
Identifying Optimization Opportunities
Within Kernel Execution in GPU Codes

Robert Lim(B), Allen Malony, Boyana Norris, and Nick Chaimov

Performance Research Laboratory, High-Performance Computing Laboratory,
University of Oregon, Eugene, OR, USA

{roblim1,malony,norris,nchaimov}@cs.uoregon.edu
http://tau.uoregon.edu

Abstract. Tuning codes for GPGPU architectures is challenging because
few performance tools can pinpoint the exact causes of execution bottle-
necks. While profiling applications can reveal execution behavior with a
particular architecture, the abundance of collected information can also
overwhelm the user. Moreover, performance counters provide cumulative
values but does not attribute events to code regions, which makes identify-
ing performance hot spots difficult. This research focuses on characterizing
the behavior of GPU application kernels and its performance at the node
level by providing a visualization and metrics display that indicates the
behavior of the application with respect to the underlying architecture.
We demonstrate the effectiveness of our techniques with LAMMPS and
LULESH application case studies on a variety of GPU architectures. By
sampling instruction mixes for kernel execution runs, we reveal a variety
of intrinsic program characteristics relating to computation, memory and
control flow.

1 Introduction

Scientific computing has been accelerated in part due to heterogeneous archi-
tectures, such as GPUs and integrated manycore devices. Parallelizing appli-
cations for heterogeneous architectures can lead to potential speedups, based
on dense processor cores, large memories and improved power efficiency. The
increasing use of such GPU-accelerated systems has motivated researchers to
develop new techniques to analyze the performance of these systems. Character-
izing the behavior of kernels executed on the GPU hardware can provide feed-
back for further code enhancements and support informed decisions for compiler
optimizations.

Tuning a workload for a particular architecture requires in-depth knowl-
edge of the characteristics of the application [19]. Workload characterization for
general-purpose architectures usually entails profiling benchmarks with hard-
ware performance counters and deriving performance metrics such as instruc-
tions per cycle, cache miss rates, and branch misprediction rates. This approach
is limited because hardware constraints such as memory sizes and multiproces-
sor cores are not accounted for and can strongly impact the workload charac-
terization. Moreover, the current profiling methods provide an overview of the
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behaviors of the application in a summarized manner without exposing sufficient
low-level details.

Performance tools that monitor GPU kernel execution are complicated by the
limited hardware support of fine-grained kernel measurement and the asynchro-
nous concurrency that exists between the CPU and GPU. With so many GPUs
available, identifying which applications will run best on which architectures is
not straightforward. Applications that run on GPU accelerators are treated like
a black box, where measurements can only be read at the start and stop points
of kernel launches. Moreover, the difficulty of tracking and distinguishing which
tasks are associated with the CPU versus the GPU makes debugging heteroge-
neous parallel applications a very complicated task. Thus, analyzing static and
dynamic instruction mixes can help identify potential performance bottlenecks
in heterogeneous architectures.

1.1 Motivation

Heterogeneous computing presents many challenges in managing the diverse
architectures, high-speed networks, interfaces, operating systems, communica-
tion protocols and programming environments. For GPUs, more computational
units exist over memory, and PCI bus transfers are limited in latency and capac-
ity (fixed GB/sec). Thus, applications that provide parallelism opportunities
will benefit most on GPUs. Algorithms with efficient partitioning or mapping
strategies are needed to exploit heterogeneity, while syntax directives such as
OpenMP and OpenACC facilitate in program productivity. Tools need to be
able to measure the individual heterogeneous components to assess the applica-
tion’s performance behavior.

Performance measurements for GPUs are typically collected using the event
queue method [14], where an event is injected into the stream immediately before
and after the computation kernel. Performance frameworks such as TAU, PAPI,
Intel VTune and NVIDIA nvprof provide this capability [1–3,17], where regions
of code are annotated with start/stop calls surrounding kernel execution.

Hardware performance counters are often used to monitor application per-
formance, where measurements can be collected through either instrumentation
or sampling. Drawbacks of using hardware performance counters include over-
counts of results, lack of support across architecture vendors, incompatibilities
of events and counters, limited number of hardware counters, and inability to
pinpoint transient behavior in program runs [13,18].

In Fig. 1, we show a time series of hardware counters sampled in the GPU, a
capability we’ve added in TAU, and kernels that were executed for the LULESH
application. The plot reveals spikes in the hardware samples for the application.
However, one cannot correlate those spikes to the dense regions of activities in
source code. If timestamps were used to merge GPU events with CPU events for
purposes of performance tracing, the times will need to be synchronized between
host and device [5], as the GPU device has a different internal clock frequency
than the host. Using timestamps to merge profiles may not be sufficient, or even
correct. Thus, optimizing and tuning the code would require a best guess effort
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Fig. 1. Sampled hardware counters of instructions executed and active cycles (left) and
individual kernel executions (right), both for LULESH (Color figure online).

of where to begin. This motivates our exploration of the use of instruction type
mixes in aiding the analysis of potential performance bottlenecks.

