Tribute to Michael Jackson

- **9:00** Welcome (Bashar Nuseibeh)
- **9:05** Pamela Zave – on Michael Jackson
- **9:15** Tony Hoare
- **9:45** Daniel Jackson
- **10:00** John Cameron
- **10:30** Break
- **11:00** Axel van Lamsweerde
- **11:30** Anthony Hall
- **12:00** Pamela Zave
- **12:30** Lunch
- **14:00** Cliff Jones
- **14:30** Bashar Nuseibeh
- **15:00** Daniel Jackson
- **15:30** Break
- **16:00** Michael Jackson responds
- **17:00** Discussion
- **17:30** Reception (**ends 19:00**)
Working with Michael Jackson

BASHAR NUSEIBEH
THE OPEN UNIVERSITY (OU), UK
Michael Jackson @ The OU

- Visiting Professor
- Colleague
- PhD Supervisor
- Confidant
If Software is the Solution, What is the Problem?

- The world and the machine
 - Requirements and design
 - Problem-orientation
 - Specialisation
Problem Frames

- Articulate the separation between world and machine
 - Defining problem boundaries
 - Defining and scoping problem alphabet

- Define and organise recurring patterns

![Diagram with machine and domains]

- Domain 1
- Domain 2
- Requirements

- P1, P2, P3, P4
A security problem?
A wicked problem

- **Security is a ‘wicked problem’** [Rittel], for which there is no perfect solution;
 - security implementations are a trade-off between **cost** and effectiveness;
 - some **assets** are not worth protecting,
 - acceptable solutions vary from **stakeholder** to stakeholder,
 - the solution space is bounded by what the **customer** is willing to **spend** and what technology can provide.
Security goals – CIA ... A

- **Confidentiality** – ensure that an asset is visible only to actors authorized to see it.

- **Integrity** – ensure that the asset is not corrupted.

- **Availability** – ensure that the asset is readily accessible to agents that need it, when they need it

- **Authentication** – ensure that the identity of the asset or actor is known.
 - ... accountability ... non-repudiation ... authorisation ...
Security is not football

- **Security is not a zero sum game:**
 - there is no exact equivalence between the losses incurred by the asset owner and the gains of the attacker.

- So, the evaluation of possible harm to an asset can sometimes be carried out without reference to particular attackers; and

- consideration of the goals of attackers cannot be used simply to arrive at the goals of a defender to prevent harm.
Problems of scope ...

- This cash machine has been designed with the most sophisticated password encryption.
- Special precautions have been taken to ensure that only authorised users with valid smart cards can withdraw money.
Problems of scope ...

- Is it secure?
A Problem

- Not if the whole machine is stolen!
Not an isolated incident

In a hotel room in Shanghai
(May 2006)

This is a demo only!
We define an **anti-requirement** as the requirement of a **malicious** user that subverts an existing requirement.

This is useful because:

- If we can find circumstances in which both a requirements and an anti-requirement hold (compose), then we hypothesise that the conditions of composition identify a potential vulnerability in a system that implements both requirements.
Security & Safety

- **Security**: incidents caused by intention
- **Safety**: incidents caused by accident

[From Charles Haley]
Consider an **anti-requirement (AR)** as the requirement of a **malicious** user that subverts an existing requirement.

- It defines a set of undesirable **phenomenon** that will ultimately cause the system to reach a vulnerable state.
Abuse Frames

- The **Base System (BS)** is the system attacked.
- The **anti-requirement (AR)** specifies the undesirable phenomena in terms of E_1 in the Base System (BS).
- E_4 indicates that the Malicious User (MU) can interact with the BS through or unexpected phenomena.
- The specification of the **MM** describes the interface over the E_3 of the MU and the E_2 of the BS that will *existentially* satisfy the AR.
Threat analysis Using Abuse Frames

- **Scope the problem and identify the subproblems**
 - Describe the security concerns on the functionality to be achieved in each problem frame diagram.
- **Identify the threats and constructing abuse frames**
 - Identify the anti-requirements.
- **Identify security vulnerabilities**
 - Describe the domain properties.
- **Address security vulnerabilities**
 - New security requirements?
- **Iterate**
Abuse Frame Classes (Patterns)

- Interception
- Modification
- Behavioural

Patterns of attack:
- Embody known attack possibilities
- Help to reveal composition possibilities
Other security patterns

- **Security patterns of base systems**
 - Can embody avoidance of known failures
 - E.g., Single Point of Entry pattern

- **General patterns of base systems**
 - Help to focus on phenomena
 - Mandate explicit consideration of alphabets
Thank you, Michael Jackson, from ...

- Leonor Barroca
- John Brier
- David Bush
- Jon Hall
- Charles Haley
- Robin Laney
- Zhi Li
- Armstrong Nhlabatsi
- Bashar Nuseibeh
- Jonathan Moffett
- Marian Petre
- Lucia Rapanotti
- Mohammed Salifu
- Pete Thomas
- Thein Than Tun
- Yijun Yu
- ...

...
OU Research in Problem Frames

- Architecture Frames (AFrames)
 - Rapanotti et al.
- Composition Frames
 - Laney et al.
- Change Frames
 - Brier et al.
- Coordination Frames
 - Barroca et al.
- Abuse Frames
 - Lin et al.