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Abstract

We describe a technique for noninvasive
conductivity estimation of the human head tissues in
vivo. It is based on the bounded electrical impedance
tomography (bEIT) measurements procedure and
realistically shaped high-resolution finite difference
model (FDM) of the human head geometry composed
from the subject specific co-registered CT and MRI.
The first experimental results with two subjects
demonstrate feasibility of such technology.

1. Introduction

Electroencephalography (EEG) is an indispensable
neurological diagnostic tool in terms of the fast time
scale, portability and cost efficiency. Improved spatial
resolution of EEG measures would greatly benefit
multiple clinical and research applications, including
stroke, epilepsy and cognitive studies. The recent
advances in dense-array electrode application have
made EEG brain imaging for both rapid application
and long-term monitoring feasible [1]. It has been
shown that reliable inverse solutions can be obtained
and dense-array sampling (128, 256 and 512 channels)
on the scalp can be projected back to the cortex,
providing a unique opportunity for monitoring brain
activity both in space and time. However, the spatial
accuracy of EEG will remain limited because i) mostly
simplistic models of the human head (like multi-shell
spheres) are commonly used in the inverse procedure
of back-to-cortex projection, and ii) the regional

conductivities of the human head tissues are largely
unknown. Several imaging modalities have been
proposed so far to quantitatively measure the electrical
conductivity of tissue non-invasively, but none of them
is free from some limitations and shortcomings.
Magnetoacoustic Hall effect imaging [2] relies on
propagation of ultrasound into the tissue, and is not
quantitative. Magnetic resonance current density
imaging [3] requires applying rather high level of
external currents to make the produced magnetic field
contrast visible to MRI. The electrical conductivity
tensor of tissue can be quantitatively inferred from the
water self-diffusion tensor as measured by diffusion
tensor magnetic resonance imaging (DTI) [4]. It can be
successful in extracting anisotropic conductivities of
the brain tissue, but more problematic with respect to
bone (skull) tissues where the water content is much
smaller.

The lack of accurate skull conductivity (most
resistive tissue) is particularly problematic given the
developmental variations in the human skull from
infancy through adolescence. Without an accurate
forward model of the skull (specifying the volume
conduction from cortex to scalp) even advanced
inverse efforts cannot achieve precision with EEG data
as the error of source localization, due to the
conductivity uncertainty, may reach a few centimeters
[5].

Several authors addressed this problem by using
noninvasive electrical impedance tomography (EIT)
approach. In EIT, harmless currents are injected into
the body, and the potential field created by volume
conduction of this current through body tissues is
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measured. From the potential field and the known
position of the injected current, properties of the body
tissue can be inferred. Although this method has been
researched for many years, it has not been successfully
applied to medical problems [6]. A major factor in the
poor adoption of EIT is that it was initially conceived
as an imaging method. However, traditional EIT is
generally assumed to exhibit low spatial resolution in
the presence of resistive interfaces like skull tissues,
particularly at the low frequencies of physiological
interest.

The problem of skull conductivity can be properly
addressed in vivo within the framework of bounded (or
parameterized) EIT applied to a subject prior to EEG
measurements. The word “parameterized” is key, as it
means just a few unknown parameters must be
resolved during the inverse search. This is much less
ambitious than the classic EIT, which seeks imaging of
the subject interior in terms of conductivity on a pixel-
to-pixel basis. Mathematically (and in practical
computational terms), a parameterized EIT solution is
much more reliable, stable and easier to find [7].
Parameterization of the realistic geometry of the
human head can be accomplished by means of
segmentation of MRI/CT scans into several tissues and
anatomical parcellation of the skull into its constituent
parts. The whole head conductivity map can then be
represented by compartments with unknown piecewise
constant conductivities and known boundaries. Several
previous studies have been reported by other authors
who parameterized the problem to solve for a small
number of conductivity parameters using nonlinear
inverse methods and assuming that the internal
geometry of the head is already known. Oostendorp et
al. [8], and Van Burik and Peters [9] showed in a three-
layer boundary element (BEM) head model that it
appears possible to determine the scalp/brain ratio.
Gonçalves et al. [10] also applied spherical and a three-
layer BEM to fit their EIT measurements for six
subjects. However, since in such models skull
thickness and conductivity are interchangeable to some
extent, more accurate geometry representation is
needed. We note here that BEM models have problems
in dealing with skull inhomogeneities and anisotropies
[11] and, in fact, are topologically equivalent to the
spherical models. Recently we have shown in our
group that by using the parameterized EIT procedure
and realistically shaped high-resolution finite
difference models (FDM) of the human head, it was
possible to extract three and four tissues conductivities
[12,13]with the multi-start downhill simplex algorithm
[14], and up to 13 conductivities with the simulated
annealing algorithm [15] with good accuracy in
simulations with synthetic data. A similar approach
was used by Hoekema et al. [16] in the conductivity

