Software Engineering Governance: a briefing

Anthony Finkelstein
Computer Science

What I Intend to Do

Making the case for a new research arena
Reviewing challenges and contributions
Presenting examples
Why Projects Fail …

User Involvement
Clear Business Objectives
Controlled Scope
Standard Software Structure
Firm Basic Requirements
Formal Methodology
Reliable Estimates

From Standish Group CHAOS Reports

...1991...1992...1993...1994...1995...1996...1997...1998...1999...2000...2001...2002...2003...2004...2005...2006...2007...2008...

Why does history repeats itself?

One of the large unanswered questions in software engineering
Flawed techniques – Inherent difficulty
 Response: new techniques
Ignorance – Poor training
 Response: make it easier, improve transfer
Laziness – Ill will
 Response: improved control frameworks

An Alternative Theory
That organisations are unable to avoid these problems because of structural issues and in particular problems (mismatches) at the interface between the structure of the business organisation and the organisation of software development
Specifically …

- Complex system ‘ownership’
- Misalignments in incentives
- Difficulties in securing ‘accountability’ for critical decisions

This theory is supported by some informal observations … illustrated later in this briefing

… the relationships between business structures and software engineering are poorly understood and under-researched, for example the relationship between commercial procurement practice and software development
The core area of concern here is what has become known as ‘governance’

I will use the term Software Engineering Governance to capture my focus on software development

Definition(s)

Software Engineering Governance is the set of structures, processes and policies by which the software development and deployment function within an organisation is directed and controlled so as to **yield business value and to mitigate risk**

Often erroneously thought to be principally about regulatory compliance
Software Engineering Governance is a component part of Corporate Governance - the set of structures, processes and policies by which an organisation is directed and controlled so as to …

align interests and incentives in the interest of the organisation as a whole within a framework of openness and transparency

Key Themes

A shared notion of business value
Mitigation of risk
Alignment of interests and incentives
Large corporate failures in the late 1990s focused attention on governance, giving rise to legislation (eg SOX). This attention necessarily ‘trickles down’ to the software function as a major means by which a business obtains value and a locus of cost and risk.

The centrality of software systems to organisational performance is increasing significantly faster than development risk is decreasing. It is a critical organisational arena in which misalignments of interests and incentives manifest themselves.
Regulatory Pressure is Important

This is one of the few arenas where senior executive management are directly engaged.

Looking at governance is timely… changes in enterprise architectures and software development methods raise new challenges and existing structures and processes are failing.
New enterprise architectures (based for example on SOA) decouple services, processes and platform cutting across existing business structures.

Federated data management, integration and messaging change patterns of information ownership and control that have been a dominant means of structuring enterprises.
Outsourcing and external service provisioning move control across enterprise boundaries and alter the ‘touch-points’ within enterprises.

Agile development changes lines of management control and accountability. Self organising teams present particular governance difficulties.
Software Engineering (research at least) tends to adopt a project by project, product by product focus.

It is important to distinguish governance from the *direct* managerial control mechanisms necessary to ensure ‘low-level’ good practice is followed.

Adherence to mandated processes, use of libraries and configuration management, interface control, metrics gathering and so on.
This only becomes a governance concern where their absence reflects some underlying differences in the determination of risk or in the incentives of the parties engaged.

Hence audit and monitoring

The State-of-the-Art … ‘standards’ and ‘best practice frameworks’
ISO/IEC 38500: 2008 Corporate governance of information technology and national variants and precursors

COBIT: Control Objectives for Information and Related Technology (ISACA - Information Systems Audit & Control Association and ITGI - IT Governance Institute)

And of course …

The inevitable maturity model

IT Governance Institute ‘Board Briefing on IT Governance’
ITGI focal areas for governance

Strategic alignment
Value delivery
Resource management
Risk management
Performance measures

All of which directly impinge on Software Engineering

Lifecycle

There is a need for governance at every stage of the life of the system. The balance of attention shifts across focal areas as development proceeds.

