (and enforce) this
immutability.

• This is good practice - if you want to build code that has shared data that you
know will not require locking, final will ensure that it is in fact not modified
by some reckless user.

• It’s not clear if the compiler will do any optimizations for concurrent code in
the case of final fields though.

Standard library

• So that’s the Java syntax for concurrency. It’s not much, but it’s more than
most languages.

• The standard library contains the rest of the necessary building blocks for
building concurrent code.

java.util.concurrent

• This contains most of the utility classes for concurrent programming.

• There are two important subpackages:

• java.util.concurrent.atomic : These are objects that implement
basic data types supporting atomic operations on them. For example,
AtomicInteger.

• java.util.concurrent.locks : Custom locking. When the
synchronized keyword just won’t do, you can play with the locks
yourself.

Important utility classes

• The utility classes in java.util.concurrent can be broken into a few different
types.

• Executors: These classes handle executing Runnable classes that are handed
to them.

• Exchanger: A synchronization object that allows two threads to reach some
synchronization point at which time they exchange some data.

• Thread safe data structures

• ThreadPool management.

• Synchronization structures

Executors

• An executor is an object that executes runnable objects.

• It hides the thread management from the source of the runnable objects.

• For example, ThreadPoolExecutor manages a thread pool such that the
producer of runnable objects need not worry about how many threads are
optimal to have executing at a given time.

• This is quite useful if you have an algorithm that will produce many threads,
but you don’t want to manually tune it to throttle back from creating too many.

• You can build custom executors by implementing the Executor interface.

Data structures

• Often one will want thread-safe data structures available in a multithreaded
program. For example, a shared queue containing tasks to be performed that
guarantees atomicity of push and pop.

• There are a few different Queues and a HashMap. Read the Java API docs for
specifics on these. They’re not too difficult, but not really worth covering in
detail here.

• One interesting case is the CopyOnWriteArrayList and Set. These are structures
where a write forces a brand new copy of the underlying data structure to be
made atomically. Sounds expensive, eh?

• Sort of. These exist if reads vastly outnumber writes. In that case, why pay
the penalty for synchronized accessor functions if the likelihood of a write
occurring and causing a problem is low?

Synchronization structures

• Finally, we also have the obligatory synchronization structures.

• Semaphore: Does what it says.

• CyclicBarrier: This is a typical barrier.

• For some reason, the Java people seemed to think that the name
“Barrier” alone would imply a one-shot-only structure instead of the
typical case where the Barrier resets when it is used.

• So, Cyclic means it resets and can be used over and over. This would
be worth it if Java implemented a non-cyclic barrier... But it doesn’t.

Erlang: A real world concurrent language

• Erlang.

• Invented at Ericsson telecommunications approx. 20 years ago for the
purpose of writing code for telecommunications systems.

• Distributed systems: interacting telecom switches.

• Robust to failures.

• Tackling intrinsically parallel problems.

Erlang: Right place, right time.

• Erlang is getting a great deal of attention because it happened to find itself at
the right place at the right time.

• Right place: It is a very mature language with a large user base that is
already concerned with efficient use of parallel processing resources.

• Right time: Multicore is here, and we need a language to target it!

So, what is Erlang?

• Erlang is a single assignment declarative language.

• Derived from Prolog.

• Provides ML-like pattern matching facilities for defining functions.

• Syntactic means provided to create threads and communicate between them.

• Built to withstand reliability problems with distributed systems and hot-
swapping of code.

• Concurrency is based on the “actor model”.

Using Erlang.

• Let’s do something simple. A routine that squares numbers.

-module(squarer).
-export([square/1]).

square(N) -> N*N.

Using Erlang.

• Let’s do something simple. A routine that squares numbers.

-module(squarer).
-export([square/1]).

square(N) -> N*N.

Define a module
to hold the code.

Using Erlang.

• Let’s do something simple. A routine that squares numbers.

-module(squarer).
-export([square/1]).

square(N) -> N*N.

Export the
squaring function
which has arity 1.

Using Erlang.

• Let’s do something simple. A routine that squares numbers.

-module(squarer).
-export([square/1]).

square(N) -> N*N.
Define the function.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Start interpreter.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Compile module
in squarer.erl.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Result.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Call function.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Result.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4> Call function.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Result.

