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Abstract—Particle advection is a foundational operation
for many flow visualization techniques, including streamlines,
Finite-Time Lyapunov Exponents (FTLE) calculation, and
stream surfaces. The workload for particle advection problems
varies greatly, including significant variation in computational
requirements. With this study, we consider the performance
impacts from hardware architecture on this problem, studying
distributed-memory systems with CPUs with varying amounts
of cores per node, and with nodes with one to three GPUs. Our
goal was to explore which architectures were best suited to
which workloads, and why. While the results of this study will
help inform visualization scientists which architectures they
should use when solving certain flow visualization problems, it
is also informative for the larger HPC community, since many
simulation codes will soon incorporate visualization via in situ
techniques.
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I. INTRODUCTION

The hardware architectures on nodes of supercomputers

are becoming increasingly varied. Some supercomputers

have nodes with relatively modest computational capa-

bilities, for example nodes that contain only four cores.

Other supercomputers have individual nodes that have very

high computational capabilities that could be considered

supercomputers themselves, for example nodes that contain

multiple accelerators (e.g., multiple GPUs). And many su-

percomputers have nodes that lie between these extremes,

with dozens of cores per node, or the presence of just a

single accelerator.

With this study, we consider diverse hardware architec-

tures in the context of “particle advection.” Particle advec-

tion – displacing particles so that they are tangent to the

velocity field – is a foundational element for many visual-

ization algorithms for flow analysis, including streamlines,

pathlines, stream surfaces, and calculating Finite-Time Lya-

punov Exponents (FTLE). Particle advection is a particularly

difficult form of a non-embarrassingly parallel algorithm,

as the work needed to complete the problem is data de-

pendent and thus not known a priori. Further, the workload

across particle advection problems can change dramatically.

Streamline calculation typically involves advecting few par-

ticles for long distances, while FTLE calculation typically

involves advecting many particles for short distances. In

turn, studies considering this problem should examine a

range of scenarios, varying over particle count, distance

traveled, and vector field. Finally, visualization and analysis

is increasingly being performed in an in situ setting [1],

where visualization and analysis is performed at the same

time as the simulation, and using some of its resources. This

usage modality increases the need for understanding particle

advection over many architectures.

This study is an extension of our previous work [2], which

compared the performance of particle advection problems

between CPU and GPU clusters. In this work, we aim to

better understand performance over a spectrum of computa-

tion capabilities, and we do this by expanding the hardware

configurations considered from two (one CPU configuration

and one GPU configuration) to eleven. The result allows us

to explore our fundamental research question: What are the
relationships between execution time and architecture for
particle advection problems? An important contribution of

this paper is exploring this relationship from the perspective

of high performance computing systems, specifically evalu-

ating the usefulness of the compute capabilities provided on

a supercomputer node for a complex data-intensive problem.

Another important contribution of this paper is the insights

it provides for visualization scientists who are studying

flow visualization problems. These scientists are actually

faced with two related problems. First, when running in
situ, what techniques can they employ that will fit within

the constraints of the overall simulation? In this case, the

hardware configuration is set, and the visualization scientist

must choose an appropriate particle advection workload.

Second, when running a stand-alone visualization program,

what hardware should a visualization scientist choose to

solve a given particle advection problem most quickly? In

this case, the particle advection workload is set, and the vi-

sualization scientist must choose an appropriate architecture.

We note that although this latter case may seem unusual, it

actually occurs quite often; many supercomputing centers

have multiple supercomputers connected to the same disk,

and the visualization scientist has the flexibility to choose

which supercomputer the visualization program runs on.

II. RELATED WORK

A. Flow Visualization and Particle Advection

McLouglin et al. recently surveyed the state of the art in

flow visualization [3], and the large majority of techniques

they described incorporate particle advection. As mentioned

in the introduction, the computational workload for these



particle advection-based techniques vary. On the low end

of computational demands, streamlines, which display the

trajectory of particles placed at seed locations, can involve

advecting just a few particles. In the middle, stream surfaces,

which advect a seeding curve (or, rather, particles along

that curve) to create a surface, require potentially tens of

thousands of particles to be advected. At the high end, FTLE

calculations which determine the rate of separation through

the volume, advect a particle for every node in a mesh and

compare the divergence of nearby particles, determining the

rate of separation throughout the volume.