measurements of skull parts temporarily removed
during epilepsy surgery; however, fitting for only one
unknown parameter was performed.

It is apparent that solving the conductivity
information problem is a prerequisite to source
localization. It can be performed, in essence, using the
same EEG measurement equipment, with the small
difference that a few electrode pairs must be used to
inject safe levels of current, while the rest of the
electrodes are used to record the potentials of the
injected current. There is one important difference
from the classic EIT: for the present project it is
necessary to work in the range of low EEG frequencies
(1-100 Hz), where effects of the electrode polarization
(contact impedance) [17] may become significant and
require a complete electrode computational model [18].
As a result of such an inverse procedure, we still will
have just estimates (not exact) of conductivities of the
constituent regional tissues, but we assume that
applying a realistic head geometry, with very high
accuracy, will balance this uncertainty with other EEG
error contributions. The ultimate criteria, however,
would be the accuracy of EEG source localization,
determined with account of different possible error
contributions, like measurement noise or systematic
bias of the particular computational inverse procedure.
Such contributions could originate also from local
structural skull inhomogeneities and anisotropies [11],
[19] and appropriate balance between them is still to be
investigated in a systematic way.

In this paper we report the results of our first
experiments performed with human subjects. Because
the same EEG spectral range and electrodes are used
for bounded EIT (bEIT) as for measuring EEG, the
bEIT procedure provides an efficient, low-cost
specification of the electrical volume conduction
through head tissues. With dense-array bEIT measured
as routinely as testing scalp electrode impedance, we
can realize the promise of recent biophysics
simulations suggesting that, with accurate correction
for head tissue conductivity, EEG provides spatial
resolution of brain activity that is equal to or better
than magnetoencephalography (MEG) [20].

2. Methods and Materials

2.1 Hardware and Data acquisition
For our bEIT studies, we employed the existing

NetAmps 300 EEG amplifier (manufactured by
Electrical Geodesics, Inc.) and an isolated current
generator. The NetAmps 300 platform synchronously
digitizes 256 analog channels at 20 kHz and 24 bits,
and uses a field-programmable gate array (FPGA) to
collate and transfer data in IEEE 1394 (Firewire)
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format to a computer. The NetAmps 300 platform uses
“sigma-delta” type A-to-D converters, achieving high
linearity, accuracy and resolution at low cost, so that
each detector can have a dedicated A-to-D converter,
without the need for high-speed multiplexing of
different detector signals onto a single higher-speed A-
to-D converter.

The current source is battery-powered and isolated
from the amplifier circuitry. The waveform of the
injected current is sensed across a resistor with known
value and in series with the impedance load containing
the head and injector/sink electrodes. Current injection
parameters, e.g. source/sink electrodes, frequency, and
amperage are set via a software interface. Initial
experimental results pointed to current leakage
somewhere in the current injection setup. Circuit
analysis and subsequent testing indicated that the
combination of T-filters on the NetAmps 300 front-end
and a shared common ground plane between the
amplifier and current source was the root cause.
Therefore, in our latest design, the current source is
battery-powered and isolated from the NetAmps 300
circuitry in order to eliminate leakage current through
the shared common ground plane in the amplifier.
Through trial and error we settled on a Howland-type
design. Advantages of this topology over other designs
include its small number of components, a single active
device and the ability to adjust output resistance [21].