Interactive session

matt@magnolia [code]$ erl
Erlang (BEAM) emulator version 5.6.1 [source] [smp:2]
[async-threads:0] [kernel-poll:false]

Eshell V5.6.1 (abort with ^G)
1> c(squarer).
{ok,squarer}
2> squarer:square(2).
4
3> squarer:square(7654).
58583716
4>

Lists

• Things get more interesting when we start using lists, one of the primary
functional programming data structures.

• How about a function to square every element in a list?

• This uses pattern matching on the argument to determine which body to
execute. The list is matched as either empty [], or as a Head atom followed
by a Tail list. Recursion used to walk down the list until nothing left (empty).

squarelist([H|T]) -> [square(H)|squarelist(T)];
squarelist([]) -> [].

Lists

1> c(squarer).
{ok,squarer}
2> L=[1,2,3,4].
[1,2,3,4]
3> L2=squarer:squarelist(L).
[1,4,9,16]
4> squarer:squarelist(L2).
[1,16,81,256]

-module(squarer).
-export([square/1, squarelist/1]).

square(N) -> N*N.

squarelist([H|T]) -> [square(H)|squarelist(T)];
squarelist([]) -> [].

squarer.erl

Quicksort

• This is an example of a list-comprehension based algorithm for implementing
quicksort. It isn’t the most efficient algorithm - it’s presented more or less as
a demonstration of elegant syntax.

% quicksort from Programming Erlang
-module(sort).
-export([sort/1]).

sort([]) -> [];
sort([Pivot|T]) ->
 sort([X || X <- T, X < Pivot])
 ++ [Pivot] ++
 sort([X || X <- T, X >= Pivot]).

Looking closer

• How is this working?

1> L=[13,17,5,3,9,1,2,6,3,22].
[13,17,5,3,9,1,2,6,3,22]
2> [Pivot|T] = L.
[13,17,5,3,9,1,2,6,3,22]
3> [X || X <- L, X < Pivot].
[5,3,9,1,2,6,3]
4> [X || X <- L, X >= Pivot].
[13,17,22]

Create a list.

Looking closer

• How is this working?

1> L=[13,17,5,3,9,1,2,6,3,22].
[13,17,5,3,9,1,2,6,3,22]
2> [Pivot|T] = L.
[13,17,5,3,9,1,2,6,3,22]
3> [X || X <- L, X < Pivot].
[5,3,9,1,2,6,3]
4> [X || X <- L, X >= Pivot].
[13,17,22]

Separate into
pivot and tail.

Looking closer

• How is this working?

1> L=[13,17,5,3,9,1,2,6,3,22].
[13,17,5,3,9,1,2,6,3,22]
2> [Pivot|T] = L.
[13,17,5,3,9,1,2,6,3,22]
3> [X || X <- L, X < Pivot].
[5,3,9,1,2,6,3]
4> [X || X <- L, X >= Pivot].
[13,17,22]

List comprehension
to create a list of

elements less than
the pivot.

Looking closer

• How is this working?

1> L=[13,17,5,3,9,1,2,6,3,22].
[13,17,5,3,9,1,2,6,3,22]
2> [Pivot|T] = L.
[13,17,5,3,9,1,2,6,3,22]
3> [X || X <- L, X < Pivot].
[5,3,9,1,2,6,3]
4> [X || X <- L, X >= Pivot].
[13,17,22]

List comprehension to
create a list of

elements greater than
or equal to the pivot.

Looking closer

• How is this working?

1> L=[13,17,5,3,9,1,2,6,3,22].
[13,17,5,3,9,1,2,6,3,22]
2> [Pivot|T] = L.
[13,17,5,3,9,1,2,6,3,22]
3> [X || X <- L, X < Pivot].
[5,3,9,1,2,6,3]
4> [X || X <- L, X >= Pivot].
[13,17,22]

Erlang for concurrency

• What really makes Erlang interesting is it’s application to concurrency.
Otherwise, it’s just another declarative language (although, a pretty nice one).

• Erlang has gained a great deal of attention lately because it promises hope for
one of the big problems in computing right now:

• Concurrency is important.

• Writing correct and efficient code is hard. Productivity is bad when it
comes to writing good concurrent code.

• Erlang was designed to fix this.

Actor model

• We covered this earlier in the semester briefly. The basic
idea is:

• Non-shared memory process (ie: each process has
thread-local memory only).

• Each process has a mailbox into which it can receive
messages.

• Each process has a unique identifier.

• Note that Erlang uses the term process to mean a very
light-weight process that is essentially a thread with a
miniscule amount of extra state and functionality related to
mailboxes and bookkeeping.