B. Using GPU Clusters for Visualization
Many visualization algorithms have been ported to and

optimized for the GPU [4]. While less work is devoted to

parallel GPU clusters, there has been significant research

in achieving load balancing and scalability for rendering,

both for surfaces [5], [6], [7] and for volumes [8], [9],

[10], [11]. Very few studies with parallel GPU clusters are

devoted to the transformations that precede rendering, with

notable exceptions on isosurfacing [12] and on line integral

convolution (LIC) [13].

C. Parallelizing Particle Advection for Visualization
A summary of strategies for parallelizing particle advec-

tion problems on CPU clusters can be found in [14]. The ba-

sic approaches are to parallelize-over-data, parallelize-over-

particles, or a hybrid of the two [15]. Recent results using

parallelization-over-data demonstrated streamline computa-

tion on up to 32,768 processors and eight billion cells [16].

Alternate approaches include using preprocessing to study

the patterns of the flow and then to schedule processing

of blocks to optimize performance [17], and include using

work-requesting to dynamically balance load [18].

D. Effects of Hardware Architecture on Particle Advection
Performance

This topic is most directly aligned with this study. Mul-

tiple studies ([19], [20], [21], [22]) have focused on GPU

implementations of particle advection problems for desktop

machines with a single GPU. In all cases, the particle

advection workloads considered required significant com-

putational resources, and the GPU was found to be superior

when compared to a CPU.
To our knowledge, our two previous studies are the only

ones to have looked at hardware architecture effects on

particle advection in distributed-memory systems. In our first

study [23], we looked at streamlines on multi-core CPUs and

showed the benefits of hybrid parallel techniques. In this

study, we compared workloads that used only distributed-

memory parallelism with those that used both shared- and

distributed-memory. We observed that, when using the same

hardware in both configurations, the hybrid parallel ver-

sion regularly outperformed the distributed-memory version,

sometimes by factors of more than 10X.

Our second study [2] — extended by the present study

— looked at architectural effects on particle advection, and

compared CPU and GPU clusters. The study again compared

a variety of workloads, and found that GPU clusters often,

but not always, outperform their CPU cluster counterparts.

The study described in this paper represents a significant step

forward in our understanding of the problem. The previous

study, which considered just two data points — CPU clusters

with eight cores per node and GPU clusters with one GPU

per node — was too coarse, while this study, which considers

nodes over a spectrum of computational ability, is better able

to answer the question of which particle advection problems

are best fitted for which computational environments.

III. PROBLEM AND ALGORITHM

OVERVIEW

In this section, we present an overview of the particle

advection problem (§III-A), as well as an overview of the

parallel algorithm we used for our study (§III-B).

A. Particle Advection Overview

The fundamental unit of work for particle advection is

an advection step, which is the displacement of a particle

for a short distance from one location to a nearby one. An

integral curve is the total path a particle travels along, and

it is formed by the sequence of advection steps from the

seed location to the terminal location. The integral curve is

defined by an ordinary differential equation, as its derivative

at a given position is defined as the value of the simulation’s

velocity field at the same position. As a result, advecting

particles is a data dependent process, and the calculation of

advection steps must be carried out sequentially. Explicitly,

the N th advection step for a particle can only be calculated

after the location of (N−1)st advection step’s displacement

is known.

A traditional scheduling view, which considers a fixed

number of operations with known dependencies between

these operations, is too simplistic when it comes to particle

advection, since the total number of operations (i.e., the

total number of advection steps) is not known a priori. The

number of advection steps for any given particle varies,

based on whether it advects into a sink, exits the problem

domain, or meets some other termination criteria.