For each subject, a properly sized 128 (or 256) -
channel HydroCel Geodesic Sensor Net (HCGSN) is
applied and the electrode positions are measured with
the Geodesic Photogrammetry System (GPS) [22].
Together with the extracted EEG topography/injector
data, the head MRI/CT geometry (including electrode
position) forms the input to our FDM modeling
process.

During the bEIT data acquisition, sinusoidal
current injection, at frequencies ranging from 1 Hz to 8
kHz, is performed for specified electrode pairs via the
current source, while acquiring impressed EEG data
with the NetAmps 300 data collection system. The
current level is chosen to maximize the data quality.
The aim is to inject current levels that that will provide
good signals for data analysis without saturating the
amplifier. The level of injected current (1-60 µA) is
well below the accepted health and safety levels. The
frequency range of the injected current is chosen to
comply with the Nyquist limit of the 20 kHz sampling
rate of the EEG amplifier. It is noted that high injection
frequencies (several kHz) may lead to alternative and
intractable current paths due to the impact of stray
capacitances in the amplifier, leads, etc. This issue will
be addressed in future in more detail.

2.2 Signal processing
Extraction of the amplitude and phase from the

induced bEIT potentials is based on a software
implementation of locked-in detection [23,24]. A lock-
in detector takes as input a periodic reference signal
and a noisy system signal, and extracts only that part of
the system signal that matches the reference signal in
frequency. The lock-in detector yields remarkable
sensitivity at the locked-in frequency, and is capable of
discarding the impact of offset errors, 1/f noise, etc.
efficiently. In short, the building blocks of the lock-in
detector consist of a phase-adjustable reference signal,
multiplication, low-pass filtering, and time averaging.

For the purposes of our current injector, the
reference signal is sensed across a series resistor in the
current loop. It is therefore impractical to attempt to
phase shift the reference signal in order to zero out the
unknown system signal phase. We have shown that in
the absence of a phase-adjustable reference signal, a
high-fidelity software lock-in detector can be
assembled by integrating a band-pass filter, zero-
crossing counter, and time-series regression, e.g. via a
Fourier transform. The working principle of this
modified lock-in detection is based on minimizing the
impact of non-DFT frequency components in reference
and system signals, and ensuring that the reference
frequency coincides with a DFT frequency. Given
multiple-frequency EIT data, the lock-in detector can
also be used to extract amplitudes and phase angles of
individual frequency components from a mixed
sinusoid signal. The data flow through the modified
lock-in detector is described in more details in our
concurrent paper at CISP 2008 [24].

2.3 Computational Framework
There are several vital components for

accomplishing the conductivity estimation task: 1)
develop an accurate computational model; 2) acquire a
high-quality experimental data set, and 3) match the
simulation with experiment with a posteriori
corrections, if needed, to the modeling and
experimental procedures to reach convergence. In
practice this is an iterative process. To develop an
accurate computational model of electrical field
distribution in a human head with high geometrical
precision provided by MRI/CT scans (1 mm), we have
employed a Finite Difference (FD) 3D numerical
solver [25] and parallelize it in a multi-cluster
environment [12], [26].  With an appropriate inverse
solver we have been able to mimic the whole bEIT
cycle of conductivity estimation using the synthetic
data corrupted with realistic noise levels.  It has been
proven that at least with up 10% Gaussian noise level,
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the conductivity extraction for synthetic data is still
viable.

In our preliminary work [12], to solve the
nonlinear optimization problem, we employed the
downhill simplex method of Nelder and Mead. Our
observation was that simplex search performs well
when the number of parameters is few (three or four
parameters), however we found it reaches the
practicality limits with more unknowns and fails to
converge frequently. More than that, to avoid the local
minima in the simplex search, we used a statistical
approach. The inverse procedure was repeated for
hundreds of randomly generated sets of conductivity
guesses from appropriate physiological intervals, and
then the solutions closest to the global minimum
solution were selected using a simple error threshold
criteria and results were averaged. With the higher
geometry resolution and further differentiation of skull
and soft tissue parts, a more powerful technique is
required. For instance, beyond single digit numbers of
search parameters and 1 mm MRI/CT resolution, the
simplex computation quickly becomes impractical. To
pursue higher dimensionality, it was clear we must
replace the simplex method used in our earlier work.
We chose the advanced simulated annealing algorithm
which is a Monte-Carlo global minimization technique.
It has been shown to be more robust for optimization
across complex multi-variate search spaces. This
algorithm has allowed us to extend the conductivity
modeling to study the impact of skull inhomogeneities
on the conductivity modeling [15].

