Introducing Task-Containers as an Alternative to
Runtime-Stacking

Jean-Baptiste Besnard
ParaTools, SAS
Bruyéres-le-Chétel, France
jbbesnard@paratools.fr

Marc Pérache
CEA, DAM, DIF
F91297 Arpajon, France
marc.perache@cea.fr

ABSTRACT

The advent of many-core architectures poses new challenges
to the MPI programming model which has been designed for
distributed memory message passing. It is now clear that
MPI will have to evolve in order to exploit shared-memory
parallelism, either by collaborating with other programming
models (MPI+X) or by introducing new shared-memory ap-
proaches. This paper considers extensions to C and C++ to
make it possible for MPI Processes to run into threads. More
generally, a thread-local storage (TLS) library is developed
to simplify the collocation of arbitrary tasks and services in
a shared-memory context called a task-container. The pa-
per discusses how such containers simplify model and service
mixing at the OS process level, eventually easing the collo-
cation of arbitrary tasks with MPI processes in a runtime
agnostic fashion, opening alternatives to runtime stacking.

Keywords
MPI+X; Thread-Based MPI; Privatization; In-Situ

1. INTRODUCTION

The continuously increasing number of cores inside com-
puting nodes is raising questions concerning the evolution of
the Message-Passing Interface (MPI) programming model.
The MPI model is the de facto standard for the last two
decades, strongly shaping how supercomputers are being
programmed with a distributed memory paradigm. How-
ever, the notion of programming hundreds of cores in a phys-
ically shared memory node with a message passing paradigm
using hundreds of MPI processes is unsettling at several lev-
els. First, binaries and shared objects are loaded hundreds of
times, leading to extra pressure on the batch manager and
on the file-system. Second, the MPI communication layer
has to be initialized for each of these processes. Depending

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

EuroMPI ’16, September 25-28, 2016, Edinburgh, United Kingdom

© 2016 ACM. ISBN 978-1-4503-4234-6/16/09. .. $15.00

DOL: http://dx.doi.org/10.1145,/2966884.2966910

Julien Adam
ParaTools, SAS
Bruyéres-le-Chétel, France
adamj@paratools.fr

Patrick Carribault
CEA, DAM, DIF
F91297 Arpajon, France
patrick.carribault@cea.fr

51

Sameer Shende
ParaTools Inc.
Eugene, USA

sameer@paratools.com

Julien Jaeger
CEA, DAM, DIF
F91297 Arpajon, France

julien.jaeger@cea.fr

on the communication topology and networking technology,
multiple buffers and queues for each process must be config-
ured. Furthermore, it can be easily shown that common pat-
terns of communications (e.g., stencils with spatial depen-
dencies) necessarily causes data and computing replication
when a distributed memory context[2] is applied, further
forcing larger memory areas for efficient implementation.

These observations have led to MPI 4+ X paradigms, where
MPT’s inter-node distributed memory model and X’s intra-
node shared memory model come together to exploit multi-
ple levels of parallelism[9]. Clearly, MPI is robust and neces-
sary for communication between nodes. It makes little sense
to replace it. However, X a shared memory model is gen-
erally less defined, though several candidates are found, in-
cluding PGASJ[6], OpenMP[7], TBB[19], and accelerators[25,
28]. In general, the purpose is to combine programming
methods that can transition MPI-only program to models
that can express the parallelism inside many-core nodes ef-
fectively, while addressing memory and replication issues.

Our work takes a fresh look at this debate, one that ques-
tions the boundaries between OS processes, MPI Processes
and collocated processing in general for HPC applications.
In fact, we propose a new level of abstraction between pro-
cesses and threads, one that we called the task level, with
the purpose being to ease the expression of collocated com-
putation. We then offer a compiler-based transformation ap-
proach to generate MPMD executables based on task-level
support. In our opinion, HPC workloads are evolving from a
stacked paradigm to a horizontal one, eventually dedicating
resources to analysis and data-management phases which
were previously addressed by a subset of the machine (of-
ten called a service island). This will lead to an increased
variability of the HPC payloads, not only embedding MPI
and its associated shared-memory model X, but also other
commodity services. For example, the transitioning of 10
models to In-Situ[10] operations with burst-buffers and ac-
tive buffers [21] could benefit from a richer programming
methodology. Similarly, performance and debugging tools
which utilize runtime support (e.g., tree-based overlay net-
works[14, 1]) or dedicated resources [3] could also be created
more directly.

Our work develops new language abstractions enabling the
use of the well-known MPI paradigm in a heterogeneous con-
text mixing arbitrary collaborating computations and ser-

vices. The contribution of this paper is to provide data ma-
nipulation primitives for defining arbitrary contexts for tasks
running in a common OS process. With such support, the
transparent multiplexing of OS process-based payloads in-
side the same shared-memory context is possible. The paper
first describes the task-container abstraction and its actua-
tion in an MPI context in Section 2. After describing related
work, we then discuss in Section 4 the internals of our im-
plementation and the components enabling task-containers:
the compiler, the linker, and a dedicated runtime library.
Next in Section 5, we illustrate the use of our abstraction
with user-level threads in the context of the MPC thread-
based MPI. The paper concludes with thoughts for future
work.

2. TASK CONTAINERS

The overall architecture we envision for the task-level con-
tainer pattern is described in this section, along with the C
language extensions we propose to enable such behavior in a
regular program using the Executable and Linkable Format
(ELF).

2.1 Overview

Consider the example of an 1O library in the context of two
MPI processes with remote burst buffers. This configuration
could be illustrated as shown in Figure 1.

Process / MPI Process Process / MPI Process
main() main()
libio.so libmpi.so (4@ libmpi.so libio.so
libc.so libc.so

Process / Burst Buffer Process / pNFS Server
| main() [main() |

libio.so 1 libio.so |
| libc.so | | Iibc.so& |

—
Figure 1: MPI Program mixed with a parallel 10
workflow including a Burst-Buffer stage.

Here we present a generic 10 work-flow in a process-based
MPI context. Each process is linked to an IO library im-
plementing the IO transport layer interfacing with burst
buffers. Similarly, each process is linked to the MPI library
which furnishes all the functionality enabling the process to
become an MPI process involved in a distributed memory
computation. Thus, processes are interacting through two
communication layers: the MPI layer and the IO layer. No-
tice that the IO library is duplicated for each process and
incurs computation there, an approach that we describe as

52

stacking. One could argue that the MPI process in the MPI
+ X model could occupy the complete node, as a conse-
quence, the IO library would be present only once per node,
solving this duplication issue for IO and MPI. However, this
splitting does not take the computational cost into account.
Indeed, simple tasks such as moving data around require
computing power, as acknowledged by burst/staging buffer
approaches aimed at hiding such 1O costs.

Consequently, the question we address in this paper is
how multiple collaborating processes can be expressed in a
shared-memory context, not only exposing features through
an API consuming local computing cycles (stacking), but
also providing such processing with dedicated computing re-
sources while remaining accessible through regular API calls
(horizontal /In-Situ). This involves not only the mixing of
various API (linking to libraries), but also the expression of
multiple processing or tasks in the same program running
on a many-core node. Figure 2 shows how this model might
operate for the scenario in Figure 1.

Process / Multiplexed

Task 1 / MPI Process Task 2 / MPI Process

main() Rank 1

main() Rank O

Task 0 / MPI Runtime Task 3 / Staging Buffer

main() MPI main() Staging
libmpi.so ‘—/ \7 libio.so
libc.so libextls.so

Process / pNFS Server Process / Burst Buffer
[main() | | main()

| libio.so =—>| libioso /]
] Iibc.soAl \ | libcso |

Storage

I

Figure 2: Multiplexed MPMD MPI program with a
parallel I0 workflow including a Burst-Buffer stage.

