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Abstract—Power is the most critical resource for the exascale
high performance computing. In the future, system administra-
tors might have to pay attention to the power consumption of
the machine under different work loads. Hence, each application
may have to run with an allocated power budget. Thus, achieving
the best performance on future machines requires optimal
performance subject to a power constraint. This additional
performance requirement should not be the responsibility of
HPC (High Performance Computing) application developers.
Optimizing the performance for a given power budget should
be the responsibility of high-performance system software stack.
Modern machines allow power capping of CPU and memory to
implement power budgeting strategy. Finding the best runtime
environment for a node at a given power level is important to
get the best performance.

This paper presents ARCS (Adaptive Runtime Configuration
Selection) framework that automatically selects the best runtime
configuration for each OpenMP parallel region at a given power
level. The framework uses OMPT (OpenMP Tools) API, APEX
(Autonomic Performance Environment for eXascale), and Active
Harmony frameworks to explore configuration search space and
selects the best number of threads, scheduling policy, and chunk
size for a given power level at run-time. We test ARCS using the
NAS Parallel Benchmark, and proxy application LULESH with
Intel Sandybridge, and IBM Power multi-core architectures. We
show that for a given power level, efficient OpenMP runtime
parameter selection can improve the execution time and energy
consumption of an application up to 40% and 42% respectively.

I. INTRODUCTION

Power consumption has become a critical design factor for a
large scale HPC system. If we are to build an exascale machine
out of today’s hardware, it would require a dedicated power
plant [1]. The U.S. Department of Energy’s goal of reaching
exascale computing within 20 megawatts of power implies that
power is going to be the biggest constraint for future systems.
This constraint will filter down to job-level power constraints.
The goal at the job-level will be to optimize performance
subject to a prescribed power budget.

Recent advances in processor and memory hardware designs
have made it possible for the user to control the power
consumption of the CPU and memory through software, e.g.,
the power consumption of Intel Sandy Bridge family of pro-
cessors can be user-controlled through the Running Average
Power Limit (RAPL) interface [2]. This ability to constrain
the maximum power consumption of the subsystems allows
a user to run an application within a given power budget.

However, capping a processor at a lower power level reduces
its execution performance as it may decrease the frequency
or clock gate the capped processor. Performance improvement
per node level at various power caps is important to get the
overall best performance on future machines subject to a power
constraint.

OpenMP is the de facto programming model for intra-
node parallelism. To get the best performance out of an
individual power capped node, one needs to study the execu-
tion behavior of OpenMP in power constrained systems. The
OpenMP programming model provides certain performance
adjustment runtime parameters that can be used to control
the OpenMP execution environment [3]. Different OpenMP
parallel regions or regions1 have different execution behavior.
Therefore, a runtime execution environment that gives the
best performance at a certain power level also differs for
various OpenMP regions. If the OpenMP runtime parameters
are not properly selected, one may see a severe performance
degradation. Usually, application developers choose to use the
default parameter settings provided by an OpenMP runtime
library. As a result, one gets sub-optimal performance for most
of the existing OpenMP applications.

HPC users are already overstretched with ensuring correct-
ness and maintaining sufficient performance of HPC appli-
cations. Therefore, the task of enforcing the job level power
constrained performance should be left to HPC system soft-
ware. The system software is in a good position to dynamically
configure applications for the best performance subject to a
power constraint. In this paper, we present the ARCS (Adap-
tive Runtime Configuration Selection) framework that chooses
the best OpenMP runtime configurations for parallel loops in
an HPC application. We define OpenMP configurations as:
(1) Number of Threads, (2) Scheduling Policy, and (3) Chunk
Sizes. We test ARCS using the NAS Parallel Benchmark,
and a proxy application LULESH. We show that for a given
power level, efficient OpenMP runtime parameter selection
can improve the execution time and energy consumption of
an application up to 40% and 42% respectively.

The major contributions of this work are listed below:
• We present ARCS framework that selects the best

OpenMP runtime configurations for OpenMP regions to

1We use OpenMP parallel regions and regions synonymously



optimize HPC applications under a power constraint.
• To the best of our knowledge, ARCS is the first fully

automatic framework that chooses OpenMP runtime con-
figurations with no involvement of the application pro-
grammer.

• ARCS chooses and adapts OpenMP runtime configu-
rations dynamically based on OpenMP region and un-
derlying architecture characteristics, resulting in efficient
execution on a number of applications under a power
constraint across different architectures.