The most heavy computational processing on
posteriori conductivity extractions in the inverse
procedure has been performed at the University of
Oregon Neuroinformatics Center, where a three-cluster
(IBM p650; IBM p690; IBM BladeServer) high
performance parallel computing system, dedicated to
analysis of human EEG and MEG data, has been
constructed.   In what follows, the work done to
accomplish these tasks and the final results are
described.

3. Results

BEIT measurements have been performed so far
for 4 adult subjects, two males, Subjects 11 and 12
(Caucasian and Asian) and two females, Subjects 14
and 15 (both Caucasian). The male subjects already
have had high-resolution MRI and CT 3D head scans,
while the female subjects have had only MRI scans.
Table 1 summarizes processed information for
Subjects 11 and 12 and retrieved tissue conductivities.

The preliminary developed data acquisition
protocol and system have been extensively tested in a

series of longitudinal experiments with Subj. 11. The
initial hope that the alpha hardware prototype can

Table 1. The Human Subject Experiments
Results, Conductivity in S/m

Subj./site MRI/CT Age/Gend. Skull Scalp Brain
11/26-90 Yes 40/M .020 .46 .23
11/46-109 .010
12/26-2 Yes 38/M .011
12/15-72 .016 .52 .36

provide both current injection and acquisition of return
potentials from the dense sensor array of the Geodesic
Sensor Net had not been confirmed beforehand.
Initially there was no good match between
experimental and simulated potential topography for
impressed EEG. We had to iterate through a few of
cycles of the hardware revisions, to eliminate possible
current leakages through the EEG amplifier circuitry,
and signal processing amendments and testing until we
obtained a working hardware prototype, data
preprocessing scheme and measurement protocol.
Besides hardware and signal acquisition flaws, there
was also a problem of leaky channels in the dense-
array net which distorted the observation of the real
impressed EEG topography significantly. Two reasons
for electrical leakage in bad leads (channels) have been
identified. The first reason was due to occasional
moisture in the intra-electrode volume between the
shielding and wire core (of the coaxial leads) and
resulted in electrical coupling through the amplifier
common to active injecting electrodes. The second, and
more frequent in EEG measurements, reason was due
to saline bridges, especially around the active
electrode, which resulted in dispersed current injection
pattern.  It should be noted that the probability of bad
channels in a dense array of electrodes may be higher
than in arrays with lower electrodes count unless
special measures of precaution are taken. We have
found that frequent lead shortcut tests and the careful
handling of nets in the process of saline agitation,
disinfection and storage prevents moisture from
leaking into the space under lead shields. After having
experimented with several types of nets and
electrolytes for a while we concluded that nets with no
shields and gel instead of saline provide the best
performance. This system is still to be further tested,
tuned and optimized. An important tool in
understanding and interpreting the experimental results
on-line is a graphical user interface (GUI) to control
the experiment, and real-time processing of the signal.
We also pre-calculated a priori impressed topographies
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on a generic atlas head models with the injection/sink
pair configurations used afterwards in experiments.

Figure 1. Potentials versus channel #. Top:
Subject 11 data. Middle: Subject 12 data.
Bottom: Female Subject 14 and male Subject
12 data compared with FDM of Subject 11. The
major bad channels are marked in the graphs.