Figure 2 uses task-level data-sharing to enable multiple
tasks to run in the same OS Process. It not only instantiates
each library only once, but can dedicate processing power to
each of them. In this example, the 1O services are running
inside the same shared-memory space as multiple MPI Pro-
cesses, allowing direct interaction through API calls while
explicitly dedicating resources to each of the tasks. Task-
containers can be seen as running different main functions
on different cores, mimicking what was present at process
level in Figure 1 inside task-containers multiplexed inside a

single OS Process. In fact, this model transposes the advan-
tages of a thread-based MPI and alternative definitions of
MPI processes such as endpoints[8] or MPI sessions to exist-
ing libraries requiring both a context and processing power.
Not only does this model circumvent data-replications asso-
ciated with the message-passing model in distributed mem-
ory context (e.g., by efficiently using ownership passing mes-
sages[13]), but it also opens wider perspectives. For in-
stance, Figure 2 shows how some core might be dedicated
to the MPI library in order to progress MPI communica-
tions, creating a task-container dedicated to the MPI run-
time while improving polling behavior [15].

More generally, any service which may need to be collo-
cated with multiple MPI processes could be isolated in a
task-container. In this way, non-MPI MPMD services could
be linked to the MPI applications. Using this model, any
10, runtime library, or tool could be made adjunct to run-
ning processes through an automatic compiler transforma-
tion. The advantage is that the method is applicable to MPI
without being inside MPI. Indeed, we started this paper on
the observation that model mixing was a compulsory avenue
for many-core. However, one of the issues in this approach
is that it is generally MPI which does resource negotiation,
based on OS process granularity. Our work introduces a lay-
ered data-management technique through compilation prim-
itives to enable transparent and backward compatible data-
sharing constructs, a point that is the main contribution of
this paper.

Our proposal is to extend the thread-local storage (TLS)
model to integrate a new level between threads and global
variables. This extended TLS model allows teams of threads
(or tasks) even entire process contexts (all the global vari-
ables at all levels) to be duplicated inside a single OS Pro-
cess. In such a model, each library could specify through
new C/C++ keywords its own context relative to global
variables, indeed having its internal context spanning global
variables at different levels. Our work aims to extend the
global C/C++ variable semantic to express collocated pro-
cessing at compiling/linking time.

2.2 Extended TLS Handling

In order to obtain the behavior of Figure 2 in a trans-
parent manner, we decided to rely on compiler-based trans-
formations. There are multiple requirements. First, the ap-
proach used must be unintrusive and compatible with legacy
codes. Second, the approach should be model-independent,
although our original target was the MPI model. Relying
on a low-level mechanism such as TLS makes this possible.

More practically, a new logical TLS level called the task
level is introduced. C/C++ programmers, already com-
monly use the __thread keyword which makes a global vari-
able thread-local. Similarly, we introduce the __task key-
word which is an intermediate between a process-level global
variable and a thread-level one. Thus, this level targets
a team of threads. Moreover, as we wanted this transfor-
mation to be transparent for existing programs, a choice
is made of transitioning global variables to task-local vari-
ables, adding the need for a __process keyword to prevent
automatic transition.

As shown in Figure 3, the task-level outlines teams of
threads while separating them from the global process con-

text. It is then an intermediate between no-sharing (__thread)

and complete sharing (__process). On the programming

N =

N

53

Th(0,2)
'Th(0,0)|Th(0,1) Th(1,0)[Th(1,1)
| Task(0) Task(1)

! Process(0) \

Figure 3: Context stacking using task-containers.

side, issuing data in each of these levels can be done for C
in a straightforward manner as listed in Figure 4.

__thread int thread_id;
__task int task_id;
__process int process_id;

Figure 4: Using exTLS levels in C

The simple syntax of Figure 4 is a key element in our task-
container model. Indeed, as we are working at compilation
level, altering TLS, it is possible to compose the behavior
of multiple libraries present for example in shared-objects.
This allows, for example, part of an MPI library context
to be located at the __process level and therefore shared
between all tasks and threads. Similarly, if some context
has to be local to a task (which in our vision is matching
the MPI Process level), one can create variables at __task
level to store its local context, and it will be inherited by
all the siblings threads. More generally, this model can be
applied outside of MPI, with an arbitrary processing par-
tially sand-boxed. Indeed, these keywords allow libraries
to collaborate through their programming interface without
completely sharing the same data-context thanks to an ad-
ditional logical TLS data-hierarchy.

One point that we omitted for now is how contexts are in-
herited. Process and thread context can be seen as semanti-
cally linked to an execution level, but in fact (and as we will
further describe), they should be regarded in a more flexi-
ble manner. In next Section, we introduce the inheritance
mechanism to define how data-sharing level are manipulated
between tasks.

2.3 Context Inheritance

Context inheritance is the mechanism allowing the defi-
nition of sub-contexts in the OS Process. Given that any
execution stream has TLS data for each level, inheritance is
the way of subdividing these levels between collocated tasks
in an arbitrary manner.

int
int
int

inherit_thread();
inherit_task();
inherit_process () ;

Figure 5: Context inheritance interface.

The function calls presented in Figure 5 are the primitives
we introduce to subdivide TLS contexts in a multi-threaded
application, eventually creating tasks and as we will see pro-
cess containers. We now propose to consider the example of
an MPI application.

main MPI 1 MPI 2 Thread 1
_thread @ ® ® ?

__task ‘ 6

R

__process Qé;\.—».

inherit_task

inherit_task inherit_thread

Figure 6: Spawning two thread-multiple MPI Pro-
cesses in a task-container context.

As presented in Figure 6, in our model, two MPI Pro-
cesses can be spawned by an MPI library just by calling the
inherit_task call. This will have the effect of duplicating
TLS levels superior (see Figure 6) to the process one eventu-
ally creating a task context. Similarly, if we look at the MPI
Process 2, if it spawns a thread, it has to run in the same
task context, but with a different thread-level set of vari-
ables. To do so, the inherit_thread function is invoked.
This data-management approach is then sufficient to define
a thread-based MPI where the task level is associated with
the MPI process one, and the data-sharing level is defined
explicitly by the host runtime via the inheritance interface.

To go further, we can illustrate the versatility of our ap-
proach through model-mixing, launching multiple MPI pro-
cesses sharing the same OpenMP runtime. We simply con-
sider that the OpenMP runtime is compiled at process-level,
and therefore exposes a shared context between tasks. With
our task-container model, the OpenMP runtime would then
have to initialize its own task context, before spawning its
worker threads on dedicated resources. This would lead to
multiple sequential MPI tasks sharing the same OpenMP
workers.

main MPI 1 MPI 2 OpenMP OMP 1 OMP 2

_ thread

_ task

__process

inherit_task

inherit_task | inherit_task | inherit_thread | inherit_thread

Figure 7: Two MPI Processes sharing the same
OpenMP runtime.

The idea behind the hybrid-mixing model illustrated in
Figure 7 is that the OpenMP library context has not been
privatized. Therefore, unlike MPI processes, it is exposed
through the OpenMP ABI to the whole OS process. Conse-
quently, parallel regions invoked by the MPI Processes will

54

be scheduled on the threads of the OpenMP task which
has no sibling relationship with the MPI Processes. Our
extended TLS model then allows an OpenMP team to be
shared between multiple MPI task instead of relying on the
classical nested MPI+X relationship where OpenMP runs
inside MPI.

main Thread 0

_ thread

_ task

__process

inherit_thread

Figure 8: Illustration of the inherit_thread call.