II. MOTIVATION

OpenMP programming model is an integral part of many
important HPC legacy codes in the form of hybrid program-
ming models (e.g., - MPI + OpenMP). Therefore, tuning an
OpenMP code to get a better per node performance for a given
power budget is an important research problem. In this section,
we motivate a reader about the need of ARCS for power-
constrained OpenMP applications. The need for ARCS like
framework depends on the following questions:

• Does the best configuration for a given OpenMP region
remain same across different power levels and work-
loads?

• Does the performance gain due to the best configuration
persist across all power caps?

We took an OpenMP region from the BT benchmark appli-
cation and ran it with different power levels or power caps2

using different number of threads, scheduling policies, and
chunk sizes (150 different configurations). The region belongs
to the x_solve function, and has has coarse grain paral-
lelism, i.e., the outermost loop is parallelized with #pragma
omp parallel for OpenMP directive.
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Fig. 1: Execution time comparison for the x solve region of
BT using different OpenMP runtime configurations at different
power levels. Smaller value is better. The function was run on
Intel Sandy Bridge.

Figure 1 shows the comparison of execution time using
the optimal configuration3 and the default configuration at
different power levels. The default configuration uses max-
imum number of available threads, static scheduling, and

2We use the two words synonymously in this paper.
3The configuration that gives the best execution time.

chunk sizes calculated dynamically by dividing total number
of loop iterations by number of threads. The figure clearly
shows that the optimal configuration is different from the
default configuration at all the power levels. It also shows
that the optimal configuration improves the execution time of
the region up to 20% compared to the default configuration
at the same power level. Also, we can see that the optimal
configuration at a lower power level gives better execution time
performance than the default configuration with maximum
power level prescribed by the manufacturer or Thermal Design
Power (TDP). For example, the optimal configuration at 70W
power cap improves execution time by almost 9% as compared
to the default configuration at TDP (115W in our case).

We also experimented with OpenMP regions from other
NAS Parallel benchmark applications using different runtime
configurations. We observed that a significant number of the
OpenMP regions showed similar behavior. We observed these
OpenMP regions to have poor load balancing and cache
behavior with the default configuration. We also saw that
these poor behaviors persist across different power levels and
workloads for these kernels with the default configuration.
As a result, irrespective of power level or workload size an
optimal configuration always shows consistent performance
improvement compared to the default configuration for these
kernels. However, we observed that the optimal configurations
for these kernels change across different power levels and
workloads.

In the future HPC facility, the load of applications may
change dynamically. If the facility is working under a power
constraint, the resource manager may add/remove number of
nodes and adjust their power level dynamically. To get the
best per node performance at each power level, the runtime
configurations need to be changed dynamically. Our ARCS
framework can do this efficiently.

III. FRAMEWORK

The ARCS runtime is composed of two key software
components. The first component is a modified OpenMP
runtime. The second component is the APEX instrumentation
and adaptation library. APEX integrates the Active Harmony
search engine, integrated as part of the APEX library. Figure 2
shows the integration of the components in the ARCS runtime.

A. OpenMP runtime with OMPT

A broad group of interested parties has been working
on extending the OpenMP specification to include a formal
performance and debugging tool interface [4]. In order to
provide support for both instrumentation (event-based) and
sampling based tools, OMPT includes both events and states.
The OMPT draft specification is available as a Proposed Draft
Technical Report at the OpenMP Forum website [5]. The
key OMPT design objectives are to provide low overhead
observation of OpenMP applications and the runtime in order
to collect performance measurements, provide stack frame
support for sampling tools and incur minimal overhead when
not in use. OMPT specifies support for a large set of events and
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states, covering the OpenMP 4.0 standard. In addition, OMPT
specifies additional insight into the OpenMP runtime in the
form of data structures populated by the runtime itself. These
data structures include the parallel region and task identifiers,
wait identifiers and stack frame data. A reference OpenMP
runtime implementation with OMPT support based on the
open-source Intel runtime is available4 and OMPT has been
integrated into performance tools such as TAU [6] and APEX.

B. APEX

We have implemented a measurement and runtime adapta-
tion library for asynchronous multitasking runtimes called Au-
tonomic Performance Environment for eXascale (APEX) [7],
[8]. The APEX environment supports both introspection and
policy-driven adaptation for performance and power optimiza-
tion objectives. APEX aims to enable autonomic behavior in
software by providing the means for applications, runtimes,
and operating systems to observe and control performance.
Autonomic behavior requires both performance awareness
(introspection), and performance control. APEX can provide
introspection from timers, counters, node- or machine-wide
resource utilization data, energy consumption, and system
health, all accessed in real-time. The introspection results are
analyzed in order to provide the feedback control mechanism.