1.2 Contributions

In our work, we perform static analysis on CUDA binaries to map source text
regions and generate instruction mixes based on the CUDA binaries. We define
instruction mix as the types of operation codes in GPU programming [12]. This
feature is integrated with TAU to sample region runs on the GPU. We also
provide visualization and analysis to identify GPU hotspots and optimization
opportunities. This helps the user better understand the application’s runtime
behavior. In addition, we repeatedly sample instructions as the application exe-
cutes. To the knowledge of the authors, this work is the first attempt at gaining
insight on the behavior of kernel applications on GPUs in real time. With our
methodology, we can also identify whether an application is compute-bound,
memory-bound, or relatively balanced.

2 Background

The TAU Parallel Performance Framework [17] provides scalable profile and
trace measurement and analysis for high-performance parallel applications. TAU
provides tools for source instrumentation, compiler instrumentation, and library
wrapping that allows CPU events to be observed. TAU also offers parallel profil-
ing for GPU-based heterogeneous programs, by providing library wrappings of
the CUDA runtime/driver API and preloading of the wrapped library prior to
execution. Each call made to a runtime or driver routine is intercepted by TAU
for measurement before and after calling the actual CUDA routine.

TAU CUPTI Measurements. TAU collects performance events for CUDA
GPU codes asynchronously by tracing an application’s CPU and GPU activity
[14]. An activity record is created, which logs CPU and GPU activities. Each
event kind (e.g. CUpti ActivityMemcpy) represents a particular activity.



188 R. Lim et al.

Fig. 2. Overview of our proposed methodology.

CUDA Performance Tool Interface (CUPTI) provides two APIs, the Callback
API and the Event API, which enables the creation of profiling and tracing tools
that target CUDA applications. The CUPTI Callback API registers a callback
in TAU and is invoked whenever an application being profiled calls a CUDA
runtime or driver function, or when certain events occur in the CUDA driver.
CUPTI fills activity buffers with activity records as corresponding activities
occur on the CPU and GPU. The CUPTI Event API allows the tool to query,
configure, start, stop, and read the event counters on a CUDA enabled device.

3 Methodology

Our approach to enabling new types of insight into the performance characteris-
tics of GPU kernels includes both static and dynamic measurement and analysis.

3.1 Static Analysis

Each CUDA code is compiled with CUDA 7.0 v.7.0.17, and the “-g -lineinfo”
flags, which enables tracking of source code location activity within TAU. Each
of the generated code from nvcc is fed into cuobjdump and nvdisasm to statically
analyze the code for instruction mixes and source line information. The generated
code is then monitored with TAU, which collects performance measurements and
dynamically analyzes the code variants.

Binary Utilities. CUDA binaries are disassembled with the binary utilities
provided by the NVIDIA SDK. A CUDA binary (cubin) file is an ELF-formatted
file, or executable and linkable format, which is a common standard file format
for representing executables, object code, shared libraries and core dumps. By
default, the CUDA compiler driver nvcc embeds cubin files into the host exe-
cutable file.

Instruction Breakdown. We start the analysis by categorizing the executed
instructions from the disassembled binary output. Figure 3 displays the instruc-
tion breakdown for individual kernels in LULESH and LAMMPS applications
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Fig. 3. Instruction breakdown for M2090, K80, and M6000 for individual kernels in
LULESH and LAMMPS applications (Color figure online).

for M2090, K80 and M6000 architectures (one per generation). For LAMMPS,
the PK kernel shows more computational operations, whereas FII and PBC
shows more move operations. For the LULESH kernels CKE, CMG, and CE2
we observe more compute-intensive operations, as well as branches, and moves.
One thing to note is that the Maxwell architectures (M6000) in general shows
more compute operations for all kernels, when compared with Tesla.

3.2 Dynamic Analysis

The TAU Parallel Performance System monitors various CUDA activities,
such as memory transfers and concurrent kernels executed. TAU also tracks
source code locator activities, as described below. Hardware counter sampling
for CUPTI is also implemented in TAU and is enabled by passing the “ebs”
flag to the tau exec command line [15]. In addition, the environment variable
TAU METRICS is set with events to sample. TAU lists CUPTI events available for
a particular GPU with the tau cupti avail command. For our experiments,
we monitored instructions executed and active cycles, since those events are
available across all GPUs.

Source Code Locator Activity. Source code locator information is an activity
within the CUPTI runtime environment that makes possible logging of CUPTI
activity. Instructions are sampled at a fixed rate of 20 ms. Within each sample,
the following events are collected: threads executed, instructions executed, source
line information, kernels launched, timestamps, and program counter offsets.
Our research utilizes the information collected from the source code locator and
instruction execution activities. The activity records are collected as profiles and
written out to disk for further analysis.