One point that is important to understand in this new
model is that each execution stream has a copy of all vari-
ables and therefore is by itself fully defined in all levels.
This is the reason why the “bars” of Figures 6 and 7 are go-
ing through all the levels. Consequently, if the main func-
tion emits an inherit_thread call prior to an inherit_task
call, the new context will have a new thread segment while
sharing both task and process levels with the original main
stream as illustrated in Figure 8. In contrast, the OMP 1
thread of Figure 7 inherited its context from the task asso-
ciated with the OpenMP runtime.

main 0 main 1

_ thread ®

_ task Q

__process Q
inherit_process

Figure 9: Illustration of the inherit_process call.

Besides, as depicted in Figure 9, inheriting from a process
is similar to recreating a new TLS context for all levels, in
fact mimicking what is happening when creating a normal
OS process. It allows disjoint TLS containers to run in the
same OS process. For instance, a process-based MPI could
be run inside a single OS Process without changing its se-
mantic through a simple recompilation.

To summarize, an inheritance call for a given level dupli-
cates all TLS levels strictly inferior to the target level while
creating new segments for upper levels. In complement, this
call affects the current execution stream which has its TLS
level modified and as a consequence, all the variables af-
fected by level changes are modified. This simple exten-
sion of the TLS model with a few function calls is then a
way to group threads running in a single OS Process inside
task-containers. As we will illustrate in the next Section,
our model opens new interactions between collocated tasks
which would not have been possible between OS Processes.

© 00Uk WN

2.4 Context Swapping

Figure 7 also covers an interesting facility of the extended
TLS library, context swapping. Indeed, an MPI Process en-
tering a parallel region may rightfully emit MPI calls de-
pending on the MPI context. However, the two runtimes
would have to negotiate in order to manipulate their re-
spective TLS contexts (OpenMP and MPI). To do so, we
introduce a disguise function call allowing a given stream to
borrow another stream’s context, while preserving its origi-
nal context in a shadow context. In our OpenMP example,
if the MPI process is willing to enter an OpenMP parallel re-
gion, it may pass its current TLS context as an extra param-
eter so that the OpenMP runtime disguises all its threads
in MPI Processes before entering the parallel region. How-
ever, a parallel region can also emit OMP related calls such
as omp_get_thread_num, obviously relying on the OpenMP
context associated with the execution stream. This problem
is addressed with the shadow context.

int omp_get_thread_num()

int ret = —1;

/* Here the stream
shadow_begin () ;

/* Here the stream is OpenMP x/
ret = omp_thread_info-—>id;

is MPI disguised x*/

shadow_end () ;
/* Here the stream
return ret;

is MPI disguised x/

Figure 10: Implementation of omp_get_thread_num re-
lying on shadow contexts.

As outlined in Figure 10, a thread which is coming from
another context is still able to query its own context by
outlining shadow code regions, with the effect of restoring
the original thread-context. In this example, OMP related
descriptors can be accessed despite being inside a code region
invoked from a foreign context. In complement, in order to
allow the “normal” execution patter of OMP parallel region
without borrowed contexts, the shadow context is aliased to
the current context when the thread is not disguised. This
allows the same code to address two different scenarios.

As a consequence, the task-level container is a convenient
manner of expressing model-mixing without requiring a sib-
ling relationship between models. In contrast to current
MPI + X models where MPI launches processes, here mod-
els are collaborating in a horizontal manner. Therefore, any
task such BLAS or IO library located in the same OS process
may invoke the shared OpenMP library even if it is not MPI
aware. To further illustrate context swapping, this mecha-
nism also allows an 1O thread to attach to running MPI pro-
cesses in order to extract their local data from their global
variables, without having to rely on a translation API. The
MPI process could then provide what could be described as
an 10 write lambda-context function which would then be
invoked by another thread with a shadow IO context as a
convenient In-Situ abstraction. More generally, using this
lambda-context semantic, polling threads could be shared
between multiple tasks instead of being duplicated for each
of them. To provide an MPI example, this would allow gen-
eralized requests[20] to be polled by any threads borrowing
the MPI context when calling the progress handler.

55

3. RELATED WORK

Thread-based MPI implementations have been an active
subject of research as a possible solution to many-core chal-
lenges. Our work is based on the MPC thread-based MPI
[23] + OpenMP [4] runtime, which pursued the automatic
compiler privatization model in order to transpose existing
MPIT codes to the thread-based MPI model. This privatiza-
tion capability has been realized in the Intel ICC compiler
through the -fmpc-privatize option[17]. MPC also investi-
gated the use of TLS extensions relative to both topological
constraints with Hierarchical Local Storage (HLS)[26] and
OpenMP context with a dedicated TLS level [4]. The work
done in this paper is thus an extension of this initial im-
plementation which was intended for a thread-based MPI
to a wider context. Moreover, our work aims at providing
these features inside an open-source package to promote its
wider usage. There are, of course, other thread-based MPI
implementations that faced the same shared global variable
issues. The propos solutions can be gathered in three cate-
gories: source-to-source, compile/linking time and runtime.

AMPIT originally proposed solution relying on Photran[22]
to gather global variables inside a module before modify-
ing function invocation. This source-to-source privatization
approach may be difficult to apply with C++ (or even C)
due to more complex data-types and potential indirect ref-
erences, which would require an extended data-flow analy-
sis to transform the source-code. Another source-to-source
transformation for global variables privatization is array ex-
pansion. It is often used at the compiler level to circumvent
memory dependencies [27], replacing each variable with an
array, accesses being indexed with the thread identifier. One
aspect making this transformation very impractical is that
the array has to be extended each time a thread is created
(without moving it in the address space) to preserve po-
tential pointer references. It makes this model potentially
expensive at runtime, a point that adds itself to the inher-
ent complexity associated with the parsing of language con-
structs (particularly in C++). Consequently, despite its nat-
ural portability, being at language level, the source-to-source
approach poses several issues when it comes to privatizing
existing codes due to the parsing it supposes. Moreover, it
implies that the code and all its libraries have to be recom-
piled in order to be executable in a thread context.

Alternatively, a Clang compiler-based transformation for
C and C++[24] can simply remove a global variable through
by passing every global variable as a parameter to each
function. One limitation of this model is that it does not
handle aliasing — potentially missing some global variables.
Moreover, as a compiler only compiles a single source file
at a time, this transformation is not able to account for
global variables present in other translation units (or worse
in shared-libraries linked later on), making it unsuitable for
larger code-bases. Similar to what was done in MPC at the
gimple level for C, C4++ and Fortran, the AMPI team inves-
tigated compiler-level privatization promoting global vari-
ables to the TLS level[29]. However, they did not cover
the user-level thread case which also requires a custom TLS
runtime library to perform manual context-switching. This
poses the question of handling thread-local variables. In-
deed, promoted global variables have to be shared between
the threads belonging to a given MPI Process (now running
inside a thread), making runtime support compulsory. Com-
piler based privatization can take advantage of the parsing

and analysis facilities provided by production-grade compil-
ers to extract and promote global variables to TLS. How-
ever, TLS do not have the same semantics as global vari-
ables, particularly as they have a non-constant address, pre-
venting them from being used to initialize global variables
(pattern allowed with static variables in C[18], illustrated in
Figure 15). This aspect has to our knowledge not being cov-
ered by any compiler-based privatization framework. In this
paper we propose a solution to this issue, greatly enhanc-
ing the range of codes which can be privatized. Eventually,
as for source-to-source approaches, compiler-based privati-
zation requires the program and all its libraries to be re-
compiled. Moreover it supposes that the target architecture
provides TLS support.