The most distinguishing component in APEX is the policy
engine. The policy engine provides controls to an application,
library, runtime, and/or operating system using the afore-
mentioned introspection measurements. Policies are rules that
decide on outcomes based on the observed state captured
by APEX. The rules are encoded as callback functions that
are periodic or triggered by events. The policy rules access
the APEX state in order to request profile values from any
measurement collected by APEX. The rules can change run-
time behavior by whatever means available, such as throttling
threads, changing algorithms, changing task granularity, or
triggering data movement.

APEX was originally designed for use with runtimes based
on the ParalleX [9] programming model, such as HPX [10]
or HPX-5 [11]. However, the APEX design has proven to
be flexible enough to be broadly applied to other thread-
concurrent runtimes such as OpenMP.

APEX integrates the auto-tuning and optimization search
framework Active Harmony [12]. In APEX, Active Harmony
is directly integrated into the library to receive APEX per-
formance measurements and suggest new parametric options
in order to converge on an optimal configuration. Active
Harmony implements several search methods, including ex-
haustive search, Parallel Rank Order and Nelder-Mead. In
this work, we used the exhaustive and Nelder-Mead search
algorithms. In our experiments, the ARCS-Offline method uses
an exhaustive search to find the best configuration during one
execution, then executes again with that optimal configuration.
Only the second execution with the optimal configuration is
measured. The ARCS-Online method uses the Nelder-Mead

4https://github.com/OpenMPToolsInterface/LLVM-openmp

search algorithm to search for and use an optimal configuration
in the same execution.
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Fig. 2: ARCS framework, based on the original APEX design.

Prior to running the examples with the framework, the
NPB 3.3-OMP-C OpenMP benchmarks were exhaustively
parameterized to explore the full search space for the
OpenMP environment variables OMP_NUM_THREADS and
OMP_SCHEDULE (schedule type and chunk size). From that
initial dataset, the search space was manually reduced. Unlike
the initial parameter search, ARCS can tune the settings for
each OpenMP parallel region independently. The reduced set
of search parameters was used to limit the search space that
had to be explored at runtime. The final ranges explored by
ARCS are listed in Table I.

TABLE I: Set of ARCS search parameters for OpenMP
parallel regions.

Parameter Set of values
Number of threads (Crill) 2, 4, 8, 16, 24, 32, default
Number of threads (Minotaur) 10, 20, 40, 80, 120, 160, default
Schedule Type dynamic, static, guided, default
Chunk Size 1, 8, 16, 32, 64, 128, 256, 512, default

Using the policy engine, we designed a policy to tune
OpenMP thread count, schedule, and chunk size based upon
the reduced search space described above. At program initial-
ization, the policy registers itself with the APEX policy engine,
and receives callbacks whenever an APEX timer is started or
stopped. The OMPT interface starts a timer upon entry to an
OpenMP parallel region and stops that timer upon exit. When
a timer is started for a parallel region which has not been
previously encountered, the policy starts an Active Harmony
tuning session for that parallel region. When a timer is stopped,
the policy reports the time to complete the parallel region.
When a timer is started for a parallel region which has been
previously encountered, the policy sets the number of threads,
schedule, and chunk size to the next value requested by the
tuning session, or, if tuning has converged, to the converged
values. When the program completes, the policy saves the best
parameters found during the search. When the same program
is run again in the same configuration in the future, the saved
values can be used instead of repeating the search process.
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C. Overhead

The main overhead of ARCS can be characterized into three
different types.

• Configuration changing overhead: ARCS changes the
runtime configuration each time a region is executed. To
change these configurations, ARCS uses the OpenMP
runtime library routine omp_set_num_threads()
and omp_set_schedule(). Time consumed during
these routine calls adds some extra overhead. We call
this overhead Configuration Changing overhead. This
overhead is present in both Online and Offline strategies.
In Crill, we calculated this overhead to be about 0.0008
sec in each region call. If a region is large enough,
this overhead becomes insignificant. However, if the the
region time is not large enough this overhead can become
a significant factor.

• APEX instrumentation overhead: Overhead incurred
due to APEX runtime instrumentation. Just like Configu-
ration changing overhead, the impact of this overhead is
also dependent on the region execution time. It is present
in both Online and Offline strategies.

• Search overhead: In the online search strategy, finding
the optimal configuration requires ARCS to test several
runtime configurations before converging. Many of these
configurations are not optimal, and as a result these
sub-optimal configurations incur extra execution time.
This additional execution time can be termed as Search
overhead. This overhead is only present in the Online
strategy. It is not present in Offline strategy, because
in Offline strategy ARCS does not search for the the
optimal configuration, it reads it from the history file only
once during the whole application lifetime. We observed
this overhead to vary across regions based on how fast
they converge to the optimal configuration. During our
experimentation, we observed this overhead to reach as
high as 10% of the total execution time.