Process

Code
Local

memory

Mailbox

Other processes

Message passing syntax

• Concurrency is implemented by creating a set of processes, and letting them
communicate with each other via messages.

• Processes, by definition, run concurrently. When multiple processing elements are
available, such as in an SMP or Multicore, the processes run in parallel.

• First, when processes are created, they are given unique process identifiers (or PIDs).

• Messages are sent by passing tuples to a PID with the ! syntax.

• PID ! {message}.

• Messages are retrieved from the mailbox using the receive() function.

A simple example

• Let’s write a parallel Fibonacci function that will run on two cores.

• The idea:

• Fib(N) = Fib(N-1) + Fib(N-2).

• Compute each part of the sum on a separate core. Note that we will NOT
make a thread for each recursive step - just the first one.

Parallel Fibonacci numbers

% test to compute fibonacci numbers
-module(fib).
-export([start/0, fib/1, sfib/1]).

start() -> spawn(fun loop/0).

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

sfib(0) -> 1;
sfib(1) -> 1;
sfib(N) -> sfib(N-1)+sfib(N-2).

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Function to create
new threads with

loop() as their body.

Parallel Fibonacci numbers

% test to compute fibonacci numbers
-module(fib).
-export([start/0, fib/1, sfib/1]).

start() -> spawn(fun loop/0).

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

sfib(0) -> 1;
sfib(1) -> 1;
sfib(N) -> sfib(N-1)+sfib(N-2).

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Loop function that blocks on
receive until a tuple is

received. At that time it does
some work, responds with
the answer, and repeats.

Note tail recursion.

Parallel Fibonacci numbers

% test to compute fibonacci numbers
-module(fib).
-export([start/0, fib/1, sfib/1]).

start() -> spawn(fun loop/0).

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

sfib(0) -> 1;
sfib(1) -> 1;
sfib(N) -> sfib(N-1)+sfib(N-2).

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Fib() function that
creates two threads,

sends subproblems to
each, and collects the

result back up.

Parallel Fibonacci numbers

% test to compute fibonacci numbers
-module(fib).
-export([start/0, fib/1, sfib/1]).

start() -> spawn(fun loop/0).

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

sfib(0) -> 1;
sfib(1) -> 1;
sfib(N) -> sfib(N-1)+sfib(N-2).

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

start/0

•start = spawn(fun loop/0).

• This function spawns a process with the loop function as it’s body, and
returns the Pid of the process (which is the return value of spawn).

loop/0

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Blocking receive until a
message comes in.

loop/0

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Match messages that look
like {From, N}. From is the

PID of the message
source, N is the data.

loop/0

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Create a new tuple that has the
processes own PID as the first

element and the result of a
sequential fib() function on N.

loop/0

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Send this to the source
of the original message.

loop/0

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

Repeat.

loop/0

loop() ->
 receive
 {From, N} ->
 From ! {self(), sfib(N)},
 loop()
 end.

fib/1

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

Spawn two worker
processes.

fib/1

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

Send them the
subproblems. Sends
do not block, so they

execute in parallel.

fib/1

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

Blocking receive for one message and
then the other. Note that generic _

pattern used for source, so we don’t
care which order they come in.

fib/1

fib(N) ->
 Pid = start(),
 Qid = start(),
 Pid ! {self(), N-1},
 Qid ! {self(), N-2},
 receive
 {_, ResponseP} ->
 receive
 {_, ResponseQ} -> ResponseP+ResponseQ
 end
 end.

Is it worth it?

• Do we see a performance benefit? Yes! Note that in this case, the computational load
is largely the recursion for computing the Fibonacci numbers.

• Yes, this is probably the worst way to compute these in a practical sense, but it does
serve to demonstrate a point.

1> c(fib).
{ok,fib}
2> fib:sfib(40).
RUNTIME: 12170 / WALLCLOCK: 12203
165580141
3> fib:fib(40).
RUNTIME: 12490 / WALLCLOCK: 8136
165580141

Parallel Pipeline Pattern

• The Fibonacci number example is a bit contrived. How about a realistic pattern?

• One that is seen frequently in practice is that of pipelined parallelism. This is
basically the same idea we saw before in hardware, but applied to software.

• The idea: Break a complex problem into a sequence of simpler problems, and send
work through the pipeline accumulating up partially complete results until all stages
have been reached. When data moves from one stage to the next, work for the next
data item can move in behind it and start working.

