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Abstract

Workflows offer scientists a simple but flexible
programming model at a level of abstraction closer
to the domain-specific activities that they seek to
perform. However, languages for describing work-
flows tend to be highly complex, or specialized to-
wards a particular domain, or both. WOOL is an
abstract workflow language with human-readable
syntax, intuitive semantics, and a powerful abstract
type system. WOOL workflows can be targeted
to almost any kind of runtime system supporting
data-flow computation. This paper describes the
design of the WOOL language and the implemen-
tation of its compiler, along with a simple exam-
ple runtime. We demonstrate its use in an image-
processing workflow.

1 Introduction

There has been a great deal of recent interest in

workflows as a tool and paradigm for scientific

computing [11]. Domain-specific scientific compu-

tations are relatively easy to express as workflows

because, as a programming model, they closely

match scientists’ conceptual level of abstraction.

In addition, workflow specifications are artifacts

suitable for reuse and sharing, and they are natu-

rally amenable to the identification and exploita-

tion of concurrency [6]. Other new and useful fea-

tures, such as automated generation tools and run-

time support for management of data provenance

through the computational process, are becoming

the norm [10].

Workflows are an attractive program design

paradigm partly because they reflect an intuitive

approach to program construction similar to the

common and intuitive “boxes and arrows” style

of sketching out a program during the conceptual

phase of its creation. However, using lower level

languages for workflow programming can obscure

the natural workflow abstraction because develop-

ers are forced to work with language primitives and

details unrelated to the domain-specific concerns.

On the other hand, programming languages for de-

scribing workflows tend to be highly complex, or

specialized towards a particular domain, or both.

In this paper, we present a language to address

the complexity and portability issues that are found

in existing systems. Our solution, called WOOL

(for Workflow Language), preserves the properties

of most workflow languages for coordinating ac-

tivities and data flow, but places a high priority on

independence from specific runtime environments

and a design that emphasizes ease of use and hu-

man writability without the need for GUI-based or

other assistive tools.

1.1 Why are workflows useful?

Workflows represent an intuitive and simple design

paradigm. The components that are composed to-

gether to form workflows often represent high-level

abstractions closely tied to domain-specific analy-

ses or models. As such, workflow programming

gives scientific users a programmatic analogue to

the sorts of diagrams they often sketch on a white-

board or in a paper to describe the steps they take

in solving their problem.
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In most existing workflow systems, however,

descriptions are complicated by details that imply a

specific instance or class of runtime systems. This

obscures the meaning of the workflow with imple-

mentation details, and reduces the ability of tools to

retarget the abstract workflow to systems that devi-

ate from the assumed model. WOOL avoids this

specificity in the language, allowing the workflow

paradigm to be used in constructing programs that

span targets from a single, standalone executable

on a laptop to an extensive grid-based distributed

environment. The interesting problem is how to

design a language that spans this range without im-

posing uncomfortable requirements on either end-

point, such as requiring a full grid node configura-

tion for a standalone laptop that will never partici-

pate in a grid environment.

Workflows facilitate code reuse by dictating a

component-based model for activities that execute

as part of a workflow, and defining workflows

themselves in such a way that allows them to be

treated as a component. To make this possible

they must have well defined semantics and types.

Without these the meaning of the workflow is un-

clear and often relies on implicit assumptions that a

specific workflow language or environment makes.

Well-defined semantics and types facilitate retar-

getability and remove the need for assumptions that

bind a workflow to a specific environment.

1.2 Workflows as a general pro-
gramming model

Workflows are already important for scientific pro-

gramming. We believe they have a role to play in

more general purpose programming as well. The

emergence of widespread multi-processing has cre-

ated a need for languages that can help program-

mers identify and exploit parallelism in their pro-

grams. Workflows often exhibit natural parallelism

in the form of pipeline and fork-join patterns. Un-

fortunately, workflow programming languages tend

to be geared toward particular architectures and

runtime systems. There is a need for an abstract

workflow programming language that preserves the

essential features of the workflow model while em-

phasizing retargetability of the actual execution en-

vironment.

Workflow programming can also benefit from

text-based representations to facilitate portability,

ease of editing, and compilation. While existing

workflow languages are based on human readable

XML, they are fall short in terms of human writable

syntax. A simpler representation fits well with stan-

dard programming environment tools, such as ver-

sion control. Graphical workflow representations

can always be generated for purposes of presenta-

tion, and graphical workflow creation tools can also

generate text-based forms.