IV. EXPERIMENTATION

A. Test System

We evaluated our framework on two different systems, Crill
and Minotaur. These systems differ in architecture, number of
cores, memory size and power consumption.

Crill (hosted at the University of Houston) is a dual socket
machine with two 2.4 GHz quad-core Intel® Xeon® E5-2665
processors (Sandy Bridge architecture). It has a total of 16
cores (32 hyper-threaded threads) and 16 GB of memory. It
runs on OpenSUSE 13.1 and has a TDP limit of 115W.

Minotaur (hosted at the University of Oregon) is an
IBM® S822LC system equipped with two 10-core IBM
POWER8® processors that operate at 2.92 GHz. It has support
for 160 hardware threads (8 per core) and 256 GB of memory.
It is running Ubuntu Linux, version 15.04.

B. Compiler & Libraries

We used GCC compiler version 4.9.2, the reference
OpenMP runtime with OMPT support for our experimentation,

and libmsr [13], a library that facilitates access to MSRs via
RAPL interface for energy measurement and power capping.

C. Benchmarks

We used three proxy applications, LULESH 2.0, BT and
SP to evaluate ARCS. We selected these benchmarks because
they exhibit performance and load balancing behavior typical
for a broad range of HPC applications.

LULESH 2.0 [14] is a shock hydrodynamics computa-
tional kernel from Lawrence Livermore National Laboratory.
It approximates the hydrodynamics equations discretely by
partitioning the spatial problem domain into a collection of
volumetric elements defined by a mesh. It is built on the
concept of an unstructured hex mesh. It is one of the most used
proxy applications in the HPC area, and it shows excellent load
balancing and cache behavior. We used mesh sizes of 45 and
60 for our experimentation.

BT is a simulated CFD computational kernel that uses an
implicit algorithm to solve 3-dimensional (3-D) compressible
Navier-Stokes equations. The finite differences solution to
the problem is based on an Alternating Direction Implicit
(ADI) approximate factorization that decouples the x, y and
z dimensions. The resulting systems are Block-Tridiagonal of
5×5 blocks and are solved sequentially along each dimension.
This application shows good load balancing behavior. We used
data set sizes B (102× 102× 102) and C (164× 164× 164)
with custom 1000 time steps.

SP is a simulated CFD computational kernel that has a
similar structure to BT. The finite differences solution to the
problem is based on a Beam-Warming approximate factoriza-
tion that decouples the x, y and z dimensions. The resulting
system has Scalar Pentadiagonal bands of linear equations
that are solved sequentially along each dimension. It shows
good load balancing behavior but poor cache behavior. For
SP, we also used data set sizes B (102 × 102 × 102) and C
(164× 164× 164) with custom 1000 time steps.

Both BT and SP are from from NAS parallel benchmark
suite [15], version 3.3-OMP-C.

D. Experimental Details

We carried out extensive experiments to evaluate the impact
of ARCS. We considered both the execution time and energy
consumption during the evaluation. An optimal OpenMP run-
time configuration for a region is dependent on the region’s
characteristics, power cap level, workload size, and architec-
ture. For that reason, we designed our experiments in such a
way that they cover all these scenarios. We tested ARCS on
five different power levels, two different workloads, and two
distinct architectures (Intel Sandy Bridge and IBM POWER8).

As mentioned before, our primary experimental resource
Crill is equipped with Sandy Bridge processors, and our
secondary resource Minotaur with POWER8 architecture. In
Crill, we had power capping privilege and access to the
energy counters. For that reason we were able to evaluate
the impact of ARCS at different power levels. We experi-
mented on 55W, 70W, 85W, 100W and 115W (TDP for this
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processor) power level. We only limited the processor power
(package power). A package consists of cores, caches and
other internal circuitry. We used maximum power for other
components (DRAM, Network card, etc.), because we did
not have capping capability on these subsystems. We used
RAPL for power capping and collecting energy information.
We tried to tackle known issues of RAPL such as counter
update frequency and the warm up period after enforcing a
power cap during the experimentation to get reliable energy
readings. We ran each experiments three times. We report
the average of these runs for Crill(Sandybridge) as it was
a dedicated resource. However, we report minimum of these
three runs for Minotaur(Power8) as it was a shared resource.
We did this to rule out any interferance.

As Minotaur is a relatively new resource, we did not have
energy counter access nor power capping privilege. Therefore
all the experiments conducted on this machine were using
the default (TDP) power level of this machine. Also, all the
evaluation done on this machine is based on execution time
only. We evaluated both Online and Offline ARCS strategies
in the above-mentioned environments.