For runtime approaches, the GOT global privatization
technique aims at context switching the Global Offset-Table
(GOT) for each shared-object. However, the paper[29] is
unclear about how GOT context-switching is achieved when
considering multiple threads; it seems only applicable for
co-routines which are sequentially executed. Moreover, the
GOT approach is only feasible for global variables present
in position independent sections of the code, static vari-
ables being accessed through direct register offsetting. An-
other runtime approach has been proposed by Hybrid MPI
(HMPI)[12] which solved the privatization issue in a very
reliable manner, simply by avoiding it. Indeed, Hybrid MPI
relies on actual OS processes to separate ranks, but pro-
vides a modified allocator relying on a shared-memory seg-
ment. As a consequence, each MPI process has its own
stack, its own variables and code section, but the heap is
shared between processes. One limitation of HMPI is mes-
sage content located on the stack which may not be in the
shared segment and therefore not able to take advantage
of the thread-based nature of the runtime. Moreover, al-
locating a shared-memory segment between processes nec-
essarily maps physical pages, preventing the target appli-
cation to take advantage of virtual memory. As a conse-
quence, some codes oversubscribing memory may exhaust
available shared-segment space which is bound to be a sub-
set of physical memory. Nonetheless, runtime approaches
have the strong advantage of avoiding any form of recom-
pilation or patching of the target program, it makes them
very convenient to an end-user’s point of view, as a given
program may depend on a wide range of libraries some of
them being possibly installed system-wide.

To summarize, none of the global variables privatization
techniques is fully satisfying. We retained the compiler-
based transformation as it was the only one capable of trans-
posing a normal process-based program to a task-container,
while preserving the initial thread-local variable semantic,
possibly shared between multiple threads. This opens the
way to the transparent transposition of existing MPI codes
to task-containers in order to be run in a collocated manner,
a point which is crucial when considering the case of existing
codes, libraries and tools.

4. IMPLEMENTATION

In order to implement the task-container model presented
in Section 2, we had to develop an extended TLS (exTLS)
library able to manipulate several levels of TLS. This work
is based upon prior work on the MPC thread-based MPI
runtime which embedded a privatizing compiler promoting
global variables to MPI Process local variables. Our pur-

56

%fs

M2 TLS data |M1 TLS data

Dynamically-loaded Module

£~

Figure 11: TLS data-structure in the GNU-I1ibC.

pose when developing this new library was to start from
this initial MPI dependent implementation while opening it
to a wider usage and community by enriching it and the
associated programming languages (C and C++) with the
concepts it supposed abstractively: task-containers. After a
recall of the TLS implementation in the libC, we are going
to describe our extended TLS implementation. To do so,
we will first describe our work at the compiler level on TLS
wrapping and dynamic TLS initializer handling for C. Then,
we describe the exTLS runtime, introducing a multi-level
TLS data-structure. Eventually, we describe our modifica-
tions of the linker to preserve extended TLS support.

4.1 TLS Support in the libC

In order to give some context to the developments of this
paper we will first describe the initial TLS mechanism in the
Linux operating system. This description does not intend
to be exhaustive, only providing an introduction to the TLS
mechanism for users who are unfamiliar with its implemen-
tation. The GNU-C library already supports a TLS mech-
anism at the thread level; this mechanism has been exten-
sively described by Drepper|[11], it relies on multiple collab-
orating components in order to provide a convenient thread-
local variable abstraction. First the compiler has been mod-
ified to include a new keyword, __thread which informs the
compiler that a given global variable shall be duplicated for
all threads. Internally, the compiler will replace references
to these variables with a function call tls_get_addr tak-
ing two parameters: a module and an offset. The module
is associated to a compilation object, the binary or linked
libraries, each of these modules can be seen as the aggre-
gation of the .tdata and .tbss segments of the respective
ELF objects. Moreover, all the modules are allocated in
a contiguous segment in order to allow, as we will further
describe, linker-level optimizations.

As shown in Figure 11, at runtime, each thread is given a
TLS segment which is accessible directly using the fs reg-
ister (for the x86-64 architecture that we are going to fo-
cus on). This register points to the start of Thread Control
Block (TCB) containing, among other things, a pointer to
the Dynamic Thread Vector. This DTV is, in practice, an in-
direction table translating a module ID to a base address in
the contiguous TLS segment. Given these components, one
can see how practically a module plus offset tls_get_addr
call can be translated to a pointer in the TLS segment. As
far as offsets and module identifiers are concerned, they are
mostly handled by the linker during the relocation process,
through Global Offset Table (GOT) entries filled by the
loader([11].

The linker plays a very important role in TLS handling,
first taking care of the relocation of the TLS inference entries
but also more importantly optimizing TLS accesses depend-

W N =

// Resolve GOT entry (Module + Offset)
lea i@tlsgd(%rip),%rdi

// Call get_addr

call __tls_get_addr@plt

Figure 12: Global Dynamic (GD) TLS access.

ing on their context. In particular, there are four optimiza-
tion levels implemented in the GNU linker, two involving
runtime calls and two others relying on the register offset-
ting. In Figure 12, we present the assembly code associated
with the default TLS access pattern described at the begin-
ning of this section, it is the less optimized one. Note that
this access model is at the basis of the second level of opti-
mization which is Local Dynamic (LD). It simply consists in
storing the base of the TLS offset with a function call before
referencing module-local variables through direct offsetting
relatively to this base pointer stored in a register.

Direct offsetting of the %fs
// g

lea %fs:iQ@tpoff ,%rax

pointer

Figure 13: Local Exec (LE) TLS access.

In contrast, if we look at Figure 13, we see the most op-
timized access model Local Exec, which is register-based.
This optimization is only possible for TLS present in the
main binary as the offset (i@tpoff) is statically resolved
and written in the text-section of the binary. The refer-
ence register is fs and the offset is as shown in Figure 11,
negative to address the static TLS segment. Eventually, reg-
ister offsetting is also possible for shared-libraries the only
difference with the LE mode is that the offset has to be re-
solved through a GOT inference filled by the loader which
is in charge of mapping the static TLS segment at runtime.
These optimizations are applied by the linker during the re-
location process, for this reason our work on the Extended
TLS model will also cover this software component.

The runtime library is also a crucial component in TLS
handing. It first collaborates with the threading library
which is in charge of switching the TLS register (fs), then
it, of course, has to build the TLS context for each thread
by concatenating all the static TLS segments in order while
resolving related GOT entries (role of the loader). More-
over, the runtime has to handle dynamic symbol resolution
for dynamically loaded object as presented in Figure 11, in
such case, additional modules are added to the DTV and
the corresponding TLS segment is dynamically allocated.
In summary, TLS are covering the whole compilation chain,
as a consequence, our task-level container implementation
also had to spread on all these components.

4.2 Compiler-Level Extensions

We started our implementation with the MPC privatizing
GCC compiler that promoted global variables to task-local
variables. It provided us with the base for the addition of
the __process and __task levels, the original MPC compiler
only processed global variables without attributes and pro-
moted them (transparently) to task-local variables. Dealing
with thread-local variables, they were left thread-local (at
user-level thread level). However, this initial approach en-

[

57

countered several limitations, particularly in C as we will de-
scribe. First, we added the __process and __task levels to
the C front-end, defining new language keywords. Then, we
defined new TLS levels which were already partially present
in the MPC privatizing compiler. Eventually, we changed
how references to these variables were emitted to match the
function calls of Figure 14.

