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 In model-driven software development of distributed systems-
 Scenario based models, such as High-level Message Sequence
Charts (HMSC), highlight inter-process communication and are closer
to system requirements
 State based models, such as Finite State Machines (FSMs),
highlight intra-process behaviour and are suitable for code
generation.

 Obtaining a state based requirements model involves relatively more
manual effort, as compared to the scenario based model and is hence,
error prone.

We exploit the distinct strengths of the two modelling styles within a
round-trip engineering validation methodology-

1. Test cases containing traceability information, linking test case
events to requirements, are derived from a scenario based
requirements model (HMSC).

2. Implementation code (C++) is generated automatically from a state
based requirements model (Statecharts) via Rhapsody tool.

3. The implementation code derived in (2) is tested against the test
cases obtained from (1). Execution sequences from unsuccessful
test cases are traced back to the original requirements using
traceability information to aid debugging.
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Trace back

Footprinter: TOOL  ARCHITECTURE
 Comprises of four main components:
1. Eclipse based graphical editor to

input- (i) scenario based requirements
model as an HMSC, and (ii) a test-
purpose as an MSC.

2. Test generation engine implemented
in XSB logic programming system.
Generates test cases in the form of
MSCs from a HMSC model, guided by
a user provided test-purpose (MSC).

3. Test stub generator. Generates tester
code (C++) from a test case MSC for
testing an implementation.

4. Test case / Test execution trace
visualizer as MSC using Mscgen and
Eclipse. Traceability information is
also displayed.
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