V. RESULTS AND ANALYSIS

In this section we present our experimental results. Through
these results we show the impact of ARCS on different
types of OpenMP applications. As mentioned previously, we
evaluated ARCS on three different OpenMP applications.
These applications vary in scalability, load balancing, and
cache behavior. LULESH is a well-balanced application with
good cache behavior. BT is also fairly well balanced with
good cache behavior. SP is well balanced but shows poor
cache behavior. We mainly concentrated on scalability, load
balancing and caching because these are the behaviors that
impact OpenMP performance the most.

In an OpenMP application with loop level parallelism,
these behaviors can be controlled by the number of threads,
scheduling policy and chunk sizes. The number of threads has
a significant impact on scalability while scheduling policy and
chunk sizes are very important for good load balancing and
cache behavior. These behaviors not only affect the execution
time performance, but they also impact energy consumption.
Load balancing and cache behavior of an application are two
of the main factors that define an application’s energy profile.

Applications with bad cache behavior tend to consume more
energy [16]. If there is a cache miss, the system has to do the
extra work of fetching the data from the next level of cache or
memory and in the process use I/O path which leads to extra
energy consumption.

On the other hand, load balancing affects the energy
consumption in a different way. Poor load balancing of an
application leads the cores to wait in idle states in the
synchronization points (barriers). Lightly loaded threads wait
for highly loaded threads to finish their work. Even though
current processors do a decent job at saving energy by entering
the sleep state while waiting, entering and exiting sleep states
incurs non-trivial overheads and can cause negative savings

if the idle duration is short [17]. In OpenMP regions, the
waiting time is usually short. Therefore, improving the load
balancing behavior is crucial to improving the energy profile of
an OpenMP application. Not only that but also these behaviors
impact an OpenMP application’s power profile, as power is the
ratio of the energy consumption and execution time.

Moreover, cores and caches are the main power consuming
components of a processor [18]. The total power of a processor
is divided between these two components. So when a power
cap is imposed on a processor, it not only affects the perfor-
mance of the cores but also impacts the cache performance.
As a result, the load balancing and cache behavior also change
with the change of the power cap.

Furthermore, these behaviors vary across different regions
of an application. Therefore, choosing an optimal configura-
tion (number of threads, scheduling policy, and chunk sizes)
for each regions separately is no trivial task. But we show
through extensive analysis that ARCS is able to do this job
very proficiently.

In the following discussion, we analyze each application
separately. We show that ARCS can potentially improve
performance across different types of applications. We also
demonstrate the effect of ARCS strategies at both application
and region level using detailed analysis of dynamic features.
We show the performance behavior across different power
caps and different workload sizes. Finally, we show the ARCS
performance across different architectures.

We compare the performance of ARCS strategies with the
default configuration. The default configuration uses maximum
number of available threads, static scheduling, and chunk
sizes calculated dynamically by dividing total number of loop
iterations by number of threads. We concentrate on both online
and offline strategies for ARCS. Results shown here is based
on Crill, unless mentioned otherwise. The same applies for the
power cap; if nothing is mentioned, that means we are using
the highest power cap (TDP).

A. SP

SP is an application which shows a good load balancing
behavior and poor cache behavior with the default con-
figuration. SP consists of 13 loop based OpenMP regions.
However, almost 75% of it’s execution time is spent on
four regions (compute_rhs, x_solve, y_solve and
z_solve). Among them, compute_rhs has a poor load
balancing and cache behavior, x_solve, y_solve and
z_solve regions have good load balancing behavior but
show poor cache behavior. To improve these regions’ per-
formance, their load balancing and cache behavior has to
be improved. Therefore, we need to find configurations that
improve the load balancing and cache behavior of these
regions. To find such configurations we applied ARCS on this
application. Table II shows the optimal configuration chosen
by ARCS-Offline strategy for these regions at TDP power.

In Figure 3 we show the feature comparison between
the default configuration and the configurations chosen by
ARCS-Offline, the best ARCS strategy. We compare the L1
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TABLE II: Optimal configuration chosen by ARCS-Offline
strategy for SP regions.

Optimal Configuration
Region (Thread, Schedule, Chunk)
compute_rhs 16, guided, 8
x_solve 16,guided, 1
y_solve 8, static, default
z_solve 4, static, 32

cache miss rate in Figure 3a, L2 cache miss rate in Figure
3b, L3 cache miss rate in Figure 3c and OpenMP barrier
(OMP_BARRIER) time in Figure 3d. The L1, L2 and L3
cache miss rates show the cache behavior of these regions.
The OMP BARRIER time shows the load balancing behavior;
greater OMP BARRIER time is a symptom of poor load
balancing. For all of these metrics, lower values indicate better
performance.