Further, when considering data sets so large that they

can not fit into memory, there are scheduling difficulties in

getting the particle and appropriate region of the vector field

on the same resource to carry out the advection step. In this

study, we employed a parallelization-over-data approach;

the problem domain is divided into pieces and each task

operates on one piece of the domain. Particles are advected

on a task as long as they remain within that task’s piece.

Particles that advect into other pieces are communicated

to the corresponding task. Our motivation for studying this

particular parallelization strategy was that it mirrored the



conditions encountered with in situ processing where the

simulation data is pre-divided into pieces. Further, for the

case of GPU-based supercomputers, the data is likely already

located on the GPU.

B. Algorithm Overview

Our study uses the algorithm introduced in [2], and here

we describe only the key elements of the algorithm that

relate to this study. The algorithm has two phases: initial-

ization and advection. The spirit of the implementations for

both phases are the same for CPU and GPU clusters, but the

details of the implementation differ, especially for advection.

1) Initialization Phase: The algorithm’s initialization

phase consists of three parts: (i) loading data, (ii) construct-

ing a piece map of where data resides, and (iii) particle

creation and initialization. For (i), each task reads its piece

directly from disk. For the GPU implementation, the data

is transferred to GPU memory as a texture map, along with

other meta-data. For (ii), each task creates a map between

the tasks and the spatial extents of their pieces. For (iii), each

task will create the starting number of particles, defined by

user input, and prepare them for processing by placing them

in a queue.

2) Advection Phase: The processing is driven by three

queues, which each contain particles. We designate three

different particle states, and each queue contains particles

of a specific state. The active queue contains particles that

need to be advected. The finished queue contains particles

that have completed advecting. The inactive queue contains

particles that cannot be further advected on the current task,

but also cannot be placed in its finished queue — these

particles must be sent to another node that has the piece of

the vector field the particle will enter.

The goal of the advection phase is to promote all the

particles from the active queue to the finished queue. Each

task continuously iterates over a loop until all tasks declare

themselves finished. An individual task declares itself fin-

ished when all particles it is responsible for have completed,

i.e., the size of its finished queue is equal to the size of

its initial active queue. That said, finished tasks continue

participating in the algorithm, since individual tasks that are

finished may contain portions of the vector field that are

necessary for other tasks to finish.

Each task’s loop iteration consists of three steps: (i)

advect, (ii) inspect, and (iii) communicate. For (i), the task

examines its active queue and instructs a group of particles

to advect. The size of the group and details of the advection

vary between GPU and CPU implementations. For (ii), the

particles resulting from step (i) are placed in one of two

queues. Particles that have advected outside the task’s piece

are placed in the inactive queue. Particles that are done

advecting and originated on the current task are placed in

the finished queue, while those that originated on a different

task are sent back to that task. For (iii), all particles in

the inactive queue are sent to the appropriate task using

the piece map. Further, messages from other tasks are read.

The particles in those messages correspond to particles that

are done advecting (and placed in the finished queue) or

need more advecting on this task (and placed in the active

queue). Finally, the task assesses if it is finished and the

tasks coordinate to determine if they are all finished.

For details beyond this level, especially in terms of CPU

and GPU implementation, we refer the reader to our previous

work [2].

IV. STUDY OVERVIEW

A. Test Configurations

Our study was designed to understand how particle advec-

tion workloads varied over diverse hardware architectures.

We varied four factors:

• Node architecture (11 options: 6 CPU, 5 GPU)

• Data set (3 options)

• Particle density (9 options)

• Duration of advection (5 options)

We ran the cross-product, meaning 11× 3× 9× 5 = 1, 485
tests overall. The variants for each factor are discussed in

the remainder of this subsection.

1) Node Architecture: We ran with the following config-

urations:

• GPU 8x1: Eight nodes, with each node utilizing one

NVIDIA M2090 GPU.

• K20 GPU 8x1: Eight nodes, with each node utilizing

one NVIDIA K20 GPU.

• GPU 4x2: Four nodes, with each node utilizing two

NVIDIA M2090 GPUs.

• GPU 3/3/2: Three nodes, with the nodes utilizing

three, three, and two NVIDIA M2090 GPUs, for a total

of eight GPUs utilized.