2 Related Work
There are many existing languages and tools for

describing workflows. Most are delivered as com-

plete systems that include languages for describing

workflows, a way of programming activities, and

a runtime engine for executing a completed work-

flow.

Many earlier workflow projects were targeted

towards the needs of business users, and employed

coordinated web services as a enactment back-end.

Examples of this style of workflow system include

BPEL4WS [2] and WSFL [14]. These languages

were designed to support and coordinate activities

accessed through XML-based web services, and

so while they are good at describing and enacting

workflows in this particular domain, they are not

very useful for abstract workflow representation.

Other workflow systems have focused on scien-

tific workflows (SWFs). These are intended for use

by scientists who want to focus on their problem

domain and leave the low-level details to the SWF

system. SWF tools delegate to the workflow lan-

guage and runtime system the often-tedious pro-

gramming needed to connect and orchestrate series

of computational steps.

Triana [5][15] uses a visual SWF language that

includes both data- and control-flow constructs.

Triana, like other XML web service-oriented work-

flow systems, has a type system based on XSD

schema datatypes [3]. XSD datatypes are powerful

and flexible, but introduce additional complexity.

Taverna [16], part of the myGrid project, is a

SWF system focused on supporting life sciences
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experiments. Activities are implemented either as

web services or Java classes. Taverna relies on an

XML-based language called SCUFL for workflow

specification. SCUFL has a type system, but data

types are restricted to MIME-types, names from

the myGrid bioinformatics ontology, and free form

text.

VisTrails [4] is another SWF system, interesting

because it keeps provenance not only for data, but

for workflows themselves. This allows VisTrails to

treat the workflow itself as a kind of scientific note-

book, documenting the evolving scientific process.

VisTrail uses a visual workflow language, and is

focused on workflows intended to be executed im-

mediately and interactively.

Kepler [1] inherits a visual environment and

the Modeling Markup Language (MoML) from

Ptolemy [12], and adds SWF features like the abil-

ity to test a workflow without needing to com-

pletely program all its activities, distributed execu-

tion with a web-services framework or Globus grid,

database access, and other specialized actors.

Other workflow systems are designed to let

users easily harness the power of grid comput-

ing [9]. One example is WFEE [17], which

uses a relatively simple workflow description lan-

guage (called xWFL) with grid-specific constructs.

WFEE features support for workflow parameteri-

zation using filenames, ranges of number, and con-

stants, which is important for scientific workflow

applications. Another example is GSFL [13], de-

signed for Globus OGSA-based grids.

The Abstract Grid Workflow Language

(AGWL) [7] is the closest project in spirit to

WOOL. Like WOOL, AGWL was designed to

specify workflows in a way that balances abstract

representation with enough information to execute

the workflow in a real environment. Unlike

WOOL, AGWL makes parallelism an explicit

construct in the language. This allows for a high

degree of programmer control, but at the expense

of the abstractness of the resulting workflow.

Explicit parallelism may also increase the required

level of sophistication for workflow programmers.

Since parallelism is inherently implicit in data-flow

programming models anyway, WOOL eschews

explicit parallel constructs, instead opting only

to have users to explicitly state when parallelism

should be avoided.

Unlike WOOL, AGWL does not feature a robust

abstract type system for validating connections be-

tween activities or identifying instances where im-

plicit iteration or aggregation over sets of data items

should be performed.

AGWL workflows are executed on a portable

back-end system called CGWL [8]. CGWL must

be ported to a particular platform, and acts as an

interface between the platform and the workflow.

WOOL could theoretically use either AGWL or

CGWL as a target platform.

3 Language Design
The WOOL programming language was designed

to describe workflows, and deliberately excludes

orthogonal information related to the runtime sys-

tem. It has an intentionally simple syntax and se-

mantic interpretation. WOOL workflows are com-

posed of “activities,” which are basic units of com-

putation. Each activity has a type which assigns

it a set of input and output ports and other prop-

erties. Connections between the ports on activi-

ties, from outputs to inputs, establish data-flow re-

lationships. WOOL workflows can be composed

hierarchically, with sub-workflows treated as activ-

ity types in a higher-level workflow. Activity ports

use a rich type system to describe the primitive data

items flowing in or out of the port, check connec-

tions for validity, and define the semantics of valid

connections.