Runtime Mapping of Instruction Mixes to Source Code Location.
Using the source locator activity discussed in Sect. 3.2, we statically collect
instruction mixes and source code locations from generated code and map the
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instruction mixes to the source locator activity as the program is being run.
The static analysis of CUDA binaries produce an objdump file, which provides
assembly information, including instruction operations, program counter offsets,
and line information. We attribute the static analysis from the objdump file to
the profiles collected from the source code activity to provide runtime charac-
terization of the GPU as it is being executed on the architecture. This mapping
of static and dynamic profiles provides a rich understanding of the behavior of
the kernel application with respect to the underlying architecture.

3.3 Instruction Operation Metrics

We define several instruction operation metrics derived from our methodology as
follows. These are examples of metrics that can be used to relate the instruction
mix of a kernel with a potential performance bottleneck. Let opj represent the
different types of operations as listed in [12], timeexec equal the time duration
for one kernel execution (ms), and callsn represent the number of unique kernel
launches for that particular kernel.

Efficiency metric describes flops per second, or how well the floating point
units are effectively utilized:

efficiency =
opfp + opint + opsimd + opconv

timeexec
· callsn (1)

Impact metric describes the performance contribution (operations executed)
for a particular kernel j with respect to the overall application:

impact =

∑
j∈J opj

∑
i∈I

∑
j∈J opi,j

· callsn (2)

Individual metrics for computational intensity, memory intensity and control
intensity can be calculated as follows:

FLOPS =
opfp + opint + opsimd + opconv∑

j∈J opj
· callsn (3)

MemOPS =
opldst + optex + opsurf∑

j∈J opj
· callsn (4)

CtrlOPS =
opctrl + opmove + oppred∑

j∈J opj
· callsn (5)

4 Analysis

4.1 Applications

LAMMPS. The Large-scale Atomic/Molecular Massively Parallel Simula-
tor [16] is a molecular dynamics application that integrates Newton’s equa-
tions of motion for collections of atoms, molecules, and macroscopic particles.
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Developed by Sandia National Laboratories, LAMMPS simulates short- or long-
range forces with a variety of initial and/or boundary conditions. On parallel
machines, LAMMPS uses spatial-decomposition techniques to partition the sim-
ulation domain into small 3D sub-domains, where each sub-domain is assigned
to a processor. LAMMPS-CUDA offloads neighbor and force computations to
GPUs while performing time integration on CPUs. In this work, we focus on the
Lennard-Jones (LJ) benchmark, which approximates the interatomic potential
between a pair of neutral atoms or molecules.

LULESH. The Livermore Unstructured Lagrange Explicit Shock Hydrody-
namics (LULESH) [8] is a highly simplified application that solves a Sedov blast
problem, which represents numerical algorithms, data motion, and program-
ming styles typical in scientific applications. Developed by Lawrence Livermore
National Laboratory as part of DARPA’s Ubiquitous High-Performance Com-
puting Program, LULESH approximates the hydrodynamics equation discretely
by partitioning the spatial problem domain into a collection of volumetric ele-
ments defined by a mesh. LULESH is built on the concept of an unstructured
hex mesh, where a node represents a point where mesh lines intersect. In this
paper, we study the LULESH-GPU implementation with TAU.

4.2 Methodology

We profile LULESH and LAMMPS applications on seven different GPUs (listed
in [12]) by using the TAU Parallel Performance System. Next, we calculate the
performance of the kernel for one pass. Then, we apply the metrics from Sect. 3.3
to identify potentially poorly performing kernels that can be optimized. Note
that callsn, which represents the number of times a particular routine is called,
can easily be collected with TAU profiling. The overhead associated with running
the static analysis of our tool is equivalent to compiling the code and running
the objdump results through a parser.

4.3 Results

Figure 5 shows statically analyzed heatmap representations for LAMMPS and
LULESH on various architectures. The x-axis represents the kernel name (listed
in Appendix of [12]), while the y-axis lists the type of instruction mix. For
LAMMPS, overall similarities exist within each architecture generation (Tesla
vs. Maxwell), where Maxwell makes greater use of the control and floating-point
operations, while Tesla utilizes conversion operations. The GTX980 makes use of
predicate instructions, as indicated on the top row of the bottom-middle plot. For
LULESH, more use of predicate and conversion operations show up in Fermi and
Tesla architectures, versus Maxwell which utilizes SIMD instructions for both
AF1 and AF2 kernels. Load/store instructions are particularly heavy in M2090
and the GTX480 for the CKE kernel.



192 R. Lim et al.

Fig. 4. Metrics for individual kernel execution in LULESH and LAMMPS applications
(Color figure online).