From these figures, we observe that all four regions
show better cache and load balancing behavior with the
ARCS strategy. Using the configuration chosen by ARCS, the
OMP BARRIER time is decreased by more than 50% in all
four regions compared to the default configuration, shown in
Figure 3d. The best improvement, which is more than 80%
is achieved in the z_solve region while a relatively smaller
improvement (around 50%) is achieved in compute_rhs.

We also observed L1, L2 and L3 cache miss rate im-
provement. Although L1 and L2 cache behaviors show good
improvement, the biggest improvement (up to 90%) is visible
in L3 cache behavior. This is important for performance
because L3 cache misses have the highest cache miss penalty.
The improvement also shows that these configurations enabled
different cores to maximize their use of the shared L3 cache.

The above analysis shows that ARCS strategies can improve
the cache behavior and load balancing of SP regions. This
leads to the question: how much do these improvements
affect the overall application’s execution time and energy
consumption? In Figure 4 we show the execution time and
energy consumption comparisons between the default and
ARCS strategies (ARCS-Online and ARCS-Offline). We show
the results for five different power levels. We compare both
execution time (in Figure 4a) and energy consumption (in
Figure 4b). In Figure 4a we see that all the strategies in all five
power levels outperform the default configuration by a large
margin. The improvement varies between 26-40%. We observe
similar behavior in energy consumption, shown in Figure 4b
with the highest improvement touching 40% limit.

We were able to achieve so much improvement using ARCS
because most of these time-consuming regions have a slight
load imbalance and poor cache behavior. However there are
applications which may have a very good load balance and
cache behavior. In those kind of applications, the improvement
will likely not be that significant, because there is very little
room for ARCS to work on. In the later part of this section,
we will look into such applications as well.

We discussed in Section II that the behavior of a region
changes across different workloads. To see how efficient

ARCS in choosing optimal configurations across workloads,
we used ARCS on data set C of SP. Dataset C is four
times larger than data set B. Figure 5 shows the execution
time and energy consumption improvement at TDP (highest
power cap). Even in this workload, we achieve execution
time improvement of up to 40% and energy consumption
improvement of up to 42% using ARCS strategies. It shows
that ARCS can find optimal configurations across different
workloads. We also observed that the configurations of the
regions from SP differed across workloads which also proves
the claim we made in Section II. To validate ARCS’s con-
sistency across different architectures, we used ARCS on a
new architecture, IBM POWER8 (Minotaur). Minotaur differs
significantly compared to Crill. Even so, when we ran SP
with data set B in Minotaur, we observed 37% execution
time improvement compared to the default strategy. This result
demonstrates ARCS’s versatility across architectures.

B. BT

BT is an application with good load balancing and cache
behavior. BT is very similar to SP in structure although
the approximate factorization is different. Like SP, majority
of its execution time is also dependent on four regions
(compute_rhs, x_solve, y_solve and z_solve).
However, the behavior of these regions is slightly differ-
ent. Three of these regions (x_solve, y_solve and
z_solve) show very good load balancing and cache behavior
in the default configuration. Only compute_rhs shows poor
scaling, load balancing, and cache behavior. As a result, ARCS
has a limited opportunity to improve the performance of this
application. compute_rhs is the only region where ARCS
strategies can have a significant effect, as all other regions
already perform very well with the default strategy. In addition,
compute_rhs is algorithmically hard to optimize due to
its long stride memory access. Specifically, the second-order
stencil operation in rhsz uses the K ± 2, K ± 1 and K
elements of the solution array to compute RHS for the z
direction:

RHS(I, J,K) =A ∗ U(I, J,K − 2)+

B ∗ U(I, J,K − 1) + C ∗ U(I, J,K)+

D ∗ U(I, J,K + 1) + E ∗ U(I, J,K + 2)

Such memory accesses are not cache friendly, so finding an
optimal configuration for such a region is not trivial. However,
ARCS does a very good job in finding an optimal config-
uration (24, guided, 1) for compute_rhs that improves
the OMP_BARRIER and cache behavior of the region. The
comparison between the ARCS-Offline and default strategy is
shown in Figure 6. We compare the cache (L1, L2 and L3
cache miss rate) and load balancing (OMP BARRIER time)
behavior. We are only showing the result for compute_rhs
region, because in other regions the improvement is negli-
gible. For compute_rhs, the ARCS configuration shows
a significant load balancing behavior improvement which is
demonstrated by 80% OMP BARRIER time improvement. It
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Fig. 3: Feature comparison between the default and ARCS-Offline strategy at TDP power level. Comparison is done on four
of the most time consuming regions of SP. Y-axis shows the normalized feature value. Smaller value is better.
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Fig. 4: Application level execution time and package energy comparison among the default and ARCS strategies in SP at data
set B. Comparison is done on five different power levels. Smaller value is better.
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Fig. 6: Feature comparison between the default and ARCS-
Offline strategy at TDP power level for compute_rhs region
of BT. Smaller value is better.

also shows good L3 cache miss rate improvement indicating
better cache utilization among different cores.

