
1

Warm-Up Project: Location-Aware Reminders
Due: Monday, January 18th, before class

Project : Android location reminder application

 Part 1: Reminder-entry Activity

 Part 2: Create storage for the Reminders

 Part 3: Location monitoring Service

 Part 4: Reminder-display Activity (use of "extras")

Turn in: There is no turn-in to me. You will demo your system working in class - I'll supply the projector,
you will need to find a laptop to run your system on.

Prior knowledge: some point early on, you should look at
http://developer.android.com/guide/topics/fundamentals.html. I find myself going back to it often as I
try to figure out how Android decided to implement their basic framework. You may not understand it
all at once, but as you get deeper into the project, come back to it.

Overview:

The reminder-entry Activity will present a user interface (UI) and accept/store four data values (three
numeric, one string). The Service will monitor location and trigger (launch) the reminder-display Activity
when the phone is near a user specified location. A message will be displayed on the phone by the
reminder-display Activity.

Part 1: Reminder-entry activity

The first Activity launched in the application displays the UI. This UI is a form that accepts the four
components of the reminders: latitude, longitude, text, and distance.

 Latitude and longitude specify the location where the user would like to be reminded.

 Text contains the message the user would like to receive as a reminder

 Distance is the radius of a circle around the specified location in which to trigger.

When the Add Reminder button is pushed, two things should happen:

1. You should build an instance of a class ReminderEntry that captures the values of all four fields.
In part 2, you will store this instance in a Reminders "database".

http://developer.android.com/guide/topics/fundamentals.html�

2

2. You should print the value of the ReminderEntry instance out to LogCat (see figure 3). To do this,

you should have a line of code as follows, where reminder_entry is the result of step 1:

 Log.d("addButton", reminder_entry.toString());

Of course, you will have to write the toString method to get the print out you see in figure 3.

Reminder: Open the LogCat display through the menu bar (Window > Show view > LogCat). You may
have to choose ‘Others’ from Show view to see the complete list of available views.

 Figure 1: Date Entry UI Figure 2: Completed Data Entry

 Figure 3: Output in the LogCat message log from both System.out and Log.d

3

Debugging note: one way to see debugging information on your screen (as opposed to the Eclipse
window) is to use the Toast widget. So in addition to placing this debugging line in your code

Log.d("addButton", reminder_entry.toString());

you can also add this

Toast.makeText(getBaseContext(),
 "addButton: " + reminder_entry.toString(),
 Toast.LENGTH_LONG
).show();

Try it and see if you like it. If it does not stay up long enough, play around with the 3rd arg.

Part 2: Create storage for the Reminders

We will not define a service yet. Instead, we will lay the groundwork by defining a new class that will
hold reminders. Your service will need to use this class to iterate through the reminders that have been
defined, and check them against the phone's current location.

class Reminders {

 ... //set up instance vars, class vars, constructor

 public static Reminders getInstance(){...} //supports Singleton

 public void addReminder(ReminderEntry re){
 if(...)
 ...
 else
 Log.d("addReminder", "attempt to add duplicate");
 }

 public void removeReminder(ReminderEntry re){
 if(...)
 ...
 else
 Log.d("removeReminder", "attempt to remove non-existent");
 }

 public void clearReminders(){
 ...
 }

 public Iterator<ReminderEntry> getIterator(){
 return ...
 }
}

Figure 4: Reminders.java

4

I am going to give you some specific constraints on your new reminder-storage class (called

Reminders.java). First, I would like Reminders to be a singleton. Here is a good review article on
this pattern: http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html?page=1. I

have started you on your way in figure 1 by defining the static method getInstance that will return

the (single) instance of the Reminders class. You need to do the rest of the set-up to complete the
Singleton pattern.

Second, I would like the Reminders class to return an Iterator so that other classes can iterate
through the list of reminders. You can choose whatever data structure you wish as the private data that
stores all the reminders. You won't let outsiders see this data structure. Instead, you will return an

instance of Iterator<ReminderEntry> as seen in the getIterator method in figure 4.

Outsiders can use the methods on the Iterator interface to iterate through the reminders. How do
you produce an Iterator from your private data structure? Look at the methods on your data

structure. It likely has a method just for returning in Iterator! You might find the example on this
page useful: http://java.sun.com/developer/technicalArticles/J2SE/generics/. It does show how to

define a data structure (in this case, an ArrayList) using generics. And then how to get the iterator
for the list and use it. The Ex1 and Ex2 examples are all you should need.