• GPU 8x3: Eight nodes, with each node utilizing three

NVIDIA M2090 GPUs, for a total of twenty-four

GPUs.

• CPU 8x2: Eight nodes, with each node utilizing two

threads from a multi-core CPU.

• CPU 8x4: Eight nodes, with each node utilizing four

threads from a multi-core CPU.

• CPU 8x8: Eight nodes, with each node utilizing eight

threads from a multi-core CPU.

• CPU 8x12: Eight nodes, with each node utilizing

twelve threads from a multi-core CPU.

• CPU 8x16: Eight nodes, with each node utilizing six-

teen threads from a multi-core CPU.

• CPU 8x24: Eight nodes, with each node utilizing

twenty-four threads from a multi-core CPU.

Again, there were five GPU tests and six CPU tests. Four

of the GPU tests used the NVIDIA M2090 GPU, and one

used the NVIDIA K20 GPU. Finally, the majority of our



tests use eight nodes and have one MPI task per node, with

the only exceptions being GPU 3/3/2 and GPU 4x2 (which

had less than eight nodes), and GPU 8x3 (which had twenty-

four MPI tasks).

Figure 1. On the left, streamlines showing the mixing of air between twin
inlets in a thermal hydraulics simulation. In the middle, the FTLE of a solar
core collapse resulting in a supernova. On the right, a stream surface from
the fusion data set, visualizing the magnetic field in a tokamak.

2) Data Sets: The underlying vector field can greatly

influence performance characteristics, as sinks in the vector

field can attract particles from far away and create load

imbalance. For this reason, we considered three data sets

to ensure the diversity of our tests. Each data set was a

single time slice, meaning we studied steady state flow. Each

data set had a resolution of 1, 0003. Ten of our eleven node

architectures had eight MPI tasks; for this case, each task

operated on a data block of 500 x 500 x 500 cells. The

GPU 8x3 test had twenty-four MPI tasks (three per node),

and the data was divided into smaller pieces for this test.

Figure 1 shows different particle advection-based visual-

izations on the three data sets.

Thermal Hydraulics: In this simulation, two inlets pump

air into a box, which circulates and exits through an out-

let. The simulation was performed using the NEK5000

code [24].

Astrophysics: This data set is from a simulation of the

magnetic field surrounding a solar core collapse, resulting in

a supernova. The simulation was computed by the GENASIS

simulation code [25].

Fusion: This data set comes from a simulation of magnet-

ically confined fusion in a tokamak device by the NIMROD

simulation code [26]. To achieve stable plasma equilibrium,

the field lines of the magnetic field need to travel around

the torus in a helical fashion. This data set is representative

of data sets that have high circulation — particles traverse

the torus-shaped vector field domain repeatedly.

3) Particle Density: We had nine particle density config-

urations, which determine the number of seeds placed into

each data block. The options for the numbers of particles per

data block were 13, 53, 153, 253, 403, 503, 653, 803, and

1003. These workloads are representative of use cases such

as streamlines, stream surfaces, and coarser FTLE analysis,

among others. Over all tasks, the lowest number of particles

was just eight, while the highest number was eight million.

Finally, note that the GPU 8x3 configuration had a differ-

ent number of blocks. For that case, the number of particles

per block were adjusted so that the total number of particles

matched the other tests, enabling comparisons.

4) Duration of Advection: The duration of the advection

(i.e., the number of advection steps) corresponds to the

number of advection steps taken. To reflect this variation

in particle advection workload, we made five categories

for duration: tiny (50 steps), little (250), short (1,000),

medium (5,000), and long (20,000).

B. Runtime Environment

We present test results from Georgia Tech’s Keeneland

supercomputer, Oak Ridge National Laboratory’s Titan su-

percomputer, and Lawrence Berkeley’s NERSC machine

Edison.