The impact of these behaviors is also visible in the overall
application level execution time and energy consumption com-
parison in Figure 7. Here, we compare the execution time(7a)
and energy consumption(7b) among the default and ARCS
strategies(ARCS-Online and ARCS-Offline). We show the
results for all five power levels. We observe that the execution
time improvement is small across all power levels, with the
highest improvement recorded is 13% at 85W power cap with
ARCS-Offline strategy. In some cases ARCS actually performs
worse than the default strategy (e.g., ARCS-Online at 85W).
This is because in those cases small improvement achieved by
ARCS is offset by the overhead. Similar behavior is visible
for package energy in Figure 7b.

We also observed similar trend at Power8 architecture. Only
the ARCS-Offline strategy was able to achieve an application
level improvement of 18%.

C. LULESH 2.0

In Figure 8 we show the comparison of execution time and
energy consumption comparison between the default strategy
and ARCS-Online and ARCS-Offline strategies on both Crill
and Minotaur. In Minotaur, We achieved a 40% execution
time improvement using the ARCS-Offline strategy, while with
ARCS-Online we achieved around a 4% improvement.

However, in Crill, the improvement is not evident. With
ARCS-Offline strategy, we achieved about 3% execution time
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Fig. 7: Application level execution time and package energy comparison among the default and ARCS strategies in BT with
data set B. Comparison is done on five different power levels. Smaller value is better.

improvement in the smallest (55W) and the highest (115W)
power levels. However, we lost performance on other three
power levels. We achieved energy consumption improvement
in all five power levels with maximum of 26% coming in
85W power level. As for ARCS-Online strategy, we observed
a degradation in both execution time and energy consumption
for every power levels as compared to default.

To understand why ARCS is performing poorly with
LULESH on Crill, we did an extensive analysis. We used
TAU [19] for our analysis. We profiled LULESH running with
the default configuration at the highest power cap. In Figure
9 we show the top five regions based on total time (inclusive
time). Through three OMPT events we show how these regions
spent their time. These OMPT events are,

• OpenMP_IMPLICIT_TASK, it reports the total time
spent by an implicit task, in other words it shows the
overall execution time of the region.

• OpenMP_LOOP reports the execution time that is spent
only on the loop body.

• OpenMP_BARRIER/OMP_BARRIER reports the time
spent on the implicit and explicit barriers.

We observe from Figure 9 that in terms of
OpenMP_IMPLICIT_TASK the most time consuming
region is EvalEOSForElems_1. But most of its time
is spent on OpenMP_BARRIER. Only a small portion
of time is spent on real computation which can be
attributed by OpenMP_LOOP time. The same applies
for the CalcPressureForElems_1 region. Both of
these regions have a very small execution time per region
call, EvalEOSForElems_1 with 0.000828 sec and
CalcPressureForElems_1 with 0.000139 sec. And
as we explained in the Overhead section, for each region
run ARCS has a Configuration changing overhead of
around 0.0008 sec. For these regions this overhead becomes
a huge issue. In fact the overhead becomes almost 100%
and 600%. Combined with APEX instrumentation overhead,
ARCS looses a significant amount of performance in these
tiny regions and in the process adds a fair amount of extra
execution time.

As for other three regions in Figure 9, although

they have reasonable region time (execution time per
region call), CalcKinematicsForElems_1 and
CalcMonotonicQGradientsForElems_1 show
near perfect load balancing behavior with only 1.8%
and 0.26% of their total execution time spent in
OpenMP_BARRIER. So there is not much ARCS can
do to improve these regions’ performance. However, the
CalcFBHourglassForceForElems_1 region shows
slightly worse load balancing behavior with 16% of its
total execution time spent in OpenMP_BARRIER, so ARCS
can have some impact on its performance. ARCS was
able to do so, which is evident in Figure 10. The figure
shows OpenMP BARRIER, L1, L2 and L3 cache miss rate
comparison between the default and ARCS-Offline strategy on
CalcFBHourglassForceForElems 1 region. From the figure
we can see that the configuration (4, guided, 32) chosen by the
ARCS-Offline strategy is able make the OpenMP BARRIER
time almost zero. It also shows that the configuration also
improved the L1 and L3 cache miss rate significantly.