__process | __extls_get_addr_process
__task __extls_get_addr_task
__thread __extls_get_addr_thread

Figure 14: Substitute TLS calls associated with the
new TLS levels

The addition of these new level of TLS ended up being
relatively straightforward, it was done in a few hundred lines
of code in the GCC compiler. Note that all these TLS levels
are still managed as “normal” TLS in the sense that their
relocation and insertion in the ELF sections are done as
__thread TLSs. This saved us a lot of development time.
Note that the __process level which is in fact matching
non-privatized variables (normal globals) is also redirected
to our exTLS runtime library. We made this choice to take
full-control of all the global variables, allowing for example,
the process-level duplication of Figure 9.

Figure 15: Example of patterns posing problems
when being privatized in C.

In complement of the insertion of these new TLS levels,
we worked on the extension of the TLS support for dynamic
initializers in C. Indeed, as shown in Figure 15 in C you
can store an address to another global variable in a global
variable. When privatized, such global variable is not con-
stant anymore as by definition this global-variable address
is now different for each thread (privatized). Transparent
support for such patterns is crucial if we want to be able to
compile an arbitrary C code to the task level, as the default
compilation level in the exTLS compiler is task. Note that
dealing with the C++ case, C++11 already provides an ini-
tial support for dynamic initializers for the thread_local
keyword.

In order to enable the support for non-constant TLS ini-
tializers in C, we started with an analysis of the C++11
implementation associated with the thread_local keyword.
This support relies on the systematic wrapping of TLS vari-
ables with function calls following the pattern described in
Figure 16. The _ZTWiaX function returns a reference to
the TLS after calling a _ZTH1aX function aliased to a per
translation-unit __tls_init function with X the variable
name. In the __tls_init function, all dynamic variables
belonging to a given translation unit (TU, a preprocessed
source-file) are initialized once thanks to the guard variable.

In C, we implemented a mechanism similar to what we
found in C++11 to add support for dynamic TLS inital-
izers. This work has been done in a GCC plugin at the
exception of some modifications to the GCC C front-end to
allow non-constant TLS initalizers (at parsing time). As we

int& _ZTW1a() ()

int & D.6967;

_ZTH1a (); _ZTH1a ();
D.6967 = &a;
return D.6967;

}

void __tls_init() ()

{
bool __tls_guard.0;
bool D.6970;
inta.l;

_ tls_guard.0 = __tls_guard;

D.6970 = ~__tls_guard.0;

if (D.6970 != 0) goto <D.6971>; else goto <D.6972>;
<D.6971>:

_ tls_guard = 1;

a.l = foo ();

a=a.l;

goto <D.6974>;

<D.6972>:

<D.6974>:

Figure 16: C4++411 dynamic TLS wrapping for an in-
teger variables a initialized by a function foo() (GCC
Gimple output).

ex_TLS_w_b ()

{
tmp.3 = ex_tls_var_need_to_call_init.2;
if (tmp.3 == 1) goto <D.9940>; else goto <D«
9941 >;
<D.9941 >:
ex_tls_var_need_to_call_init.2 = 1;
mpc_TLS_per_tu_init ();
<D.9940 >:
}
ex_TLS_per_tu_init ()
{
tmp.l =ex_tls_TU_guard.O;
if (tmp.1 == 0) goto <D.9934>; else goto <D«
.9935 >
<D.9934 >:
ex_tls_TU_guard.0 = 1;
b = &a;
<D.9935>:

Figure 17: Gimple output for TLS initalizers in C
using our plugin for the pattern of Figure 15.

—

58

extern int x*b;
int xxc = &b;

Figure 18: Translation-unit depending on the extern
variable of Figure 15.

will further elaborate on, we avoided the systematic variable
wrapping which has been retained by C++11, adding a sec-
ond layer on top of the TLS resolution process and nullifying
the advantage of TLS optimizations. As shown if Figure 17,
we, however, retained the two level wrapping model with
a wrapper function per variable and then a per-translation-
unit initializer taking care of initializing all the non-constant
TLS variables for the TU.

An important design point is how we handled data depen-
dencies between TLS variables possibly scattered between
multiple translation-units. For example, looking at Figure
18, if a variable ¢ is a pointer to another dynamic vari-
able in a remote translation unit, its initialization semanti-
cally requires the initialization of b. However, when com-
piling the translation-unit of Figure 18, we cannot infer if
b is a dynamic TLS or not, or in other words, if the func-
tion ___ex_TLS_w_b exists. We solved this issue by relying
on the generated code of Figure 19. Extern TLS variables
are systematically wrapped with local static getters calling
the ex_TLS_locate_dyn_initializer function. This func-
tion simply does a dlsym of the target function, calling it if
it does exist — following our example, propagating a data-
dependency to the b of Figure 15. One of the advantages
of relying on dlsym to query dynamic initializer functions is
that the potential shadowing of global TLS variables present
in multiple shared-libraries and then depending on linking
order is correctly handled, transparently initializing the cor-
rect variable. Starting from this remote variable resolution,
dependency propagation is implemented by calling the lo-
cal wrapper for all extern TLS variables manipulated in
the ex_TLS_per_tu_init function, in this example b. These
calls are inserted at function start through an analyzing of
the internal compiler representation. During this process,
guards at both wrapper and per-translation-unit initializer
function levels are crucial to prevent any circular initializa-
tion pattern, breaking recursive chains as the guard is always
set before calling the remote initialization function. This
relatively simple code is then sufficient to correctly initialize
dynamic TLS between multiple translation-units while tak-
ing into account arbitrary dependencies between variables
through prior invocation of potential remote initializers in
the initialization function.

One point that we have not described yet is how local ini-
talizers are invoked. We tried two different approaches. The
first one consisted in patching at compilation time all func-
tions depending on TLS, inserting for each function calls to
the resolution wrapper for extern TLS (which cannot be in-
ferred as non-dynamic) and the local wrappers for local TLS
known to be dynamic. As such, each compiled function was
first checking whether TLS it may depend on were initial-
ized. This had the effect of adding several if tests at the
beginning of each function, leading to a performance impact
even if these tests were correclty inlined by the compiler.
In order to mitigate this performance impact, we then de-
veloped a second approach relying on self-introspection and

ex_TLS_w_c ()

{
tmp.3 = ex_tls_var_need_to_call_init.2;
if (tmp.3 == 1) goto <D.10013>; else goto <D«
.10014 >
<D.10014 >:
ex_tls_var_need_to_call_init.2 = 1;
mpc_TLS_per_tu_init ();
<D.10013 >:
}
___local_ex_TLS_w_b_6700841133086155300 ()
{
tmp.5 = ex_tls_var_need_to_call_init .4;
if (tmp.5 == 1) goto <D.10020>; else goto <D<«
.10021 >,
<D.10021 >:
ex_tls_var_need_to_call_init.4 = 1;

ex_locate_tls_dyn_initializer (”___mpc_.TLS_w_b<+

")
<D.10020 >:
}

ex_TLS_per_tu_init ()

local_ex_TLS_w_b_6700841133086155300 ()

tmp.l =ex_tls_TU_guard.O;

if (tmp.1 == 0) goto <D.10007>; else goto <D«
.10008 >;

<D.10007 >:

ex_tls_TU_guard.0 = 1;

c = &b

<D.10008 >:

}

Figure 19: Gimple output for TLS initalizers in C
using our plugin for the pattern of Figure 18.