Stage 1 Stage 2 Stage 3

A

A

A

B

B

B

Waiting Complete

BC

BC A

C

C A

Process registration

• First, let’s introduce the Erlang process registration scheme. The idea here is that a process
can register a PID such that other processes can look up the PID by name. Otherwise, PIDs
are private, so one cannot access a process that has not either given out it’s PID or
registered it.

• Four basic functions:

• register(AnAtom, Pid) : Associate Pid with AnAtom.

• unregister(AnAtom) : Remove entry for AnAtom.

• whereIs(AnAtom) -> Pid | undefined : Look up a Pid by AnAtom.

• registered() -> [AnAtom::atom()] : Return a list of all registered processes.

Pipeline

• We will implement a pipeline that will compute:

• print(((N*2)+1) / 3)

• Stages: Doubler -> Adder -> Divider -> Printer

• It’s contrived, but illustrates the basic structure.

*2 +1 /3 PrintN

Pipeline

-module(pipeline).
-export([start/0]).

start() ->
 register(double,spawn(fun loop/0)),
 register(add,spawn(fun loop/0)),
 register(divide,spawn(fun loop/0)),
 register(complete,spawn(fun loop/0)).

% stage 1 : double the input
doubler(N) -> N*2.

% stage 2 : add one to the input
adder(N) -> N+1.

% stage 3 : divide input by three
divider(N) -> N/3.

% stage 4 : consume the results
completer(N) -> io:format("COMPLETE: ~p ~n",[N]).

% receive loop that hands work the the appropriate stage
loop() ->
 receive
 {double, N} -> add ! {add, doubler(N)}, loop();
 {add, N} -> divide ! {divide, adder(N)}, loop();
 {divide, N} -> complete ! {complete, divider(N)}, loop();
 {complete, N} -> completer(N), loop()
 end.

Starting up

• The start/0 function fires up the four pipeline stages. Each stage is given a
name in the process registry associated with what it does.

• The names are later used by the loop/0 function to figure out sources and
destinations of messages.

• A single loop/0 is used for all stages - it simply will invoke the proper stage
based on the message structure. More on this in a couple slides.

start() ->
 register(double,spawn(fun loop/0)),
 register(add,spawn(fun loop/0)),
 register(divide,spawn(fun loop/0)),
 register(complete,spawn(fun loop/0)).

Stage definitions

• Each stage is defined as a standalone function.

• The stage functions themselves know nothing about their context in the
pipelined program. They can function just fine as standalone functions.

% stage 1 : double the input
doubler(N) -> N*2.

% stage 2 : add one to the input
adder(N) -> N+1.

% stage 3 : divide input by three
divider(N) -> N/3.

% stage 4 : consume the results
completer(N) -> io:format("COMPLETE: ~p ~n",[N]).

% receive loop that hands work the the appropriate stage
loop() ->
 receive
 {double, N} -> add ! {add, doubler(N)}, loop();
 {add, N} -> divide ! {divide, adder(N)}, loop();
 {divide, N} -> complete ! {complete, divider(N)}, loop();
 {complete, N} -> completer(N), loop()
 end.

Message receipt and routing

• The shared loop/0 function iteratively receives messages. First, it matches on
the destination (the first element of the tuples). The second argument for
each is the message payload, which is just N.

• Each clause in the receive invokes the appropriate stage, and packages it up
into a message containing the name of the next stage, and then sends it to
the registered name of the next process handing the appropriate stage.

• Note that although the loop/0 function is shared for each stage, independent
instances of it exist for each.

% receive loop that hands work the the appropriate stage
loop() ->
 receive
 {double, N} -> add ! {add, doubler(N)}, loop();
 {add, N} -> divide ! {divide, adder(N)}, loop();
 {divide, N} -> complete ! {complete, divider(N)}, loop();
 {complete, N} -> completer(N), loop()
 end.

Message receipt and routing

• The shared loop/0 function iteratively receives messages. First, it matches on
the destination (the first element of the tuples). The second argument for
each is the message payload, which is just N.

• Each clause in the receive invokes the appropriate stage, and packages it up
into a message containing the name of the next stage, and then sends it to
the registered name of the next process handing the appropriate stage.

• Note that although the loop/0 function is shared for each stage, independent
instances of it exist for each.

% receive loop that hands work the the appropriate stage
loop() ->
 receive
 {double, N} -> add ! {add, doubler(N)}, loop();
 {add, N} -> divide ! {divide, adder(N)}, loop();
 {divide, N} -> complete ! {complete, divider(N)}, loop();
 {complete, N} -> completer(N), loop()
 end.