But execution time improvement from just this region was
not enough to offset the overhead incurred by those tiny
regions in Crill. However, these overheads are not energy
hungry computation, that’s why we still achieved overall
energy improvement in all power levels.

As for Minotaur, we achieved execution time improvement
for the following reason: Minotaur can support up to 160
threads without oversubscribing, which causes a bit more load
imbalance in larger regions. As a result, ARCS improvement
in those regions overcomes the overhead incurred by the
smaller ones, which in turn results in overall application level
improvement.

VI. RELATED WORK

The paper by Bull et al. [20] is one of the first which
provides an insight into the choices of the number of threads,
scheduling policy and synchronization on an OpenMP ap-
plication’s performance. They show that selecting the best
number of runtime parameters is not a trivial task as different
applications behave differently. Suleman et al. [21] proposed
a framework to dynamically control the number of threads
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Fig. 8: Application level execution time and package energy comparison among the default and ARCS strategies in LULESH,
for mesh size 45. It shows results in both architectures. Smaller value is better.
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using run-time information. It uses Feedback-Driven Thread-
ing (FDT) to implement Synchronization Aware Threading
(SAT), which predicts the optimal number of threads using
the amount of data synchronization. However, neither of these
works consider power or energy consumption in their analysis,
only execution time.

As the number of threads and processor frequency have a
significant impact on performance and energy consumption of
a given OpenMP application, many researchers have studied
energy efficient performance prediction models for parallel
applications. The work by Curtis-Maury et al. [22], [23]
falls under this category. They employ dynamic voltage and
frequency scaling (DVFS), dynamic concurrency throttling
(DCT) and simultaneous multithreading (SMT) to implement
various online and offline configuration selection strategies for

OpenMP applications. Their main goal was to decrease energy
consumption without loosing execution time. However, the
work does not consider power budget. Peter Baily et al. [24]
implemented an adaptive configuration selection scheme for
both homogeneous and heterogeneous power constrained sys-
tems. It considers only two parameters – number of threads
and processor frequency. Although the system selects these
parameters for a given power budget, more than 10% of
the time it violates the given power budget. The approach
is not useful for a system working under a strict power
budget. Dong Li et al. [25], [26] used DVFS and DCT to
select energy efficient configurations for threads and operating
frequency for MPI/OpenMP hybrid applications. They also
did not consider a power budget. Their main target was to
save energy without loosing execution time. The work by Wei
et al. [27] shows the impact of optimal operating frequency
on energy consumption improvement for parallel loops. It
uses different operating frequency across different loops using
frequency modulation techniques. In contrast to these works,
ours concentrates on a complete set of runtime parameters on
a strict power constrained system.

Power has become a limiting factor for large scale HPC
centers. As a result, research on over-provisioned systems
with a strict power budget is gaining popularity in the HPC
community. Work by Rountree et al. [28] is one of the first to
explore the impact of power capping. They investigate how
different power levels impact the performance of different
types of applications. Work by Patki et al. [2] explores
the impact of hardware over-provisioning on a system level
performance. The main contribution of their work was to select
the number of nodes, number of cores per node, and power cap
per node. Work by Aniruddha et al. [29] and Bailey et al. [30]
consider only two parameters, DVFS and number of threads,
as configuration options. They focus on overall system level
performance on a MPI/OpenMP hybrid application. Compared
to these works, our work concentrates on single node OpenMP
performance given a power budget to that node.

VII. CONCLUSION AND FUTURE WORK

Application power budgeting with over-provisioned systems
is becoming an attractive solution to handle the power chal-
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lenge in future HPC platforms. Previous work in this area
only looks at distributed programming models. However, intra-
node performance at different power levels is also important.
OpenMP API is mostly used to exploit parallelism for shared
memory processors. In this paper, we presented the ARCS
framework that selects the best run-time configurations under
imposed power constraints for OpenMP applications. Our
framework handles a larger configuration search space as com-
pared to prior work. We show that our framework is practical
with varying data sets as well as architectures. We tested
ARCS using three proxy applications, SP, BT and LULESH.
We show that for a given power level, efficient OpenMP
runtime parameter selection can improve the execution time
and energy consumption of an application up to 40% and 42%
respectively.

In future work, we plan to improve ARCS to enable
selective tuning for OpenMP regions to avoid overheads on
the smaller regions. We also intend to account for memory
power in addition to processor power. Currently, we are not
looking into the DVFS (Dynamic Voltage Frequency Scaling)
strategy. We plan to include this policy in the future. We also
aim to extend the power management policy of the framework
for heterogeneous nodes.
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