Per-function
244.8

Wrapping Model
Walltime (seconds)

Introspection
94,5

Figure 20: Privatized HDF5 library test-suite
(testhdf5) sequential execution walltime in function
of the dynamic TLS wrapping model.

therefore completely avoiding wrapping. As shown in Figure
17 and 19, TLS variables with dynamic initializers are asso-
ciated with an ___ex_TLS_w_X function, with X the variable
name. Our alternative TLS initialization process relies on a
self-scanning of the symbol table in the running binary and
all its libraries in order to call all the dynamic TLS wrap-
pers prior to launching the main program. To do so, TLS
initializer functions are stored as a list of function pointers
which are invoked each time a thread is created, correctly
initializing dynamic TLS values prior to their execution.
As demonstrated by the timings of Figure 20, the intro-
spection approach is much more efficient. We tested it by
running the HDF5 sequential test-suite in a task-privatized
mode (automatic privatization) using the two aforementioned
wrapping techniques. This difference can be explained by
the high modularity of the HDF5 package, indeed, it ex-
poses its interface through global stuctures which are priva-
tized. As a consequence, most HDF5 function do reference a
TLS, requiring the addition of wrapping calls. In addition,
HDF'5 is a shared library and TLS calls cannot be optimized
between functions of the library, increasing wrapper’s over-
head. In the light of this result, introspection is the default

59

Offset Table

%gs

TLS Segments
| M2 TLS data | M1 TLS data <

| M2 TLS data | M1 TLS data [<—Ta

| M2 TLS data | M1 TLS data |<—{Th

Object Table

Figure 21: Data-structure of our exTLS library.

initialization model we retained. However, note that the
per-function model is implemented and available through a
compiler flag (-fmpc-dyn-insert). Note that the complete
support of the introspection approach required the wrap-
ping of the dlopen function calls in order to invoke TLS
initalizers when loading dynamic objects. It also required
a modification of the dynamic symbol table exports as we
will discuss in Section 4.4. Our compiler support for dy-
namic TLS initalizer in C involves less function calls than
the C++11 implementation which preferred lazy initializer
invocation instead of our either program or function start
model. We chose the direct initialization model as C forbids
complex initializers, the only non-constant case when pro-
moted to TLS being unresolvable references at compilation
time (pointer to TLS). Consequently, calling all initializers
at program start in C is not associated with potential mem-
ory or computation overhead unlike C++ which might for
example initialize complex objects.

4.3 Extended TLS Library

In the previous Section, we explained how we added mul-
tiple TLS levels by defining new get_addr function calls
matching task and process levels. Then, we detailed how
we extended the C language support in GCC to allow dy-
namic TLS initializers to handle pathological privatization
cases appearing with pointers to global variables which are
correct C initializers invalid for privatized variables. In this
section we are going to describe the runtime support asso-
ciated with task-containers. To do so, we are first going to
comment the TLS data-structure we retained, contrasting it
with the one of the 1ibC, presented in Section 4.1. Then, af-
ter explaining the TLS resolution process, we will comment
edge cases such as dynamically loaded objects.

Figure 21 presents the data-structure of our exTLS li-
brary, structure which differs from the one of the libC (see
figure 11) on several points. First, the Dynamic Thread Vec-
tor (DTV) storing a pointer to the start of each module in
the TLS segment has been removed. We replaced it with
a global (process-level) offset table containing the negative
offset from the end of the static TLS segment, value which
is thread-independent. In complement, we added a new ta-
ble, the object table, it is associated with the TLS level from
__process (Pr) to __thread (Th). This table is simply a
pointer array with a pointer to the static TLS segment for
each level. Note how we preserved the 1ibC layout by point-
ing to the segment the same way the loader handles them,
the purpose of this approach is to stay compliant with the

relocation process for GOT entries and offset calculations
— greatly simplifying our TLS implementation. Each static
TLS segment is mapped in the exact same manner as what is
done for the libC, concatenating the .tdata and allocating
a zero-filled .tbss section for each module. To ensure relo-
cation compliancy, our implementation roughly applies the
same segment reordering made by the loader. This reorder-
ing moves smalls segments if they fit in alignment paddings
created by other TLS segments. In case of GNU variant,
for instance, the process module (id 1) is on the right of the
segment and following libraries are concatenated to the left
in order.

Static TLS segments are mmaped in copy on write from a
single reference segment. As a consequence, data are allo-
cated only when the segment is modified. Copy on write is
crucial as the multiple levels of TLS require the same TLS
segment to be mapped three times per thread. Indeed, in
the ELF binary we make no difference between TLS which
are all processed and offsetted like regular __thread TLS
from the libC, all gathered in a static TLS segment strictly
identical to the one of Figure 11. This behavior is required
to avoid critical path divergence with non-modifiable com-
ponents like the loader. Consequently, the only difference
between TLS levels (at compiler output level) is the call
emitted to the exTLS runtime, matching the target level.
For example, if we compile a position independent code,
TLS accesses will not be optimized and a process-level TLS
read will be associated with a extls_get_addr_process call.
When received in the exTLS library, the runtime will know
that the offset in the object table is “0” for process level, the
module will be passed in parameter of the call and will match
the one computed by the libC loader. Using the module ID,
the base offset in the static TLS segment is retrieved from
the offset table, and the local offset (in parameter of the call)
is added to this offset to retrieve the TLS for a given thread.
As exTLS calls are handles the same as standard symbols
emitted, the loader is able to generate matching IDs and
offsets properly. This justifies why we follow the same criti-
cal path, simplifying a lot how exTLS can be integrated in
existing components.

As far as dynamically loaded modules are concerned, they
are not located in the static TLS segment (as not known at
application startup), they are allocated separately in ad-
ditional module entries (see Figure 21). The static TLS
segment associated with the module is then loaded and ref-
erenced at all levels (as a given library may contain any
type of exTLS). Dealing with dynamic lookup of TLS sym-
bols, we implemented its support for calls to dlsym with a
library handle. The library is registered upon the dlopen
call and added to the dynamic table, then the symbol off-
set is searched in the library using ELF introspection before
returning the pointer to TLS by adding it to the base of
the dynamic TLS segment. An interesting case is when a
function in a dynamically loaded library refers to a TLS en-
try (through a function call being in a position independent
code). In this case, the module id will overflow the offset
table (modules ids are generated in order by the loader) and
therefore the runtime simply substract the number of static
modules from this value to find an offset in the dynamic ta-
ble. It can then directly apply the module offset inside the
pointed TLS segment.

Looking at Figure 21, it is possible to see how inheri-
tance was implemented, simply by cloning and duplicating

60

the levels associated with the target inheritance level in the
object table, this call replacing current thread’s TLS context.
Moreover, note that it supposes that, by default, exTLS are
preserved between threads, the creation of individual con-
texts now being explicit except for the thread level which
is always defined at the execution-stream level. Eventually,
in addition to the low-level TLS handling, our exTLS run-
time had to provide some additional features to correctly
transpose processes to task-containers. In particular, our li-
brary provides its own implementation of the atexit function
call, invoking it for tasks instead of the main OS Process.
Similarly, C++ destructor for thread_local objects had to
be redirected to our runtime. Such support appeared to be
compulsory to successfully privatize common libraries such
as HDF5 (atexit) and TBB (global object destructors).

We have presented the runtime implementation of our
TLS model, introducing its components and data-structures.
Next Section is going to focus on the work done in the linker
in order to preserve the support for optimized TLS.

