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Abstract

Event-related potentials (ERP) are brain electrophysi-
ological patterns created by averaging electroencephalo-
graphic (EEG) data, time-locking to events of interest (e.g.,
stimulus or response onset). In this paper, we propose a
semi-automatic framework for mining ERP data, which in-
cludes the following steps: PCA decomposition, extraction
of summary metrics, unsupervised learning (clustering) of
patterns, and supervised learning, i.e. discovery, of classi-
fication rules. Results show good correspondence between
rules that emerge from decision tree classifiers and rules
that were independently derived by domain experts. In ad-
dition, data mining results suggested ways in which expert-
defined rules might be refined to improve pattern represen-
tation and classification results.

1. Introduction

Research in cognitive and clinical neuroscience has
given rise to a wealth of data over the past several decades.
It is becoming increasingly clear that management and dis-
tribution of these data will require advanced tools for data
representation, mining, and integration. In this paper, we
propose a semi-automatic framework that is designed to
classify ERP patterns related to visual word comprehension.
The results of this process will function as inputs to ERP
database ontologies, to support future work on mining and
classification of higher-order patterns, cross-laboratory col-
laboration, and integration of study results [10].

Electroencephalography (EEG) is a widespread, nonin-
vasive method for imaging brain activity. EEG data are ac-
quired by placing sensors on the head to measure electrical

signals that are generated in cortex and conducted to the
scalp surface. Compared with other imaging techniques,
such as Positron Emission Tomography (PET) and func-
tional Magnetic Resonance Imaging (fMRI), EEG methods
have two advantages: first, they provide a direct measure
of neuronal activity (PET and fMRI measure the hemo-
dynamic response, which is closely linked with neuronal
activity); and second, they have excellent temporal resolu-
tion - on the order of milliseconds, compared with 6 sec-
onds or more for hemodynamic measures. Given that most
sensory-motor and cognitive processing takes place within
a few hundred milliseconds, fine-grained representation of
the time course of brain activity is extremely important.
In addition, with the advent of dense-array methodologies,
modern EEG methods are now characterized by high spa-
tial, as well as high temporal, dimensionality.

Event-related potentials (ERPs) are derived by averag-
ing across segments of EEG data, time-locking to events of
interest (e.g., stimulus onset). Signals that are not event-
related tend towards zero as the number of averaged trials
increase. In this way, ERP methods increase the signal-to-
noise ratio (SNR) and provide measures of brain electrical
activity that are tightly linked to stimulus processing (e.g.,
Figure 1(A)).

While ERP methods have led to many important findings
over the last several decades, this research area faces some
current challenges that call for advanced computational so-
lutions. One current challenge is that of establishing robust
methods for pattern classification. At each time point, many
parts of the brain may be simultaneously active, contribut-
ing overlapping (or “superposed”) patterns to the measured
signal. The goal of ERP research is to separate and clas-
sify these patterns (or “components”) and to relate them to
specific brain and cognitive functions. Distinct patterns are
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characterized by their time course (e.g., early or late), polar-
ity (positive or negative), and scalp distribution, or topogra-
phy. For example, as illustrated in Figure 1, the “P100 com-
ponent,” which was extracted from the superposed data (A)
using Principal Components Analysis, has a peak latency
of approximately 100ms (B) and is positive over occipital
areas of the scalp (C).

Figure 1. (A)128-channel EEG waveplot; positive volt-
age plotted up. Black, response to words; Red, response to
nonwords. (B) Time course of P100 factor for same dataset,
extracted using Principal Components Analysis. (C) Topog-
raphy of P100 factor.

Although ERP researchers have reached some general
agreement on how to define ERP components, in reality,
such patterns can be difficult to identify, and definitions
vary across research labs. Furthermore, methods for ERP
data summary and analysis differ widely across research
sites. This variability can make it hard to compare re-
sults across experiments and across laboratories, limiting
the generalizability of research results in this important do-
main. To address these issues, we have proposed a new
framework, called “Neural ElectroMagnetic Ontologies,” or
NEMO [10]. The NEMO project proposes to develop data-
base ontologies to support ERP data representation and in-
tegration. These databases will be designed to allow re-
searchers to manage large amounts of complex data and to
search these data using consistent definitions. Robust ERP
pattern definitions are an important part of ERP ontology
development.