1) Keeneland: Keeneland was used for four of the

five GPU tests: GPU 8x1, GPU 4x2, GPU 3/3/2, and

GPU 8x3. A single compute node of Keeneland contains

two 8-core 2.8GHz Intel Sandy Bridge (Xeon E5) processors

and 32GB of RAM. It is accelerated by three NVIDIA

M2090 GPUs with 5.6GB of RAM. Nodes are connected

via a Mellanox FDR InfiniBand interconnect.

2) Titan: Titan was used for the K20 GPU 8x1 test. A

single compute node of Titan contains a 16-core 2.2GHz

AMD Opteron 6274 (Interlagos) processor and 32GB of

RAM. It is accelerated by an NVIDIA Kepler GPU with

6GB of DDR5 memory. Nodes within the compute partition

are connected by a three-dimensional torus.

3) Edison: Edison was used for all CPU tests. A single

compute node of Edison contains two sockets and each

socket has a 12-core 2.4 GHz Intel “Ivy Bridge” processor

and 64GB of RAM. Nodes are connected via a Cray Aries

with the Dragonfly topology.

C. Measurements

An important component of our research objective to

expand investigation across more diverse hardware config-

urations was to apply a parallel performance measurement

and analysis system that is portable on leading platforms.

TAU Performance System R© [27] provided this support with

its broad set of portable instrumentation and measurement

techniques (including for heterogeneous machines), its paral-

lel performance data management infrastructure, its parallel

performance data mining framework, and its integration with

other performance technology (e.g., PAPI). All of these

capabilities proved to be valuable in the multi-experiment,

cross-architecture analysis we performed. Further, we made

heavy use of the scripting features of TAU’s PerfExplorer

(powered by its relational database: TAUdb) to construct

analysis pipelines that generated results specific to under-

standing particle advection performance.

The measurement approach also captured the key events

(i.e., “idle”, “advecting”) identified from our previous study,

and we augmented them with additional observations of

MPI communication, multi-threading, and GPU operations.



Figure 2. Parallel coordinates plot of execution time, by hardware configuration. Each hardware configuration (see §IV-A1) is an axis for the plot, starting
with K20 GPU 8x1 on the left, and going to CPU 8x2 test on the right. The Y-axis is speedup relative to the time for the GPU 8x1 test (which is not
displayed, since it is a constant 1). If a CPU 8x2 test time is twice as fast than the GPU 8x1 test, then it will be plotted with a Y-value of 0.5. If it is
twice as slow, then it will be plotted with a Y-value of 2.0. The parallel coordinates are plotted based on density; regions where there are many lines are
plotted dark red, while regions with few lines are plotted light red. The top figure shows all of the data, while the middle figure zooms in on the region
where the performance is no more than 2X worse than GPU 8x1. Where the top two figures show results for all 135 workloads, the bottom figure shows
the results for a single workload — the Fusion data set, with 253 particles per data block, and advecting for the tiny duration (50 steps) — and thus results
in a single line. This line shows that the K20 GPU 8x1 test is about 2.5X faster (1/0.4) than GPU 8x1, while the CPU 8x2 test is about 1.6X slower
than GPU 8x1. This bottom figure is included to better illustrate how to interpret parallel coordinate plots. Analysis of these results are discussed in §V.

All measurements were restricted to solving the algorithm

presented in this paper; generation of data and transferring

vector field data were not measured, since the study is aimed

at in situ use cases and this data would already be in place

in such a setting.

V. RESULTS

We analyzed the results of the 1, 485 tests in multiple

ways. Our analysis directions were driven by a global view,

realized as a parallel coordinates plot that showed all test

data. This graphic, shown in Figure 2, plots the speedups

of each test with respect to the GPU 8x1 architecture.

For the most part, we used this global view to focus on

subsets of the hardware architectures where comparisons

were informative with respect to understanding the impacts

of hardware architecture on performance. Specifically, we

explored comparisons with:

• CPU tests with varying numbers of cores, in §V-A;

• The two NVIDIA cards, M2090 and K20 (i.e.,

GPU 8x1 and K20 GPU 8x1), in §V-B1;

• A GPU configuration (K20 GPU 8x1) and the CPU

tests, in §V-B2;

• Our base GPU configuration and the configurations

where eight GPUs are packed onto fewer than eight

nodes (GPU 4x2 and GPU 3/3/2), in §V-C1; and



• Our base GPU configuration and the configuration that

used three GPUs per node (GPU 8x3), in §V-C2.