4.4 Linker-Level Extensions

The linker plays an important role in the optimization of
TLS during the relocation process. It replaces invocations of
the TLS runtime through function calls with register based
offsetting as previously discussed in Section 4.1. Normal
TLSs are relying on fs as a segment register to directly
point to TLS addresses, as for example in the LE optimiza-
tion level. In our case, we implemented TLS optimizations
by relying on the gs register, which is free on x86_64 archi-
tecture, this allows our TLS to be used conjointly with libC
TLS, relying on the fs register. The implementation of these
optimization levels has been greatly simplified by our choice
of preserving the layout of the static TLS segment. We did
not need to rewrite all the GOT inferences generated for
“normal” TLSs as the offset calculated for the original TLS
model is still valid in the exTLS model. We modified assem-
bler generation to include the notion of level, for example,
if the target is the task level, the gs register is offsetted to
the correct cell in the object table. Then the pointer to the
matching static TLS segment is dereferenced before being
offsetted (either from the GOT or directly inline in the code)
to retrieve the TLS pointer. This support for optimized TLS
requires that static TLS modules be allocated prior to the
execution as direct accesses are possible, this is done in copy
and write in order not to waste memory particularly as only
a subset of the TLS contained in the static TLS segment
may be used at a given level. These modifications allowed
us to support all the TLS optimization levels present in the
GNU-linker, enabling efficient exTLS support.

Another aspect that we had to modify in the linker is
dynamic symbol export in the case of runtime resolved func-
tions: remote initializers ___ex_TLS_w_X. Indeed, in the main
binary (static program) these functions may not be exported
to the dynamic symbol table and therefore not resolvable
through dlsym. We modified the linker to export functions
matching this name class in the dynamic symbol table, in-
cluding those of the main binary, allowing us to rely on d1sym
to resolve these symbols with a correct handling of library
ordering — point which would have been much more complex
to implement otherwise.

This concludes our discussion of linker-level modifications
which remained quite reduced thanks to our approach of
preserving the layout of the static TLS segment. Now that

we covered all the components of our exTLS implementa-
tion, allowing the task-container abstraction, we are going
to present a sample use case using the MPI runtime for which
privatized TLS were developed, MPC.

5. USING TLS IN MPC

The library and the facilities we develop in this paper
find their origin in the extended TLS of the MPC run-
time[23]. As a thread-based MPI+OpenMP runtime, MPC
runs MPI Processes inside threads (to be more specific, user-
level threads), rather than UNIX processes. Running in-
side user-level threads has several advantages|[23, 16], among
which are:

e Abstracting the underlying kernel, avoiding system calls;

e Avoiding busy waiting, allowing other threads to be
scheduled instead;

e Allowing over-subscription of hardware resources, for
example, by running hundreds of MPI tasks on a single
core;

e Limiting the number of processes, shared libraries to
load, communication buffers to allocate and overall
launch time (one process per node instead of per core).

However, in order to benefit from these improvements,
the code has to be “transposed” to threads, in particular, re-
quiring global variables to be handled. Indeed, such variable
are by default shared between all threads, and can result in
execution behavior which differs from what is expected by
an MPI code running inside UNIX processes. Because most
MPT applications are developed with Process-based MPI in
mind, it was clear that requiring users to remove global vari-
ables was not practical. Instead, techniques based on auto-
matic compiler privatization are necessary in order to port
existing codes. This led to the development of the extended
TLS support for purposes of running unmodified MPI codes
inside user-level threads.

In addition, it appeared that variables should not only be
privatized at thread level, but that the TLS library would
have to handle a hierarchy of TLS context. A simple ex-
ample of hierarchical context is when an OpenMP parallel
region is executed in the context of an MPI Process itself
running inside a thread. The developer expects a rank vari-
able with the MPI rank to be the same between all threads
of the same team. A similar issue appears with the OpenMP
thread-private clause which transposes to a copy per user-
level thread (and not per MPI process). This support[4] has
been developed inside MPC and validated using NAS-MZ
benchmarks. It is now provided inside the exTLS library in
order to allow hybrid MPI4+X programming. Note that the
exTLS library does provide the __openmp keyword which is
equivalent to the thread-private level for convenience.

Hierarchical contexts are also of interest in relation to
memory consumption. Indeed, there are several codes which
depend on large constant tables, for example, to define ma-
terial state or molecular proprieties. A process-based MPI
code would require the use of a shared-memory window to
store such data. This is not straightforward, particularly as
it forbids the direct use of global variables requiring dedi-
cated code. With MPC defined on top of extended TLS, the
Hierarchical Local Storage (HLS) [26] language extensions

61

allow variables to be topologically located. Using prag-
mas a developer may portably move a variable to a shared
memory location. For example, a single node-level variable
could be used instead of n copies, with n the number of
cores per node. HLS also provides synchronization primi-
tives to collectively update shared variables. On the con-
trary, a developer may duplicate a variable at cache level
in oder to limit the false-sharing ratio. HLS allows this as
well. HLS was validated with several benchmarks and rep-
resentative codes[26]. Improvements with respect to cache
efficiency (replication) and to memory usage (factorization)
were demonstrated. The exTLS library does provide these
functionalities using the pragma interface.

In this section, we have shown three direct applications
of the exTLS library, validated in the context of the MPC
thread-based runtime: (1) privatization, (2) OpenMP sup-
port in user-level thread context [4], and (3) topological stor-
age[26]. These features are now contained in the exTLS li-
brary shipped with MPC|[5], bringing previous developments
and the contributions of this paper in a documented manner
to the community.

6. CONCLUSION

In this paper we introduced the notion of task contain-
ers, defining a new TLS level between __thread and global
variables. We first illustrated the advantage of such an
approach, with In-Situ, IO related examples and shared-
runtimes. This method allows processing to be combined
simply by linking or preloading shared-libraries. Then, we
introduced context inheritance which aims at building con-
tainers inside a shared-memory process, defining the asso-
ciated interface and the context swapping principle, provid-
ing an efficient abstraction for shared-memory collocation.
Next, we presented in detail our extended TLS implemen-
tation in contrast with the TLS support currently present
in the GNU-1ibC. We described our extensions to the C lan-
guage and how these keywords are handled. Then we pre-
sented the exTLS library explaining its operation and struc-
ture. Eventually, after explaining how we preserved linker-
level optimization we briefly illustrated the integration of the
exTLS library in the MPC thread-based MPI implementa-
tion, illustrating task-containers in an MPI context.

By outlining this intermediate task-container level at lan-
guage and TLS level, our purpose was to provide the missing
component for runtimes willing to emulate or transpose OS
processes inside threads. Our initial example has, of course,
been the MPC thread-based MPI runtime, but as we illus-
trated at the beginning of this paper, we are convinced that
by changing the way MPI Process boundaries are defined,
new interesting uses of MPI + X could be defined. For ex-
ample, a GPU runtime could be shared between multiple
tasks, a staging IO layer could be addressed directly, In-
Situ analytics could borrow MPI contexts, an OpenMP run-
time could be shared between multiple libraries (outside of
the MPI container), all this using the inheritance principle
and the added possibility of gathering threads in a task-
container. This has the effect of simplifying model mixing
which was previously viewed in a stacked manner due to the
compulsory MPI container (launch layer). In our model,
this is no longer true as processing could be defined along-
side the computation. The exTLS library will be distributed
in open-source with its associated patched GCC compiler,
linker and privatization plugin from the MPC website[5] as

part of the MPC runtime. It aims at providing its abstrac-
tions to a wide variety of runtimes and applications. Our
purpose is to ease the expression of collocated processing
in shared-memory context by introducing a runtime agnos-
tic interface. Interface which may find a direct application
when considering the transition of existing codes to new MPI
contexts such as endpoints or Sessions.