The rest of the paper is organized as follows. We give a
brief overview of ERP research methods. We then describe
some applications of our framework and report results from
mining of ERP patterns, including data preprocessing with
temporal PCA, clustering and cluster-based classification.
We conclude by outlining future directions for ERP pattern
classification and ontology development efforts.

2. Tools for EEG and ERP Preprocessing

ERP data consist of time series, representing temporal
fluctuations in the EEG that are time-locked to events of
interest (e.g., word or picture stimuli). In dense-array EEG

and ERP research, these time series are measured across
multiple locations on the scalp surface.

A variety of tools are available for ERP preprocessing
and pattern analysis. For example, Net Station [4] is a
suite of tools, which includes data cleaning, statistical ex-
traction and visualization techniques. EEGLAB [2] is a
Matlab toolbox that provides advanced statistical methods
for EEG/MEG and ERP processing, including independent
component analysis (ICA) and joint time-frequency analy-
sis (TFA). The Dien PCA Toolbox [1] includes Principal
Component Analysis (PCA) tools that are optimized for
ERP data decomposition.

3. Our framework for mining ERP patterns

Our framework (Figure 2) includes data preprocess-
ing using the tools described in Section 2, clustering and
cluster-based classification rule mining. Data preprocess-
ing can be further split in to two parts, i.e., temporal PCA
decomposition and extraction of summary metrics. Sum-
mary metrics capture spatial, temporal, and functional di-
mensions of the data. The resulting statistics metrics then
are used as input for the clustering process. A decision tree
learner is then trained based on the clustering results to de-
rive rules for ERP pattern classification.

 ERP data    

Data Pre-processing

PCA decomposition

+                  =

Statistical measure extraction
(temporal, spatial and functional)

Unsupervised learning
Clustering

Supervised learning
Decision tree

Figure 2. Semi-automatic framework for mining ERP
patterns.
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3.1. Data preprocessing with temporal
PCA decomposition

In the present paper, we analyzed data collected in two
studies of word/nonword processing. Data were acquired
using a 128-channel EEG sensor net [3]. Sampling rate was
250hz. The EEG were segmented into 1,500ms epochs, be-
ginning 500ms before stimulus onset (total number of sam-
ples = 375).

Together the datasets comprise 89 subjects and 6 exper-
imental conditions (#observations = 534). A description of
the experiment paradigm, behavioral measures, scalp ERPs,
and cortical (source) waveforms can be found in [13].
For cross-validation of our pattern classification and label-
ing procedures, subjects were randomly assigned to one of
two groups, resulting in 20-24 subjects per subgroup. Sub-
groups were matched in proportion of males to females and
in mean age and handedness.

3.2. Temporal PCA decomposition

ERP data represent a mixture of “signal” (functional
brain patterns) and “noise” (extracerebral artifacts and brain
activity that is not related to the events of interest). Data de-
composition methods can help separate signal from noise
and disentangle overlapping patterns. A variety of statisti-
cal decomposition methods have been applied to ERP data
in the past few decades, such as Independent Component
Analysis (ICA), wavelets and Principal Component Analy-
sis (PCA). In this paper, PCA [9] is used to decompose the
ERP data. PCA belongs to a family of dimension reduction
procedures. It projects the data into a new space of lower
dimension. In the present study, we used temporal PCA,
as implemented in the Dien PCA toolbox [1]. The dataset
used as input to the PCA is organized with the variables cor-
responding to time points. The number of variables is equal
to the number of samples (N=375 in the present case). The
waveforms vary across subjects (N=89), channels (N=128)
and experimental conditions (N=6). PCA extracts as many
factors as there are variables (total N=375). In this experi-
ment, we retained the first 15 PCA factors, accounting for
most of the variance (> 75%). The remaining factors are
assumed to contain “noise”; this assumption is verified by
visual inspection of the time course and topographic projec-
tion of each factor.