A. CPU Performance as a Function of Cores Per Node
With these comparisons, we wanted to better understand

when additional cores will help with overall execution time.

Figure 3 shows a parallel coordinates plot of efficiency as

we add more cores. We identified that there are three distinct

categories of workloads:

• Group 1: this group has 153 or more particles per data

block and advects for 1000 steps or more. The number

of members in Group 1 is 63. Members of this group

exhibit outstanding performance increases when more

cores are added.

• Group 2: this group has one particle per data block.

The number of members in Group 2 is 15. Members of

this group exhibit no performance increase when more

cores are added.

• Group 3: this group contains the remaining workloads,

which number 57. Members of this group exhibit

performance increases when more cores are added, but

they are not proportional with the number of cores

added. This suggests that the efficiency is decreasing

as the number of cores increases, due to less work per

core.

Table I shows specifics for how many tests benefits from the

addition of new cores, and how much benefit they derive.

As expected, workloads with significant computational work

benefits from more cores, while those with minimal work do

not.

Figure 3. This parallel coordinates plot shows the efficiency from adding
new cores over all the CPU tests. Each particle advection workload (i.e.,
a selected density, duration, and vector field) is a line on the parallel
coordinates plot, illustrating workload performance as a function of the
number of cores. The coloring comes from the groups defined in §V-A:
Group 1 is green, Group 2 is red, and Group 3 is blue. Regions where
multiple lines overlap are drawn darker. The plot normalizes execution time
by the number of cores. Ideally, if the CPU 8x2 test takes time T , then
CPU 8x4 will take T/2, CPU 8x8 will take T/4, and so on. In the worst
case, the extra cores will be unused. In that case, the execution time will
continue to take time T . In this plot, a CPU 8x24 test that takes T (i.e., no
speedup over CPU 8x2) will be plotted as 1/12, since it has twelve times
the resources, and ideally should finish in one twelfth of the time.

# Cores Group 1 Group 2 Group 3

Sc
al

ab
ili

ty 4 94% 47% 89%

C
PU 8 90% 22% 80%

12 90% 14% 76%

16 90% 10% 62%

24 88% 5% 51%

Table I
THIS TABLE SHOWS THE AVERAGE NORMALIZED EFFICIENCY WITH

RESPECT TO THE NUMBER OF CORES ON THE CPU AND TO THE GROUPS

DEFINED IN §V-A. FOR EXAMPLE, FOR 12 CORES AND GROUP 3, THE

VALUE IS 76%. IDEALLY, TWELVE CORES SHOULD BE ABLE TO FINISH

SIX TIMES FASTER THAN THE BASELINE OF TWO CORES. THE 76%
VALUE MEANS THAT THE TESTS IN GROUP 3 ACHIEVED 76% OF THE

HOPED FOR SPEEDUP FROM THE ADDITIONAL CORES, OR THAT IT WAS

ABOUT 4.5X FASTER (AND NOT THE FULL 6X FASTER). A VALUE OF

100% WOULD INDICATE THAT THE POTENTIAL SPEEDUP WAS

REALIZED. GROUP 2 DEMONSTRATED SPEEDUP CONSISTENT WITH NOT

MAKING USE OF THE ADDITIONAL CORES, WHICH IS TO BE EXPECTED

GIVEN ITS MODEST COMPUTATIONAL WORKLOAD.

B. Comparisons Across Machines

Several of our desired comparisons involved associated

tests run on different machines. Unfortunately, it is difficult

to make meaningful comparisons across machines, since

many factors may be different, most notably the networking

infrastructure. To facilitate these comparisons, we ran a

series of MPI benchmarks on the three machines considered

in this study. As seen in Table II, asynchronous message

communication is fastest on Edison, second fastest on Titan,

and slowest on Keeneland. We reference this relationship in

the analysis we perform in §V-B1 and §V-B2.