7. FUTURE WORK

Considering Figure 2 and its multiple main functions, we
want to investigate the possibility of defining multi-main
binaries. Thanks to the exTLS model, multiple libraries
containing individual mains could be used to build a con-
stellation of services collaborating inside a shared-memory
context in task-containers. Moreover, by introducing a re-
source negotiation phase during sub-main launch, libraries
could dynamically negotiate resources in the context of a
many-core node. We see such extension as a promising way
of expressing In-Situ analytics in a runtime agnostic fashion.

8. ADDITIONAL AUTHORS

Allen D. Malony (ParaTools Inc., malony@paratools.com)

9. REFERENCES

[1] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L.
Lee, B. P. Miller, and M. Schulz. Stack trace analysis
for large scale debugging. In 2007 IEEE International
Parallel and Distributed Processing Symposium, pages
1-10, March 2007.

[2] J.-B. Besnard, A. Malony, S. Shende, M. Pérache,

P. Carribault, and J. Jaeger. An mpi halo-cell
implementation for zero-copy abstraction. In
Proceedings of the 22Nd Furopean MPI Users’ Group
Meeting, EuroMPI "15, pages 3:1-3:9, New York, NY,
USA, 2015. ACM.

[3] J. B. Besnard, M. Pérache, and W. Jalby. Event
streaming for online performance measurements
reduction. In 2013 42nd International Conference on
Parallel Processing, pages 985-994, Oct 2013.

[4] P. Carribault, M. Pérache, and H. Jourdren. Enabling
Low-Overhead Hybrid MPI/OpenMP Parallelism with
MPC, pages 1-14. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[5] CEA/ParaTools. MPC Website.
http://mpc.hpcframework.paratools.com/, 2016.

[6] B. Chapman, T. Curtis, S. Pophale, S. Poole,

J. Kuehn, C. Koelbel, and L. Smith. Introducing
openshmem: Shmem for the pgas community. In
Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, PGAS ’10,
pages 2:1-2:3, New York, NY, USA, 2010. ACM.

[7] L. Dagum and R. Menon. OpenMP: An Industry
Standard API for Shared-Memory Programming.
IEEE Computational Science and Engineering,
5(1):46-55, 1998.

[8] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir,
and R. Thakur. Enabling mpi interoperability through
flexible communication endpoints. In Proceedings of
the 20th European MPI Users’ Group Meeting,
EuroMPI ’13, pages 13-18, New York, NY, USA,
2013. ACM.

62

[9] J. Dongarra, P. Beckman, T. Moore, P. Aerts,

G. Aloisio, J.-C. Andre, D. Barkai, J.-Y. Berthou,

T. Boku, B. Braunschweig, F. Cappello, B. Chapman,
X. Chi, A. Choudhary, S. Dosanjh, T. Dunning,

S. Fiore, A. Geist, W. Gropp, R. Harrison, M. Hereld,
M. Heroux, A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa,
F. Johnson, S. Kale, R. Kenway, D. Keyes, B. Kramer,
J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,

B. Maccabe, S. Matsuoka, P. Messina, P. Michielse,
B. Mohr, M. S. Mueller, W. E. Nagel, H. Nakashima,
M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf,

D. Skinner, M. Snir, T. Sterling, R. Stevens,

F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J. Taylor,
R. Thakur, A. Trefethen, M. Valero, A. van der Steen,
J. Vetter, P. Williams, R. Wisniewski, and K. Yelick.
The international exascale software project roadmap.
International Journal of High Performance Computing
Applications, 25(1):3-60, 2011.

M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak,

G. Antoniu, and B. Raffin. Lessons learned from
building in situ coupling frameworks. In Proceedings of
the First Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization,
ISAV2015, pages 19-24, New York, NY, USA, 2015.
ACM.

U. Drepper. Elf handling for thread-local storage.
Technical report, Technical report, Red Hat, Inc.
http://people.redhat.com/drepper/tls.pdf, 2013.

A. Friedley, G. Bronevetsky, T. Hoefler, and

A. Lumsdaine. Hybrid mpi: Efficient message passing
for multi-core systems. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC '13,
pages 18:1-18:11, New York, NY, USA, 2013. ACM.
A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine,
and C.-C. Ma. Ownership passing: Efficient
distributed memory programming on multi-core
systems. SIGPLAN Not., 48(8):177-186, Feb. 2013.

T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski,
and M. S. Miiller. Mpi runtime error detection with
must: Advances in deadlock detection. Sci. Program.,
21(3-4):109-121, July 2013.

T. Hoefler and A. Lumsdaine. Message progression in
parallel computing - to thread or not to thread? In
2008 IEEFE International Conference on Cluster
Computing, pages 213-222, Sept 2008.

C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI,
pages 306-322. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

Intel. User and Reference Guide for the Intel C++
Compiler 14.0.
https://software.intel.com/en-us/node/513001, 2014.
I. ISO. Tec 9899: 2011 information
technology-programming languages-c. International
Organization for Standardization, Geneva,
Switzerland, 27:59, 2011.

J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor
high-performance programming. Newnes, 2013.

R. Latham, W. Gropp, R. Ross, and R. Thakur.
Extending the MPI-2 Generalized Request Interface,
pages 223-232. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B.
Ross, G. Grider, A. Crume, and C. Maltzahn. On the
role of burst buffers in leadership-class storage
systems. In Proceedings of MSST/SNAPI 2012, Pacific
Grove, CA, 04/2012 2012.

S. Negara, G. Zheng, K.-C. Pan, N. Negara, R. E.
Johnson, L. V. Kalé, and P. M. Ricker. Automatic
MPI to AMPI Program Transformation Using
Photran, pages 531-539. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

M. Pérache, H. Jourdren, and R. Namyst. MPC: A
Unified Parallel Runtime for Clusters of NUMA
Machines, pages 78-88. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

H. Sankaranarayanan and P. A. Kulkarni.
Source-to-source refactoring and elimination of global
variables in ¢ programs. Journal of Software
Engineering and Applications, 2013.

J. E. Stone, D. Gohara, and G. Shi. Opencl: A
parallel programming standard for heterogeneous
computing systems. Computing in Science and
Engineering, 12(3):66-73, 2010.

M. Tchiboukdjian, P. Carribault, and M. Pérache.
Hierarchical local storage: Exploiting flexible
user-data sharing between mpi tasks. In Parallel
Distributed Processing Symposium (IPDPS), 2012
IEEFE 26th International, pages 366-377, May 2012.
P. Tu and D. Padua. Compiler optimizations for
scalable parallel systems. In S. Pande and D. P.
Agrawal, editors, Compiler optimizations for scalable
parallel systems, chapter Automatic Array
Privatization, pages 247-281. Springer-Verlag New
York, Inc., New York, NY, USA, 2001.

S. Wienke, P. Springer, C. Terboven, and D. an Mey.
OpenACC — First Ezxperiences with Real-World
Applications, pages 859-870. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

G. Zheng, S. Negara, C. L. Mendes, L. V. Kale, and
E. R. Rodrigues. Automatic handling of global
variables for multi-threaded mpi programs. In
Proceedings of the 2011 IEEE 17th International
Conference on Parallel and Distributed Systems,
ICPADS ’11, pages 220-227, Washington, DC, USA,
2011. IEEE Computer Society.

63