4. Summary metrics extraction

For each PCA factor, we extracted summary metrics rep-
resenting spatial, temporal and functional dimensions of the
ERP patterns of interest (Table 1). After preprocessing, the
data consist of vectors containing 25 spatial, temporal and
functional attributes derived from the automated measure

Attribute Description
IN-min min amplitude
IN-max max amplitude
IN-mean mean amplitude for a specified channel set

ROI region of interest
SP-cor cross-correlation between Factor(FA)

topography and topography of target pattern
SP-max channel with max weighting for factor FA

SP-max (ROI) channel grouping(ROI) to which
the max channel belongs

SP-min channel with min weighting for factor FA
SP-min(ROI) channel grouping(ROI) to which

the min channel belongs
TI-max max latency(time of max amplitude)
EVENT event type (stimon, respon, EKG-R, etc.)
STIM stimulus
MOD modality of stimulus

Table 1. Intensity, spatial, temporal and functional met-
rics

generation. Thus, the data represent the individual PCA
factors of each subject and condition as points in a 25 di-
mensional attribute space. After clustering, the data in each
cluster were compared with labeling datasets that were gen-
erated with the rules defined by domain experts to determine
the distribution of the pre-defined ERP patterns amongst the
clusters. In this report we focus on results for four patterns
that were identified by domain experts: the P100 (an oc-
cipital positivity, peaking at 100ms), N100 (an occipital
negativity, peaking at 180ms), N2 (a left temporal pattern,
peaking 250ms), and P300 (a parietal positivity from 300
to 700ms).

5. Unsupervised learning: Clustering

Traditionally, ERP patterns are identified through visual
inspection of grand-averaged ERP data. However, the pre-
cise definition of a target pattern, its operationalization, and
measurement across individual subjects, can vary consid-
erably across research groups. In our framework, we use
unsupervised learning technology, i.e., Expectation Max-
imization (EM) clustering, to automatically separate ERP
pattern, as they are distributed across “latent” (PCA) fac-
tors. The factors extracted through PCA are weighted
across individual subjects and experiment conditions. Sum-
mary metrics extracted from each observation (subject, con-
dition) are then input to EM clustering. Observations that
belong to the same pattern are expected to map to the same
cluster using this method. The larger aim is to develop an
automatic pattern classification method, which can support
robust ERP pattern definitions.
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Cluster/Pattern 0 1 2
P100 0 0 99
N100 46 47 0

lateN1/N2 47 235 0

Table 2. EM clustering results for LP1group1 pattern fac-
tors

5.1. Expectation-Maximization clustering

The EM algorithm [8] is used to approximate distribu-
tions using mixture models. It is an iterative procedure that
circles around the expectation and maximization steps. In
the E-step for clustering, the algorithm calculates the pos-
terior probability, hij , that a sample j belongs to a cluster
Ci:

hij = P (Ci|Dj) =
p(Dj |θi)πi

∑C
m=1 p(Dj |θm)πm

(1)

where πi is the weight for the ith mixture component, D
is the attribute, and θi is the set of parameters for each den-
sity functions. In the M-step, the EM algorithm searches for
optimal parameters that maximize the sum of weighted log-
likelihood probabilities. EM automatically selects the num-
ber of clusters by maximizing the logarithm of the likeli-
hood of future data. A detailed implementation of EM clus-
tering can be found at [14]. In the present study, we used
the EM clustering algorithm implemented in WEKA [7].

5.2. Clustering results

For each of the four experimental datasets, we applied
EM clustering to the summary metrics described previously
(Table 1). The number of clusters was set equal to the num-
ber of patterns that were identified by domain experts. Ob-
servations were then assigned to clusters using this semi-
automatic approach. Table 3 shows the clustering results for
one of the four datasets. The resulting assignment of obser-
vations to clusters corresponded closely with the classifica-
tion results based on expert judgments. On the other hand,
there was not a strict one-to-one mapping between clusters
and target patterns. Rather, the results showed some pattern
“splitting,” where observations belonging to a target pattern
were assigned to more than one cluster. The proper diag-
nosis and interpretation of such results will require careful
system evaluation to determine the source of this “misallo-
cation of variance” [12]. Figure 3 visualizes the instance
distribution through 3 clusters on one attribute - IN-mean
(ROI).

