
Name:

Score:

———–———–———–———–———–———–———–———–———–
1 2 3 4 5 6 7 8 SUM

CRN 21546 CIS 621 Winter 2009

Midterm Exam
(due in class on Monday, February 23)

This is the usual open-everything, but no outside help take-home test.
Chris Wilson (cwilson@cs.uoregon.edu, office hours MWF at 2) has gra-
ciously agreed to answer your questions about typos, misunderstandings,
and such. You can also check the ”Class News”, where I will post “fre-
quently asked questions” about the test (and my answers). You should not
spend more than five hours solving the problems (even though four should
be sufficient). Make sure that your answers are neat and legible – no first
drafts, please.

Brute Force

1. Given the dimensions of a sequence of compatible matrices, the Matrix-
Chain Product problem is that of finding an optimal parenthesization
of a multi-operand expression, with the cost measure being the total
number of scalar multiplications performed.

1. What is the complexity of the brute force evaluation of the min-
imum cost of a matrix-chain product of n matrices?

2. Compute the minimum cost of matrix-chain product of four ma-
trices of dimensions 2× 20, 20× 5, 5× 6, and 6× 1, in this order.
and the corresponding optimal parenthesization of the product

A×B × C ×D

1



Loop Invariant

2. Prove the correctness of the “Russian Peasant” multiplication algorithm
below by providing a useful loop invariant with appropriately argued
initialization, maintenence and final properties. State the algorithm’s
complexity, assuming that A and B are positive integers.

a:=A; b:=B; c:=0;
while b>0 do
if even(b) then {a:=a+a; b:=b div 2} else {c:=c+a; b:=b-1};

return(c)

3. A candidate has majority of a vote if more than half voters support
her. Describe the result of the following algorithm on an array whose
entries contain names (arbitrary strings) of candidates. Prove your
answer by a loop invariant argument. (Hint: consider the possible
majority candidate among the votes candcount∪ vote[index..n])

procedure find(vote: array[1..n] of name);
name cand; int index, count;
begin count:=0;

for index:=1 to n do
if count=0 then begin cand:= vote[index]; count:=1 end

else if cand=vote[index]
then count:=count+1
else count:=count-1

end

2



Amortized Complexity

4. Define an abstract data type MaxBag (MB) to hold (possibly repeated)
integer values 1, . . . , n, with the following operations:

Initialize: → MB (create an empty MB)
Increment: MB → MB (add a copy of ‘1’ to MB)
Add: Int × Int × MB → MB (delete a copy of each of the two integers
– assuming they are present in MB – and add a copy of their sum to
MB)
DeleteMax: MB → MB (delete a copy of the maximum integer in
MB).

Thus, for instance, Add(3,2,{1,2,3,5})={1,5,5}
and DeleteMax({1,2,3,5,5}={1,2,3,5}

Implement MaxBag with constant time amortized complexity of all
operations.

5. We have seen that disjoint sets with operations Union and Find can be
implemented very efficiently when Union is performed guided by the
rank, and Find involves path contraction.

1. What is the time complexity when path contraction is not per-
formed?

2. Show the amortized time complexity when Union is guided by
size.

3. Show that the amortized time complexity for Union without any
heuristics and Find with path contraction is Ω(log n).
(Hint: Perform the following sequence of operations:
Build via n− 1 Unions a set represented by

a binomial tree T of order h;
do n = 2h times
{Union T with a single node set by

making that node the overall root of the new T ;
Find the deepest node of T compressing the find path; }

3



Greedy Algorithm

6. This problem pertains to the construction of an optimal prefix-free binary
code for n messages by the Huffman algorithm. Assume that the
probabilities of message transmission are given in the non-decreasing
order: p1 ≤ p2 ≤ · · · ≤ pn. (An essential assumption!)

1. Warm-up: Draw a Huffman tree for six messages with the fol-
lowing probability of transmission: .10, .10, .15, .20, .21, and .24.
Use boxes for leaves and circles for internal nodes.

2. Propose a linear implementation of an algorithm that constructs a
Huffman tree, given transmission probabilities in the non-decreasing
order.

Divide and Conquer

7. Show how to find the majority element (if one exists, see 3. above) in
linear time using the order statistics (“k-th largest”) algorithm.

8. A binomial tree of order k, Bk is obtained from two copies of Bk−1, where
one is made a principal subtree of the other (B0 being the trivial tree
of one node.) Nodes of such a tree can be represented in an array
A[1..2k] so that the two definitional binomial trees of order k − 1 are
represented in A[1..2k−1] and A[2k−1 + 1..2k] (with the root in A[1]).

Design and prove correct a linear-time algorithm that heapifies a bi-
nomial tree of order k, Bk with node values stored in an array A[1..n]
(for n = 2k), as above.

4