Figure 4 displays normalized metrics for FLOPS, control operations and
memory operations for the top five poor performing kernels, determined by
the impact metric (Eq. 2, Fig. 6b). Generally speaking, ideal kernel performance
occurs in balanced FLOPS and memory operations, and low branch operations.
FLOPS and branches were higher in general for LULESH on the Maxwell archi-
tectures, when compared to Tesla. The M2090 architecture showed higher mem-
ory operations for the CKE kernel and for all LAMMPS kernels. The M2090 has
a smaller global memory compared to Tesla (5 GB vs 11.5 GB), and a smaller
L2 cache compared to Maxwell (0.8 MB vs. 3.1 MB), which explains its poor
memory performance.

Figure 6a compares divergent branches over total instructions in GPU codes
using hardware counters and instruction mix sampling for the top twelve kernels
in LULESH, calculated with the CtrlOPS metric. The kernels that are closest
to the y-axis represent divergent paths that weren’t detected with hardware
counters (about 33 %), which further affirms the counter’s inconsistencies in
providing accurate measurements. Our methodology was able to precisely detect
divergent branches for kernels that exhibited that behavior.

Figure 7 shows the correlation of computation intensity with memory inten-
sity (normalized) for all seven architectures for the LAMMPS application. For
static input size independent analysis (left), differences in code generated are
displayed for different architectures. However, the figure in the right shows the
instruction mixes for runtime data and reflects that there isn’t much of a dif-
ference in terms of performance across architectures. The differences between
dynamic and static results are primarily due to the lack of control flow infor-
mation in the static analysis, which will be added in future. While this addition
will likely improve the match between the static and dynamic instruction counts,
there will always be some discrepancies because not all dynamic behavior can
be inferred from the static code for most codes. Nevertheless, by using our sta-
tic analysis tool, we were able to identify four of the top five time-consuming
kernels based only on instruction mix data. The static instruction mixes provide
qualitatively comparable information, which can be used to guide optimizations.
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Fig. 5. Heatmap for micro operations for LULESH and LAMMPS benchmarks on
various GPU architectures (Color figure online).

Fig. 6. Two approaches to measuring divergent branches in LULESH: instruction mix
sampling, and hardware counters. Kernel impact on overall application in LAMMPS.
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Fig. 7. Static (left) and dynamic (right) analyses for various architectures showing
performance of individual kernels in LAMMPS (Color figure online).

5 Related Work

There have been attempts to assess the kernel-level performance of GPUs. How-
ever, not much has been done to provide an in-depth analysis of activities that
occur inside the GPU.

Distributed with CUDA SDK releases, NVIDIA’s Visual Profiler (NVP) [2]
has a suite of performance monitoring tools that focuses on CUDA codes. NVP
traces the execution of each GPU task, recording method name, start and end
times, launch parameters, and GPU hardware counter values, among other infor-
mation. NVP also makes use of the source code locator activity by displaying
source code alongside PTX assembly code. However, NVP doesn’t quantify the
use of instruction mixes which differs from our work.

G-HPCToolkit [4] characterizes kernel behavior by looking at idleness analy-
sis via blame-shifting and stall analysis for performance degradation. In this
work, the authors quantify CPU code regions that execute when a GPU is idle,
or GPU tasks that execute when a CPU thread is idle, and accumulate blame
to the executing task proportional to the idling task. Vampir [11] also does per-
formance measurements for GPUs. They look at the trace execution at the start
and stop times and provide a detailed execution of timing of kernel execution,
but do not provide activities that behave inside the kernel. The authors [9] have
characterized PTX kernels by creating an internal representation of a program
and running it on an emulator, which determines the memory, control flow and
parallelism of the application. This work closely resembles ours, but differs in
that we perform workload characterization on actual hardware during execution.

Other attempts at modeling performance execution on GPUs can be seen in
[7] and [10]. These analytical models provide a tractable solution to calculate
GPU performance when given input sizes and hardware constraints. Our work
is complementary to those efforts, in that we identify performance execution of
kernels using instruction mixes.
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6 Conclusion and Future Work

Monitoring performance on accelerators is difficult because of the lack of visi-
bility in GPU execution and the asynchronous behavior between the CPU and
GPU. Sampling instruction mixes in real time can help characterize the appli-
cation behavior with respect to the underlying architecture, as well as identify
the best tuning parameters for kernel execution.

In this research, we provide insight on activities that occur as the kernel
executes on the GPU. In particular, we characterize the performance of execution
at the kernel level based on sampled instruction mixes. In future work, we want
to address the divergent branch problem, a known performance bottleneck on
accelerators, by building control flow graphs that model execution behavior. In
addition, we plan to use the sampled instruction mixes to predict performance
parameters and execution time for the Orio code generation framework [6]. The
goal is to substantially reduce the number of empirical tests for kernels, which
will result in rapid identification of best performance tuning configurations.
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