The other change we need to make is to ReminderEntry. I will give you my version of the class in
figure 5.

http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html?page=1�
http://java.sun.com/developer/technicalArticles/J2SE/generics/�

5

As you can see, there is a new method that we will need, equals. The equals method is defined in the
Object class. Its behavior is to do an == on the two objects being compared. As you know, this will only
be true if both objects are the same instance. That is not what we want. We want two reminders to be
equal if all of their numeric fields are == and the string fields are .equals. In other words, I would like the
following code to print "true":

ReminderEntry re1 = new ReminderEntry(45, 45, "test", 45);
ReminderEntry re2 = new ReminderEntry(45, 45, "test", 45);
System.out.println(re1.equals(re2));

Unfortunately, if we use the default equals, we will have false printed: even though re1 and re2
have the same internal values, they are not the same instance, hence false. I would like you to add a

method equals as I have started for you. Make sure your new equals will print true in the above
case. Also note you will have to cast from the Object to a ReminderEntry in the body of your
method.

public class ReminderEntry {

 private final int radius;
 private final double latitude;
 private final double longitude;
 private final String text;

 public ReminderEntry(double lat, double lon, String text, int k) {
 this.latitude = lat;
 this.longitude = lon;
 this.radius = k;
 this.text = text;
 }

 //getters go here for radius, lat, lon and text

 @Override
 public boolean equals(Object re2){
 ...
 }

 @Override
 public String toString(){
 return "GeoAlarm:\n" +
 "\t" + "lat=" + latitude + "\n" +
 "\t" + "lon=" + longitude + "\n" +
 "\t" + "rad=" + radius + "\n" +
 "\t" + "txt=" + text;
 }
}

Figure 5: ReminderEntry.java

6

Finally, make the change to your data entry activity so that when someone presses the Add button, you

add the reminder to Reminders (as I have in figure 6). I would also like you to include the debugging
loop I have in figure 6 so that the grader (and you) can assure that your reminder was stored correctly.

Once you have Reminders and ReminderEntry set up correctly, you should be able to copy and
paste the code from figure 6 into you Add-button handler as shown.

Strategy for attacking this part

1. Get the equals method working in ReminderEntry. You will need this for the Reminders
class.

2. Set up the Singleton portion of Reminders. Test it by adding this code to onClick:

 Reminders rems = Reminders.getInstance();

You can put a breakpoint in getInstance to make sure it is working.

3. Set up addReminder. Now test it in onClick by adding the code:

 rems.addReminder(

 new ReminderEntry(lat, lon, displayText, distance));

You can put a breakpoint in addReminder to make sure it is working.

...
addButton.setOnClickListener(
 new OnClickListener() {
 public void onClick(View v) {
 double lat = ...
 double lon = ...
 String displayText = ...
 int distance = ...

 Reminders rems = Reminders.getInstance();
 rems.addReminder(
 new ReminderEntry(lat, lon, displayText, distance));

 //write out reminders to log to make sure
 Iterator<ReminderEntry> iter = null;
 iter = rems.getIterator();
 ReminderEntry temp = null;
 while (iter.hasNext()) {
 temp = iter.next();
 Log.d("onClick", temp.toString());
 }
 }
 });

Figure 6: Use With Add Button

7

4. Set up getIterator in Reminders. Add following code to test it in onClick:

//write out reminders to log to make sure
Iterator<ReminderEntry> iter = null;
iter = rems.getIterator();
ReminderEntry temp = null;
while (iter.hasNext()) {

temp = iter.next();
Log.d("onClick", temp.toString());

}

5. Define removeReminders and clearReminders. There is no code for testing these two
methods this week. Both will be used in following weeks.

Part 3: Define the Service

 We now have the ability to add reminders and store them in a data structure. The next task is to give
our application some functionality. We will do that by defining a service that will watch where the
phone moves and check to see if a reminder triggers.

On a real phone, there is a GPS chip (e.g., http://en.wikipedia.org/wiki/SiRFstar_III) that supplies
location information to the android operating system. Our java code, in turn, can ask the operating
system to tell us when the phone moves. That is what we will do this week: we will define the code, in
our service, that gets movement information from the operating system. But since we don't have a real
phone nor real GPS chip, nothing will move, right? The cool thing is that we can simulate movement
using the DDMS package of Eclipse. It will allow us to type in lat and lon values to pretend we have
moved to those coordinates. The android operating system will believe we have actually traveled to that
spot!

Defining the service class in the source path

Right-click on the enclosing folder of your existing files, and choose new Java class. Fill in the name

ReminderService.java. Copy the code from figure 1 into the new file.

What does the service class look like

Study the code in figure 7. There is only one place you need to worry about, the handler code for

onLocationChanged. You will be passed a Location object that has the lat-lon pair for where the
phone has moved to. You need to figure out if that movement should trigger a reminder. There are two
ways of doing this. One, you can google on algorithms for computing the distance between two lat-lon
pairs, and then translate the algorithm into java. Or two, you can look for Java library methods that
already do this for you. I was going to be mean and let you find these methods yourself, but I relented;
look here for just what you want:
http://developer.android.com/reference/android/location/Location.html#distanceBetween%28double,
%20double,%20double,%20double,%20float[]%29. This method has the added bonus of telling you the
bearing of the user.

http://en.wikipedia.org/wiki/SiRFstar_III�
http://developer.android.com/reference/android/location/Location.html%23distanceBetween%28double,%20double,%20double,%20double,%20float%5b%5d%29�
http://developer.android.com/reference/android/location/Location.html%23distanceBetween%28double,%20double,%20double,%20double,%20float%5b%5d%29�

8

What about the activity that will print the reminder

What if you discover, using the distanceBetween method, that you should trigger a reminder? That
is what part 4 focuses on. For now, you can just use Log.d to show a triggered reminder. Or a Toast
object.