After correcting the flaws in our initial current
injector design and extensive tests with a test fixture
(i.e. resistor ladder) and saline head phantoms, we
resumed the human subject experiments. The expected

topography had been precalculated with Subject 11’s
head model for the injection configuration used
afterwards in experiments. In this a priori simulation
the conductivities values or the head tissue
compartments had been taken from most recent
literature [14]: (scalp – 0.44S/m, brain – 0.25 S/m,
CSF – 1.8 S/m, and skull – 0.018 S/m).  The initial
experiments were done with saline electrolyte and
shielded leads nets. In Figure 1 we present the results
of successive experimental protocol improvements.
Typical results comparing the potentials on the head of
Subject 11 (bald, no hair) measured in bEIT with
shielded and unshielded leads are presented in the top
graph. One can see that in the case of unshielded leads
the agreement with simulation is very good and the
problem of bad channels is reduced. Channels # 4 and
93 are zeroed due to the EEG amplifier circuitry, and
channel # 17 in the unshielded net had permanently
damaged insulation. These bad channels were
identified prior to the experiment by a routine gain and
impedance check. We believe that in the shielded case
most likely the bad channels are due to unpredictable
moisture shorting the electrodes and shields between
passive and active channels via the amplifier common,
as described earlier. After this experiment and later on
we were using only unshielded nets.

In the middle of the Figure 1 one can see excellent
agreement of the measured and predicted topographies
for the forehead area (channel pair 2-26) where there
was no hair issue (Subject 12, thick hair).  However, as
we expected there were about 8 saline "bridges"
around the active channel # 90 which were picking-up
its high potential for the injection pair 26-90 (see
Figure 1, bottom). In this case channel # 26 is the same
forehead channel and it is good, while channel # 90 is
in a thick hair area which causes numerous saline
bridges in its vicinity (the nearest neighbors: channels
# 77, 83, 84, 85, 89, 91, 95). Similar bridging with
Subject 12 was observed in all cases when the active
electrode was positioned in a region of hair, while no
such issues arose for Subject 11.  After observing this
trend, we realized that a saline bridge issue existed for
thick hair leading to high voltage readings in the
immediate neighborhood of the active channel, but
those could be avoided using gel electrolyte or by
careful a posteriori elimination. Therefore, in the
experiments with female Subjects 14 and 15, we used
only gel electrolyte and unshielded nets. This
modification addressed the problem of saline bridges
effectively as can be seen in the bottom graph of
Figure 1 for Subject 14 (female, thick hair) in
comparison with data for Subject 12 (male, saline net,
thick hair).
     For Subject 14, there were no new bad channels
besides identified earlier in the amp circuitry (channels
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# 4 and 93) and net wire (channel # 17). Potentials are
plotted as they measured and calculated in the model in
micro-volts. The theoretical curve (red) is in a good
agreement, though, it was not expected to match the
experiment perfectly as it was calculated on the basis
of different geometry (Subject 11) with 2 mm

Figure 2. The cost function minimization for
Subject 11 (top) and Subject 12 (bottom) for

different skull conductivities when the rest of
the tissue conductivities are fixed to their best

estimates. Injections pairs and the skull
conductivities minimizing the cost function

are shown in the legends. These results
proves 1:15 ratio of skull to brain conductivity

rather than 1:80 [27]. Resolution  is 1 mm.

resolution and given for a typical conductivity
parameters set from recent literature without any
additional fitting. Taking into account the good fit to
the experiment seen in Figure 1, we can conclude that
we have measured the skull to brain conductivity ratio
roughly as 1:15 which agrees with the most recent
results of other groups [8], [10], [29], [30].

Before applying the inverse solver we decided to
tune our estimates in 1D by alternatively varying the
conductivity of a tissue of interest and fixing the rest of

the tissue conductivities at the best previous estimates.
The results of such a search are shown in Figure 2 and
3. We have started from the set of conductivities used
to match the patterns in Figure 1.  First we dealt with
the most important skull conductivity fitting, as the
skull data reported in the literature have the largest
uncertainty: the variations reported reach up to 1000%
[31]. We have processed so far only data from a few
injection pairs for Subjects 11 and 12; the results are
summarized in Figure 2. One can see that the skull
conductivity estimate for the sagittal injection pair 15-
72 (where the bones are thick) is larger in both cases
(Caucasian and Asian adult male), while also slightly
higher (0.022 versus 0.016 S/m) for the Caucasian
subject. At the same time the transverse injection pairs
(109-46 and 26-2) produce smaller estimates 0.010 and
0.011 respectively. These results are in good agreement
with the findings by Oostendorp et al. [8] who also
used a similar technique and current injection pattern.