WOOL also includes both primitive and a stan-

dard library of activity types, available to all work-

flows and providing helpful functionality such as

control flow. The WOOL language provides syn-

tactic sugar to make certain control flow idioms

easier to type and read. These are normalized at

compilation time to the equivalent sequence of ba-

sic language primitives.

3.1 WOOL Syntax

There are two types of files used by the WOOL

compiler. The first is called the “target” file, in

which primitive data types and activity types are
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defined. Typically, target files are written for a par-

ticular domain. An auxiliary map is required that

relates activity names in the target file to runtime-

specific identifiers, such as Java class names. This

name mapping is not defined to be part of WOOL,

as it is specific to each runtime system to map ab-

stract activities to concrete implementations.

The second type of file is the “workflow” file.

These reference a target file for their types, and then

instantiate and connect activities to form workflow

graphs. Workflow files may import other workflow

files in order to use their contents as complex activ-

ity types, but all the workflow files collected in this

way must share the same target.

Figure 1 shows an example target file. The ex-

ample defines two primitive types: string and num-
ber. It also defines two activity types: Multiply
and Split. The Multiply activity type defines

three ports, namely the two input operands and the

one output result. The Split activity type has a

similar structure. Notice that one of the outputs

from Split is a sequence. Also notice that both

of these activity types are declared stateless.

This property allows the compiler to parallelize

these activities when possible.

Listing 1. Example target file
# Target file: example.wft
# Define two primitive types
type string, number;

# Multiplies two numbers togther
Multiply {
stateless;
input leftOp:number,

rightOp:number;
output result:number;

}

# Split a string into characters
Split {
stateless;
input origString:string;
output characters:string seq;

}

Now examine the workflow syntax example in

Listing 2. First note that the target file from List-

ing 1 is referenced at the top. This imports the types

defined in that target. Next, a workflow named

MyWorkflow is defined. The workflow contains

two activities named mult1 and mult2, both of

which use the Multiply activity type from the

example target. The workflow uses external con-

nection to define its ports, and connects the remain-

ing outputs and inputs of the activities it declares

(some connections are omitted for brevity).

Listing 2. Example workflow file
# Reference the target file
target example;

MyWorkflow {
mult1:Multiply;
mult2:Multiply;

extern.op1 -> mult1.leftOp;
...
mult1.result -> mult2.leftOp;

...
mult2.result -> extern.result;

}

This very simple example is shown to give the

flavor of the WOOL language; the full draft lan-

guage specification can be found online.

3.2 WOOL’s Type System

WOOL’s type system ensures that it will reject

workflow graphs that connect two incompatible

ports. For example, the type system prevents a pro-

grammer from accidentally connecting a string out-

put to a number input, or an output to another out-

put.

The type system is very simple. Connections

may only be established between ports that share

the same primitive type, and are of opposite direc-

tion. Implicit casting between different primitive

types is not supported.

WOOL has a notion of “external” connections,

which are ports that are published by a workflow.

These external ports are simply named aliases for

unconnected ports within the workflow, and serve

as the interface between the workflow and the out-

side world (or, if the workflow is used within an-

other workflow, the external ports are the interface
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between the two). They are typed in the same way

as the ports they alias. So, an external port that con-

nects to an input port of type string will also be

an input of type string.

A port may have a wildcard type instead of a

primitive type. A wildcard is a way to tell the com-

piler that the activity does not care which primitive

type is used for that port, it will work equally well

with any of them. These are most often used for

control flow activities which simply pass through

data, such as aggregator or iterator. A wildcard type

has a name whose scope is the containing activity,

and which is used to “bind” the wildcard. A wild-

card name is bound when a port using that wildcard

name is connected to a second port whose type has

already been resolved. A port’s type is considered

resolved if either it has a primitive type, or if it has

a wildcard type that has already itself been bound.

Once bound to a primitive type, all ports (either in-

puts or outputs) within the same activity having the

same wildcard name will be bound to that type. A

type error is reported if a conflict is identified dur-

ing wildcard resolution.

The aggregate types augment the type informa-

tion provided by either primitives or wildcards. The

default aggregate type is the unit, meaning only a

single data item of the primitive type. WOOL also

supports sequences and sets as aggregate types. Se-

quences imply a group of primitive data items with

a particular order, while sets are a group with no

particular order. In general, connected ports must

have the same aggregate type. However, connect-

ing a set output to a sequence input is allowed, and

will induce an order on the set. The exact ordering

is undefined. Connecting a sequence output to a set

input is also allowed, and will simply remove the

ordering information from the sequence. Finally,

connecting a sequence or set output to a unit input

is allowed. This will cause the group to be serial-

ized into individual data items. For example, con-

sider a port that outputs a group of strings to an

input that takes unit strings. Writing a single ag-

gregate value with five elements to the output will

cause five individual strings to be pushed into the

input queue. This facilitates implicit iteration in a

workflow.