Cluster/Pattern 0 1 2 3
P100 0 76 0 2
N100 117 1 0 54

lateN1/N2 13 14 0 104
P300 0 61 110 42

Table 3. EM clustering results for LP1group2 pattern fac-
tors

Figure 3. Visualization of LP1 group1 clustering result:
x-axis is the instance number; y-axis is the value of IN-
mean. Instances in cluster 0, 1, 2 are colored as green, red
and blue respectively.

5.3. Cluster-based classification

EM clustering automatically partitions observations into
clusters, as described in the previous section. A related goal
is to develop rules that accurately assign observations to
clusters. Therefore, after EM clustering, we use classifica-
tion methods to build decision tree learners. Observations
in each cluster can be labeled with cluster names without
considering the experts’ labels. Once the clustering process
becomes more robust, this will obviate the need for man-
ual labeling of patterns, providing a considerable savings in
time and a sizable gain in information processing for ERP
analysts.

5.4. Decision tree classifier

We use a traditional classification technique - the deci-
sion tree learner, in the present analysis. Decision trees [14]
are flowchart-like trees with each internal node represent-
ing an attribute and each leaf node representing a class la-
bel. We used J48 in WEKA, which is an implementation of
C4.5 algorithm [15], to classify the data. The input to the
decision tree learner consists of the observation metrics de-
scribed in Table 1; These metrics are represented as a vector
of dimension 25. Cluster labels are used as classification la-
bels. Figure 4 shows the decision tree learner, which was
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trained on the Experiment 1, Sample 2 data. It achieves a
precision of 97.44% on the training data.

TI-max>128

|IN-mean(ROI)|
       >2.896

IN-mean(LPAR)
   >-2.0148

IN-mean(ROCC)
      >-1.2614

Cluster1IN-mean(ROI)
    >2.0712

Cluster1 Cluster0

Cluster1

SP-cor >0.5493

TI-max>244

IN-max >3.514

|IN-mean(ROI)|
       >3.097

Cluster1

Cluster0

Cluster1 Cluster0

No

YesNo

YesNoYesNo

Yes
No

Yes

YesNo

No

YesNo

YesNo

Yes

Cluster2

Cluster0

Figure 4. Decision tree classifier.

5.5. Information gain

From the decision tree shown in Figure 4, we can see
that although 25 attributes are input to the learning process,
only 6 attributes are used in the final decision tree classifier.
This is because there is an attribute selection measure that is
used in building the decision tree, which selects the attribute
that is most efficient in differentiating classes of data at each
level of the tree. The metrics that is used to evaluate this dif-
ferentiability is called information gain. Table 4 shows the
information gain of each attribute. In the rules provided by
domain experts, the temporal criterion TI-max and the spa-
tial criterion IN-mean (ROI) are used. Information gains for
the complete list of attributes suggest that additional spa-
tial metrics, such as SPr (correlation of factor topography
with an a priori defined spatial template for a particular pat-
tern) and mean amplitude over left parietal and right occip-
ital sites (IN-mean (LPAR) and IN-mean(ROCC), provide
added gains in classification accuracy.

5.6. Rule comparison

One advantage of using decision trees is that we can gen-
erate rules automatically and use these results to extend and
refine the rules generated by domain experts. For exam-
ple, Table 5 compares the auto-generated (decision tree)
rules and expert-generated rules for the N100 and N2 pat-
terns. Two differences that are observed between the two
rule types are consequences of the two analysis strategies

Attribute Average-Merit Average Ranking
TI-max 0.836 1

IN-mean (ROI) 0.238 2.2
IN-mean (ROCC) 0.224 3.3

SP-cor 0.215 3.6
... ... ...