It's running but how do I move the phone

See figure 8. This is a DDMS view. You will see the Emulator Control on the left. Scroll down and you will
see the ability to send a lat-lon pair. This will fool the OS into thinking the phone moved to the spot you
choose. If you move within range of a reminder, you should see your Log.d method print a message (if
you have coded it right).

9

Miscellaneous stuff

Need to add the service in the manifest file. Need to start the service.

import java.util.Iterator;

import android.app.Service;
import android.content.Context;
import android.content.Intent;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.os.IBinder;
import android.util.Log;

public class ReminderService extends Service implements LocationListener {

 private LocationManager lm;

 @Override
 public void onCreate() {
 lm = (LocationManager) getSystemService(Context.LOCATION_SERVICE);
 }

 // called when the Service is started
 @Override
 public void onStart(Intent i, int id) {
 lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 5, 5, this);
 }

 // called when the Service is destroyed
 @Override
 public void onDestroy() {
 lm.removeUpdates(this);
 }

 // Methods to implement the LocationListener interface

 // called when OS gets new location info
 @Override
 public void onLocationChanged(Location location) {
 // code goes here for what to do when the location updates
 }

 // Don't worry about the rest

 // Ignore this, we aren't using this functionality but need to override it.
 @Override
 public IBinder onBind(Intent intent) { return null; }

 // need these to implement the rest of the LocationListener interface
 @Override
 public void onProviderDisabled(String provider) { }

 @Override
 public void onProviderEnabled(String provider) { }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) { }

}

Figure 7: Service

10

Figure 8: simulating movement

Extra Credit

You may notice that I am using onStart and onDestroy in figure 7. I am doing so because in my version of
this application, I decided to allow the user to stop and start the service. Why? Because on a real phone,
GPS applications seem to suck battery life. So I wanted to allow the user to shut the service off when not
using it. I'll give you extra credit if you give this capability to the user. You will need to add a checkbox to
the activity: when checked, start the service; when unchecked, stop the service (i.e.,

stopService(intent)). Might also want to add a static flag to the service that notes whether it is
running or not. Outsiders can look at the flag to see service state.

Part 4: Deal with a triggered reminder

We will use another activity to display a triggered reminder. It is fairly straightforward. The main
concept I would like you to learn is passing data as extras.

In the new activity, the first component you will need is a text area to show the message.

The second component is a button labeled "Dismiss". If the user clicks this button, you should not delete
the reminder: allow it to trigger again in the future.

The third component is a button labeled "Delete". If the user clicks this button, you should delete the
reminder from Reminders so that it is gone from your application: it will not trigger again.

11

You line up the 3 components on the screen in any way that is pleasing to you.

What new things will you need

You will need a new activity, which handles the display screen. Your service should launch this activity
when it notices that the phone has moved in range of a reminder. When you start an activity from a
service, you will need to include the following in the service:

 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

My current understanding of the need for this flag is that the service is not running as part of an
application. Instead, it is running in the background no matter what activity/application is in the
foreground. Hence, starting an activity is viewed as a new task (not in the service's local scope). On the
other hand, starting one activity from another in the same application uses the same task/application
framework. So you do not need to include this flag for activity-to-activity activation within the same
application. I might be wrong about this so welcome others comments.

Don't forget to update the manifest to include your new activity.

How does the display activity know what to display?

I think the simplest way to solve this problem is to use "extras", primitives and objects you can add to an
intent from the service. When the display is created, it can pull these extras out and use them. See the
sample code below.

//In the service
Intent intent = new Intent();
intent.setClassName(this, "edu.uoregon.test.Activity2");
intent.putExtra("myExtra", new Integer(1)); //this adds an extra
startActivity(intent);

//In Activity2's onCreate() method
Intent callingIntent = getIntent();
Integer i = (Integer)callingIntent.getSerializableExtra("myExtra");

Note that this only works because the Integer class implements Serializable. In general, if we
do this:

 intent.putExtra("whatever", obj);

then obj must be a Serializable object. The bad news is that I bet your ReminderEntry class is
not Serializable at the moment; this is the object you want to pass. The good news is that it is easy
to make it serializable. Just edit your class def as follows:

 class ReminderEntry implements Serializable {

12

Then you should be good to go: you can pass an instance of ReminderEntry to the display activity

using putExtra method. The display activity can pull out the pieces and display them on the screen.
Cool.

How do I get back to the reminder-entry screen

If you just finish() from the display activity, the reminder-entry activity should automatically pop

back into view. No need to try to start it.

What's Missing

It might be useful to read reminders, in xml format, from a file. This is handy - allows a web-app to
define reminders and store them on server. Phone loads them when it starts up. We will need to get
back to this to set up our study.

I also played around with storing reminders on the phone. I have code that will dump the Reminders
class to a local file and then reload that file on demand. Not as fancy as sql database, but works ok.