3.3 Runtime Semantics

WOOL is designed to describe abstract workflows,

as opposed to workflows tailored to a particular ar-

chitecture. As such, it adopts a minimal set of as-

sumptions about the semantics of its data-flow ex-

ecution model. We believe that this should make

WOOL workflows portable to and executable on al-

most any workflow execution system.

In WOOL, data is moved from outputs to inputs.

Data delivered to an input must be queued in the or-

der that it was received. Activities must eventually

execute once there is data available on all their in-

puts. Execution consumes one data item from each

of the activity’s input ports, and produces zero or

one data items on each of its output ports. Ag-

gregate data types generally count as a single data

item, with the exceptions outlined below.

An output can be connected to more than one in-

put, in which case the data written to the output is

copied to each of the connected input queues. Sim-

ilarly, an input can be connected to more than one

output, in which case both outputs feed their data

into the single input queue. If two inputs arrive at

the same input port at the same time, their order in

the input queue is undefined.

External connections are simply aliases for the

ports they connect to. Reading or writing values to

an external port is the same as reading or writing it

to the connected port.

The runtime system must respect aggregate

types. That is, if a port is marked as having an

aggregate type, then single values written or read

from that port are treated as groups. In the case

of sequences, the group must also have an ordering

that is maintained between ports.

Aggregate types count as single values. That is,

they occupy one space in input queues, and must be

moved between ports as a group. The only excep-

tion is if an output port of aggregate type (a set or

sequence) is connected to a port of unit type. In this

case, the output port writes the group of values as a

series of single values. These values will arrive at

the input individually. If they are from a sequence,

they will also arrive in the sequence order.
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3.4 Transformations

WOOL supports special syntactic constructs that

enable transformations on the final workflow graph.

These transformations leverage a set of language

primitives available to all WOOL workflows, and

recombine them with user-defined activities. In

this way, transformations provide simple syntax for

common workflow idioms.

WOOL’s map connection syntax is an example

of a transformation. In a map connection, a sub-

graph that implements a unit-to-unit filter (i.e. an

activity or sub-workflow that takes a unit input and

produces a unit output) is rewired into an equivalent

group-to-group filter. Map connections are imple-

mented as a graph transformation — the incoming

group is serialized, filtered individually, and then

aggregated back into a group using activities from

WOOL’s standard library. This is analogous to the

map or fold primitives available in most functional

languages.

Transformations of this kind are WOOL’s ap-

proach to control-flow constructs. Rather than rely

on special language extensions, simple syntax com-

bined with graph transformations allows for power-

ful and customizable control-flow expressions.

4 Implementation

WOOL is implemented as a two-stage compiler.

The first stage consists of a parser and optimizer.

In this stage, the WOOL program is validated for

syntax and semantics, including type-checking, and

an in-memory workflow graph is produced. The

graph is currently implemented as a collection of

Java objects conforming to our Workflow object

interface. The graph is optimized, if possible, and

any parallelizable regions are identified and no-

tated. For example, map connections are expanded,

and if their interior graph is stateless it is marked as

parallelizable.

The second compiler stage transforms the in-

memory graph into a form that may be executed

by a workflow runtime system. Naturally, the exact

nature of the output depends on the system being

targeted, and so our system places no restrictions

on what may be output. The transformation code

must be implemented as a Java object conforming

to the Generator interface, which accepts as in-

put the graph generated in the first stage. The user

may indicate which generator object to use at run-

time by passing its class name as a command-line

option to the WOOL compiler.

For testing and demonstration purposes, we also

implemented a simple, Java-based workflow execu-

tion engine and wrote a Generator-conforming

object that targets it. A secondary runtime based

on a simplified tuple-space distributed computing

model is currently being completed.