Figure 3. Cost function versus normalized
tissue conductivities for Subject 11, injection
pair 26-90, at 1 mm resolution. The cost
function is most sensitive to the changes in
scalp and skull, and less sensitive to CSF and
brain conductivity changes.

One possible explanation for this result is that the
front and rear skull regions are thicker (having a tri-
layer structure with marrow [31]) whereas the temporal
skull plates are compact, and resistive, cortical bones.
        In Figure 3 we show cumulative behavior of the
cost functions when all tissue conductivities are varied
separately. Several important conclusions can be drawn
from these results. It seems the forward solution for
externally impressed current is more affected by the
scalp and skull misspecifications in conductivities than
by brain or CSF misspecifications. For instance, a
100% change in the scalp conductivity from the
nominally true value will result in the error function
change which is two times larger than the change
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caused by the similar 100% change in the skull
conductivity. At the same time, the cost function has
almost a flat response to CSF and brain conductivity
changes within the given scale. Nonetheless, when the
scalp conductivity and skull conductivity are fixed near
the minimum values, the brain and CSF conductivities
variation also generates pronounced minima, but at the
lower scale of the cost function variability. That proves
that one can measure the conductivity even for these
intracranial tissues shielded by the skull. The result of
such estimates is given in Table 1 for Subjects 11 and
12. Surprisingly, the conductivities extracted for
Subject 11 for scalp, brain and CSF are very close to
the average literature data. With the help of the inverse
search engine applied at its full extent, we hope to
further fine tune the estimation of these values.

4. Discussion

We have extracted major regional conductivity
values for skull, scalp, brain, and CSF for two male
adults (Caucasian and Asian descent) and also
preliminarily showed that the collected data for the
female subjects (both Caucasian) are in the appropriate
physiological range [14]. Most importantly, we showed
that the skull-to-brain conductivity ratio is 1:15 rather
than 1:80 as it is believed in the mainstream literature
[27]. We have upgraded our computational engine to
treat inhomogeneity of the skull trough parcellation
and by introducing the powerful simulated annealing
optimizer in the inverse search, and demonstrated the
feasibility of solving the problem for 12–20 unknowns
(for synthetic data). Finally, we have designed, built
and tested hardware and data acquisition software for
bEIT and proved that the data collection is achievable
in reasonable time and at an affordable cost, and
computational post-processing is scalable in a multi-
processor computational environment.

In general, we have found that the measurement
patterns are pretty much robust with respect to subject
variability which is typically not larger than 20–30%
when the data of all subjects are superimposed on a
single graph (not shown). We believe we are able to
make estimates of individual’s head tissue
conductivities based on the atlas head, or any other
realistic head geometry even without warping, as it will
just compromise accuracy to some degree. The
spatially resolved models of skull bones and the use of
a 256-channel net with larger number of active
interrogating pairs should increase the sensitivity of
this method.

Overall, the collected experimental data are sound
and prove our previous assumptions: there is a small

phase shift on the active channels, mainly due to
contact capacitance [28]. The phase is noisy, but
improves significantly when increasing the level of
injection from 5 µA to 40 µA. There was also a weak
dependence of the measured bEIT topography on the
driving frequency, but it should not be of immediate
concern, as it was in the margin of other estimated
errors. The more thorough analysis of the observed
phenomena would require use of a complete EIT
electrode model and taking into account distributed
capacitance effects in the head tissues.

To make this technology work, it is important
however to recognize and carefully remove the bad
channel outliers. On the other hand, the active current
injection-interrogation of the head and comparison
against the pre-calculated pattern appears to be a good
candidate for bad channel detection for other EEG
applications too. It is much more sensitive in
recognizing the shorted or saline-bridged channels than
usual impedance measurements and bridge detection
functions presently integrated into EEG control and
analysis software.
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