Message receipt and routing

• The shared loop/0 function iteratively receives messages. First, it matches on
the destination (the first element of the tuples). The second argument for
each is the message payload, which is just N.

• Each clause in the receive invokes the appropriate stage, and packages it up
into a message containing the name of the next stage, and then sends it to
the registered name of the next process handing the appropriate stage.

• Note that although the loop/0 function is shared for each stage, independent
instances of it exist for each.

Pipeline

1> c(pipeline).
{ok,pipeline}
2> pipeline:start().
true
3> registered().
[code_server,inet_db,erl_prim_loader,init,add,user,rex,
 error_logger,kernel_sup,global_name_server,kernel_safe_sup,
 file_server_2,global_group,complete,divide,double,
 application_controller]
4> double ! {double, 2}.
COMPLETE: 1.66667
{double,2}

We can see the names registered
in the process registry.

Pipeline

1> c(pipeline).
{ok,pipeline}
2> pipeline:start().
true
3> registered().
[code_server,inet_db,erl_prim_loader,init,add,user,rex,
 error_logger,kernel_sup,global_name_server,kernel_safe_sup,
 file_server_2,global_group,complete,divide,double,
 application_controller]
4> double ! {double, 2}.
COMPLETE: 1.66667
{double,2}

We start the process by sending a
value to the first stage (“double”)
that contains the stage name and

the argument. The result gets
printed at the end.

Pipeline

1> c(pipeline).
{ok,pipeline}
2> pipeline:start().
true
3> registered().
[code_server,inet_db,erl_prim_loader,init,add,user,rex,
 error_logger,kernel_sup,global_name_server,kernel_safe_sup,
 file_server_2,global_group,complete,divide,double,
 application_controller]
4> double ! {double, 2}.
COMPLETE: 1.66667
{double,2}

Process dictionaries

• Sometimes you just need state for performance reasons. Not all algorithms work
well in a purely functional model.

• I would argue that this is the main reason for the ML family having a wider
usage base in industry than Haskell.

• The process dictionary is a block of mutable state that each process contains.
These are not shared between processes.

• The process dictionary is there if you absolutely and really need to program with
side-effects.

• You should always feel shameful and guilty if you use the process dictionary,
and think hard about a way to implement the algorithm without it.

What haven’t covered on Erlang?

• Error handling. What if a message comes in that doesn’t match a clause in
the receive block?

• How are errors propagated between processes? What if a process dies and
another is waiting on it to send a message? Erlang was built to be robust to
this and allow processes to gracefully deal with this situation.

• How does Erlang support hot-swappable code? This is pretty cool -- you can
upgrade portions of a running program without bringing it down and
restarting. Very useful for critical services (such as telecommunications
systems).

• Standard library. Erlang has a nice standard library to do all kinds of useful
things. We haven’t touched on that at all.

Potential Synchronization Problem: Deadlock

• Let’s add a function to the account
example called transfer() that is
based on withdrawing from one
account and depositing into the
other.

• Let’s design the algorithm such that
the source of funds performs the
transfer.

void transfer(Account src, Account dest,
 int i) {
 pthread_mutex_lock(src.lock);
 pthread_mutex_lock(dest.lock);
 int balance = src.getBalance();

 if (balance < i) {
 error(“Not enough money.”);
 pthread_mutex_unlock(src.lock);
 pthread_mutex_unlock(dest.lock);

 return;
 }

 balance = balance-i;
 src.setBalance(balance);

balance = dest.getBalance();
balance = balance+i;
dest.setBalance(balance);

 pthread_mutex_unlock(src.lock);
 pthread_mutex_unlock(dest.lock);
}

Deadlock

• Now what if two threads attempt to transfer between two accounts, one from A to B and the
other from B to A. What could possibly go wrong?

• A bad interleaving could result in:

• T=1: A acquires a lock on itself.

• T=2: B acquires a lock on itself.

• T=3: A blocks because it cannot acquire a lock on B since B already locked itself.

• T=4: B blocks for a similar reason.

• We’re stuck.

Preventing deadlock

• Lock reordering

• “trylock” lock acquisition routines that attempt to acquire a lock, but if they
fail immediately return instead of blocking. On failure, one can unlock
potential sources of deadlock before retrying from the beginning.

• Thread analysis tools.

• Avoiding explicit locks.