Emerging definitions and scoping challenge
Bottom-up vs Top-down tension
Small number of ‘agreed principles’
Slightly large number of useful techniques

Key research contribution:
Peter Weill & Jeanne Ross

Note the connection between performance and governance
10 Principles of IT Governance

1. Actively design governance
2. Know when to redesign
3. Involve senior managers
4. Make choices
5. Clarify the exception handling process

6. Provide the right incentives
7. Assign ownership and accountability for governance
8. Design governance at multiple organisational levels
9. Provide transparency and education
10. Implement common mechanisms across assets
Implications for Software Engineering

Incorporate governance design in process configuration and management activities
Consider governance when introducing significant architectural or process changes
Direct senior management attention to implications of changes

Implications for Software Engineering

Provide a structure for highlighting conflicting goals
Develop coherent structures from Board-level downwards
Expose rather than hide governance
Lead the governance debate within the enterprise
Structures typically in place

Board level - strategic investment management
Executive level - business case scrutiny and requirements management
Group level - technical authority
Operational level - monitoring execution of key decisions, risk and compliance
Operational level - design review and architecture compliance

Enterprise Architecture Challenges

Because business logic is shared outside traditional silos the potential company-wide impact of any given service becomes greatly increased

Complex ownership of services and relationships

Difficulties of aggregating services on a shared platform that delivers the appropriate non-functional properties
Why is SOA governance particularly difficult?

Ease of creating and using ‘rogue’ web services
Incoherent architecture arising from services developed in projects chartered to solve conflicting business problems

Symptoms of Poor Governance

Single use services and point-to-point connections
Proliferation of redundant services and data types
Inconsistent implementation of cross-cutting capabilities (security, reliability, transactions, logging, routing, filtering)
Case studies (close to home)

‘CAPSA and its Implementation’
Report to the Audit Committee and the Board of Scrutiny of the University of Cambridge (October 2001)

Experience points clearly to the intimate relationship between governance and successful system development and deployment

Lesson learned ...

An organisation with a flawed governance structure cannot articulate its requirements, charter a project, identify appropriately skilled staff, manage the concomitant change process, determine if the project has been successful or even deal with the consequences of failure
Case studies (close to home)

ABC is a large, research-intensive, metropolitan university in the UK. It has a dedicated and professional IT services function that engages in small-scale development and large-scale customisation and deployment projects.

A participant-observer

I have strong sense that the biggest problems I encountered have their origins at the interface between governance and requirements engineering

Example I

‘Left Field’

Complex processes with substantial IT implications introduced as it were ‘out of left field’, that is from other ‘lines of governance’.

Challenge: how can process and business governance arrangements be meshed with software governance
Example II

Technical Fix

Decisions driven down to too low a level in the governance structure leaving the technology to leverage the change. Inadequate intermediate level structures to mediate between strategic intent and execution

Challenge: how to ensure decisions and responsibility for changes are made at the right level within the organisation

Example III

‘CEOs iPhone’

Failure to maintain the integrity of the planning and governance process in the face of senior management decision making

Challenge: how to find structures that are responsive and preserve strategic leadership but also support a stable, planned and directed programme
Nobody’s baby

‘Orphan processes’ that are not strongly owned and thus never receive the necessary advocacy to have their requirements heard

Challenge: to identify and to ‘promote’ orphans, particularly if they are high aggregate value, or low-hanging fruit

Favoured Sons

Very strong ownership of a cross-cutting process by a single organisational player distorting the governance process

Challenge: to put in place mechanisms that enable collective ownership without diluting value
Handling Failure

Success has many fathers, failure is an orphan.

Challenge: to build governance arrangements that can take risks and assume responsibility without inducing a ‘blame culture’. These arrangements continuing when a project is perceived to have failed.

It seems easier to know what not to do than actually what should be done. There are some governance anti-patterns implicit in the examples I have presented.
Known Barriers

Shifts in decision rights and associated power
Resistance to accept accountability
Inability to obtain sufficient business involvement
Particular complexity with federated and outsourced business structures

What we do know …

Centralised governance for architecture and platform, decentralised for services and applications, lightweight (with central oversight) for processes
With management focusing on business goals that cross-cut system structures … means we need to rethink reporting

Use cost transparency and charge back as a key lever to effect change

 Providing a clear mechanism for making business value visible

This is another area that is unexplored from a research standpoint
Substantial growth in risk and compliance audit, most notably in the area of security

Tendency to more ‘negative’ governance than ‘positive’ governance

Disaggregated risk management – process risk, architectural risk, operational risk and business risk not correlated

Audit and compliance instruments not compatible with software development methods
governance a new research challenge?