Size Keeneland Titan Speedup Edison Speedup

10K 7.39 1.93 3.8 0.61 12.0

50K 24.72 5.66 4.4 1.97 12.6

200K 42.15 20.75 2.0 7.95 5.3

Table II
RESULTS OF THE MPI BENCHMARK TESTS RUN ON THE THREE

MACHINES CONSIDERED IN THIS STUDY. THE VALUES REPORTED FOR

EACH MACHINE IS THE TIME (IN MICROSECONDS) TO SEND AN

ASYNCHRONOUS MESSAGE OF A GIVEN SIZE. THE SPEEDUPS LISTED

ARE NORMALIZED TO KEENELAND.

1) Comparing Different GPUs: With these comparisons,

we wanted to better understand the extent that faster GPUs

can improve overall execution time. Titan’s K20x GPUs have

about twice the raw computational power of the M2090s

in Keeneland (1.31 GFLOPs vs 0.67 GFLOPs, double

precision). Further, as noted in §V-B, Titan’s network is

significantly faster than Keeneland’s. As we compared par-

ticle advection workloads, we wanted to understand where

the speedups come from: GPU or network. Most tests are

dominated either by network time or by advection time. The

former demonstrates benefits tracking the network improve-

ments, while the latter demonstrate benefits tracking the

GPU improvements. Specifically, workloads with densities

of 503 particles or more spend at least half of their time

doing advection, and thus should have speedups on the

order of 2X , matching the ratio of the GPUs. Further, those

workloads with fewer particles see even better speedups, due

to Titan’s superior network. We note that the speedups in
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Figure 4. A 5x3 matrix of plots. The three rows correspond to the three vector fields (see §IV-A2). The five columns correspond to the five advection
durations (see §IV-A4). Each plot shows the speedup of Titan over Keeneland as a function of particle density (§IV-A3).

some tests exceeded those of our MPI benchmarks, likely

because they do not need to exchange many messages.

Figure 4 illustrates the above analysis. It shows that vector

field is not playing a large role in determining the character-

istics of the workload, and so the plots are similar from top

to bottom. However, duration is very important to workload

characteristics, and a consistent trend can be seen from left to

right in the Figure. On the left, the durations are so small that

the network speedups are dominant for low particle densities.

On the right, the durations are so large that idle time makes

the two machines nearly equivalent for low particle densities.

But, as the particle density increases, the speedup approaches

a fairly consistent value of approximately 2X , since these

tests make such heavy use of the GPU, and Titan’s GPUs

are twice as fast as Keeneland’s. This trend is true over all

durations and vector fields.

2) GPU Versus CPU: With these comparisons, we

wanted to better understand how GPUs compared with

CPUs. This comparison was particularly inspired by the

observation from Figure 2 that the CPU 8x24 tests were

never more than 1.7X slower than the GPU 8x1 tests. Since

the network analysis in §V-B showed that Edison has the best

network and Keeneland has the worst (and these were the

machines compared in Figure 2), we switch our analysis here

to be between the Edison CPU configurations and the Titan

K20 GPU 8x1 configuration, since their network speeds are

more comparable.

The results of our Titan-Edison comparisons can be seen

in Figure 5. It shows that CPUs with many cores are

competitive with GPUs over all tests. Further, it shows that

CPUs are faster than GPUs with many tests with short

execution times (i.e., < 0.2 seconds).

Figure 5. Comparing K20 GPU 8x1 and CPU configurations. The
top image shows parallel coordinates of CPU test times normalized by
K20 GPU 8x1 test times. The CPU 8x24 configuration was competitive,
as it was only 2.5X slower than the GPU in the worst case. The GPU
was much more dominant against fewer cores, though, with speedups of
up to 25X versus CPU 8x2. The bottom image plots the K20 GPU 8x1
test time normalized by the CPU test times, showing where the CPU is
faster than the GPU. Lines that are green correspond to the K20 GPU 8x1
tests that take less than 0.2 seconds. Lines that are red correspond to the
K20 GPU 8x1 tests that take more than 0.2 seconds. Almost all tests which
that take more than 0.2 seconds are ones where the GPU excels. However,
one set of tests — a set of red lines going from upper left to lower right
— takes more than 0.2 seconds and sees speedups of more than 15X for
CPU 8x24. These tests correspond to 53 particles per data block and long
durations, i.e., tests that will not overwhelm a CPU, but do not have enough
work for a GPU.