Table 4. Information gains of summary metrics

Expert-defined rule Decision tree rule
∀n, FAn = N100 iff ∀n, FAn ∈ cluster0 iff

150ms < TI − max <= 220ms TI − max > 128ms

∧IN − mean(ROI) < −0.4 ∧|IN − mean(ROI)| > 2.896

∧EV ENT = stimon ∧SP − cor > 0.549

∧MODALITY = visual ∧IN − max > 3.514

∀n, FAn = lateN1/N2 iff ∀n, FAn ∈ cluster1 iff

220ms < TI − max <= 300ms TI − max > 128ms

∧IN − mean(ROI) < −0.4 ∧|IN − mean(ROI)| > 2.896

∧EV ENT = stimon ∧SP − cor <= 0.549

∧MODALITY = visual ...

Table 5. Expert-defined rules vs. Decision tree generated
rules

that have minimal consequences for high-level rule defini-
tion. First, the “modality” criterion that is included in the
expert-generated rules for the N100 and N2 patterns has a
constant value (=visual). Therefore, it is not used in the
clustering process. Second, the temporal metrics are only
marginally informative in the clustering, given that the tem-
poral PCA reduced the dimensionality from >1,000 to 15
time points.

On the other hand, the inclusion of additional spa-
tial metrics in the auto-generated rules – beyond just IN-
mean(ROI) – is extremely interesting. In particular, EM
clustering results suggested that the SPr spatial metric was
important in defining both the N100 (cluster 0) pattern and
lateN1/N2 (cluster 1) patterns. Recall from Table 1 that
metric is defined as the correlation between an a priori de-
fined spatial “template” (topography) for a target pattern
and the spatial projector (topography) for a particular factor.
The auto-generated rule for the N100 (cluster 1) requires
that the correlation be greater than 0.55. This suggests that
the use of a spatial template can be useful for ERP pattern
detection, consistent with some prior results [12].

6. Future work

We have outlined a new framework for semi-automated
classification of ERP patterns and rule generation. As de-
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scribed here, this approach can be highly informative when
applied to PCA-based metrics generated from high-density
ERP data. Ongoing work is focused on system evaluation,
that is, identification of errors in pattern classification and
potential weaknesses in various system components -e.g.,
PCA decomposition methods, clustering, or methods for
generating decision-tree rules. For example, in the present
set of experiments, some patterns “split” across (were as-
signed to) more than one cluster. Inspection of tPCA re-
sults suggested that refinements to the data decomposition
process, as well as additional metrics that capture temporal
and spatial attributes more accurately, may reduce this “mis-
allocation” of pattern variance. To achieve true accuracy in
system evaluation, we will compare system results with a
“gold standard,” which will be established by expert label-
ing of early visual-evoked ERP patterns (the P100v, N100v,
and N2v).

With further refinements to our pattern classification
framework, we will be able to apply this framework to
automatically label and store existing ERP patterns. A
long-term goal for this project is to store high-level pat-
tern descriptions in a formal ERP ontology database. To
this end, we will use a Semantic Web ontology language
(e.g., OWL [5]) and a rule language (e.g., SWRL [6]) to
define ERP ontologies and their mappings. The ontologies
can be used for integrating the data from different resources
with an information integration framework OntoGrate [11].
Eventually, this methodology can be extended for integrat-
ing other types of neuroscience data (e.g., ERF and fMRI
data) and can support other biomedical ontology-based data
sharing efforts (e.g., the Gene Ontology.)

7. Conclusion

In this paper, we have introduced a semi-automatic
framework for mining ERP patterns. This work aims to
develop robust methods for classifying and labeling ERP
patterns for individual subjects, and for identifying impor-
tant metrics in classification, which can lead to refinement
of high-level concepts and rules. An important feature of
our approach is the synergistic nature of bottom-up and top-
down methods for ERP pattern classification. The resulting
patterns and their definitions can be used in the development
of ERP ontologies, as we have described elsewhere [10].
Further, we expect that the methods used to develop our
ERP pattern classification framework, and related ontolo-
gies, can be extended to other types of neuroscience data
and can support other biomedical ontology-based data shar-
ing efforts.
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