
INTRODUCTION

31st International Conference on Software Engineering - 2009

 In model-driven software development of distributed systems-
 Scenario based models, such as High-level Message Sequence
Charts (HMSC), highlight inter-process communication and are closer
to system requirements
 State based models, such as Finite State Machines (FSMs),
highlight intra-process behaviour and are suitable for code
generation.

 Obtaining a state based requirements model involves relatively more
manual effort, as compared to the scenario based model and is hence,
error prone.

We exploit the distinct strengths of the two modelling styles within a
round-trip engineering validation methodology-

1. Test cases containing traceability information, linking test case
events to requirements, are derived from a scenario based
requirements model (HMSC).

2. Implementation code (C++) is generated automatically from a state
based requirements model (Statecharts) via Rhapsody tool.

3. The implementation code derived in (2) is tested against the test
cases obtained from (1). Execution sequences from unsuccessful
test cases are traced back to the original requirements using
traceability information to aid debugging.

Footprinter: Round-trip Engineering via Scenario and
State based Models

Ankit Goel Bikram Sengupta Abhik Roychoudhury
National University of Singapore IBM Research, India National University of Singapore

ankit@comp.nus.edu.sg bsengupt@in.ibm.com abhik@comp.nus.edu.sg

OVERVIEW
Informal System Requirements (in English)

Scenario-based model
(HMSC)

State-based model
(Rhapsody Statecharts)

Test Purpose
(MSC)

Relatively
easy

Hard
manual step

Trace back
to failure
nodeAutomated

Test gen.

Test case
MSC

C++ Code

Generated
Automatically

Test Execution Done

Execution trace
visualization

with traceability
information

Derived
manually

Trace
back

Tester stubs
(C++ code)

Derived
automatically

Pass

Fail

Supported by
Footprinter tool

REFERENCES
1. Footprinter: Roundtrip Engineering via Scenario and State based Models. Ankit Goel, Bikram Sengupta and Abhik Roychoudhury, ACM
International Conference on Software Engineering (ICSE) 2009, Short paper.

Trace back

Footprinter: TOOL ARCHITECTURE
 Comprises of four main components:
1. Eclipse based graphical editor to

input- (i) scenario based requirements
model as an HMSC, and (ii) a test-
purpose as an MSC.

2. Test generation engine implemented
in XSB logic programming system.
Generates test cases in the form of
MSCs from a HMSC model, guided by
a user provided test-purpose (MSC).

3. Test stub generator. Generates tester
code (C++) from a test case MSC for
testing an implementation.

4. Test case / Test execution trace
visualizer as MSC using Mscgen and
Eclipse. Traceability information is
also displayed.

SCREENSHOTS

HMSC graph: H1

MSC1 from HMSC H1

A Test-purpose

Test-case: Visualized using Mscgen

ILLUSTRATION

Rhapsody code generation

Graphical-editor

Rhapsody

Footprinter

Informal
Requirements

Ready

Yes

A B
M1

M2M3

SUT

B’s Statechart

C++ code
SUT: Process B

Req1

Data

A B
Req2

Data

A B

Rcvd

Scenario based model: HMSC

Ready

A B

Rcvd

Test-purpose: MSC

Ready {M1}
A B

Yes {M1}

Req2 {M2}

Data {M2}

Rcvd {M2}

(non-SUT) (SUT)

Test-case: MSC

C++ code
Tester stub

corresponding
to lifeline A

Test
Execution

Test execution
trace

Ready {M1}
A B

Yes {M1}

Req2 {M2}

(non-SUT) (SUT)

Time-out occurs at A,
waiting for message
`Data’ from B, leading to
test execution failure.

Test-case generation

Test-stub
generationTrace back

Debug

Trace back

Visualize

	Slide Number 1