5 Application

The application of WOOL demonstrated for this

paper was made in the context of medical im-

age processing. Image processing workflows com-

monly take the form of pipelined processes, in

which images flow through a sequence of opera-

tions that transform, identify, and measure features

of interest. It is natural to define a workflow for a

specific imaging problem that can be reused over

time as new images are produced, and embedded

in other workflows when more complex processing

is desired. In this application we consider a sim-

ple workflow in which segmentation is performed

based on the classical k-means clustering algo-

rithm. This workflow will be embedded in a larger

workflow to measure the variation in segmentation

output as parameters on the k-means algorithm are

varied. Figure 1 shows the overall workflow (cen-

ter) and the two sub-workflows (left, right). The

shaded components are user-defined, while the un-

shaded ones are built in.

The images used for this demonstration are his-

tology slides related to the study of acute inflamma-

tion of placental tissue during fetal development1.

Segmentation is used to compute geometric prop-

erties of the images that are indicators of infection,

and a common question to ask is what variation is

expected in the segment assignment as parameters

are varied in order to quantify uncertainty due to

algorithmic side effects.

1The images were provided by Dr. Carolyn Salafia of Pla-

cental Analytics, LLC. and NYU School of Medicine.
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mismatch:MismatchCalcer

reader:ImageReader

set:Segmenter

agg:Aggregator

size:GroupSize

pars:AllPairs

diff:PixelMisMatchseg:KMeansSegmentation size:GroupSize

rep:Repeater

agg:Aggregator

Figure 1. Segmentation parameter study workflow and sub-workflows.

5.1 Segmentation of a single image

The base workflow that we will embed in a larger

context is that of simple image segmentation (Fig-

ure 1 left). The k-means segmentation algorithm

takes two parameters: the segment count k, and the

number of refinement iterations that it performs, i.
This workflow takes as input an image filename and

segmentation parameter, invokes the k-means algo-

rithm, and produces the resulting segmented image

as its output.

5.2 Parameter study

The larger workflow in which the segmentation

workflow is embedded (Figure 1 center) explores

the effect of changes to a segmentation parameter

on the stability of the resulting image. We are in-

terested in the effect of fixing k and varying i over

a small range, such as i = {5, ..., 15}, and deter-

mining the number of pixels that change segment

membership between subsequent iteration counts.

This workflow will take a set of parameters as

input, and invoke the segmentation workflow which

executes the segmentation component repeatedly,

once for each parameter. The result will be a set

of segmented images. A second sub-workflow is

provided that takes a set of segmented images, and

computes the mismatch in segment assignment at

each pixel for two different parameter choices (Fig-

ure 1 right). The full set of mismatch counts be-

tween all combinations of iteration counts is shown

as the right output of the main workflow. A plot of

how mismatches change between iteration counts

of i and i + 1 is shown in left output.

WOOL enables the use of sub-workflows to

partition the domain functions (k-means seg-

mentation and pixel mismatch) from the over-

all pipeline. Note that the Aggregator,

Repeater, GroupSize, and AllPairs activ-

ity types are drawn from WOOL’s standard library.

These activities exist in the workflow to implement

common control flow idioms, and can be intro-

duced with the transformation syntax described in

Section 3.4.

6 Conclusion
The WOOL system provides a simple but effective

abstract workflow language with human-readable

syntax and intuitive semantics. It is general enough

to specify workflows targeted to almost any work-
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flow runtime. The language includes a type system

that allows workflows to be verified independent of

a particular runtime. We implemented a compiler

and sample generator. Finally, we have shown that

WOOL is a viable and useful language for structur-

ing a relatively involved image-processing work-

flow.

WOOL is a work in progress, and there are sev-

eral areas that we would like to investigate further.

Activities in WOOL should be able to choose as-

pects of their input and output semantics. For ex-

ample, what happens to inputs as they arrive at a

port? Currently they are queued in the order re-

ceived, but alternatives might be to discard mes-

sages or to have some kind of priority queue. Pro-

viding workflow designers with choices for activity

semantics might enable very concise and powerful

specifications for complex workflows.

The application example demonstrated in this

paper targets a very minimal, single-threaded work-

flow runtime. Another area for future work will be

to target different kinds of runtime systems. For

example, we are currently working on a parallel

workflow system based on tuple spaces. It should

be possible to leverage WOOL’s unique type sys-

tem to aggressively optimize workflows targeted to

such a system for very high performance.

Finally, we note that exceptions are hugely im-

portant in workflow systems, particularly for com-

plex scientific codes that run for very long periods

of time. We are looking at ways to introduce ro-

bust exception handling into the WOOL language,

while still maintaining runtime independence.
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