C. Multiple GPUs Per Node

With these comparisons, we wanted to better understand

the effects — positive or negative — of having multiple

GPUs per node. The potential pitfall from having additional

GPUs per node is that contention can arise on the PCI bus



connecting the CPU and the GPU. Interestingly, Keeneland

nodes have two PCI buses. This allows us to investigate the

cases where there is no bus contention (a different PCI bus

is used for each GPU in the GPU 4x2 case), as well as

where there is bus contention (the PCI buses are shared in

the GPU 3/3/2 and GPU 8x3 cases). Our experiments were

constructed to see these hardware tradeoffs.
1) Eight GPU, Fewer Nodes Tests: With these com-

parisons, we fix the total number of GPUs at eight,

and compare our base GPU configuration (GPU 8x1)

with configurations that have fewer nodes (GPU 4x2

and GPU 3/3/2). While the contention pitfall remains for

GPU 3/3/2, the potential benefit of these reduced node

configurations is that there are fewer nodes participating

in communication, which may lead to increased network

performance.
For the most part, the tests had similar performance. Tests

that ran for more than 0.2 seconds were in particularly good

agreement, with the execution time for each workload being

within 20% of the GPU 8x1 time in all cases. Tests that ran

for less than 0.2 seconds were more likely to benefit from

the fewer number of nodes, with approximately half of such

tests being more than 20% faster than the GPU 8x1 time.

See Table III for more details.

# Tests ≥ 80%
Node Type Criteria Total Tests of GPU 8x1

GPU 3/3/2 > 0.2s 93 93

GPU 3/3/2 < 0.2s 42 22

GPU 4x2 > 0.2s 93 93

GPU 4x2 < 0.2s 42 17

Table III
ALL TESTS THAT TOOK LONGER THAN 0.2 SECONDS WERE WITHIN 80%

OF THE TIME FOR THE GPU 8X1 TIME FOR THE SAME WORKLOAD.
HOWEVER, WHEN THE TIME DROPPED BELOW 0.2 SECONDS, THE

CONFIGURATIONS WITH REDUCED NUMBERS OF NODES WERE MORE

THAN 20% FASTER ABOUT HALF THE TIME.

We also looked at the possible effects of contention. What

we observed was small; no GPU 4x2 or GPU 3/3/2 was

ever more than 6% slower than its counterpart GPU 8x1 test.

However, we could observe that the number of slower tests

for GPU 3/3/2 was more than for GPU 4x2. See Table IV

for more details.
2) Eight Node, Multiple GPU Tests: With these compar-

isons, we fix the total number of nodes at eight, and compare

our base configuration (GPU 8x1) with the configuration

that has eight nodes and three GPUs per node (GPU 8x3).

This configuration has a different benefit from that discussed

in §V-C1: increased computational power. Further, while the

contention pitfall still exists for this configuration, the ob-

servations from §V-C1 point to this factor being small. The

challenge for this configuration is to actualize the computa-

tional power by providing the extra GPUs with enough work

to do. This challenge already exists with a single GPU, and

is only exacerbated by having three GPUs. Finally, we note

that the GPU 8x3 configuration is different than the other

Configuration # of Slower Tests Avg. # of Particles

GPU 3/3/2 37 468K

GPU 4x2 17 261K

Expected For Identical 67.5 222K

Table IV
THE GPU 3/3/2 TESTS WERE SLOWER THAN GPU 8X1 37 TIMES,
WHILE GPU 4X2 TESTS WERE SLOWER THAN GPU 8X1 ONLY 17

TIMES. OF COURSE, IF THE CHANGES IN CONFIGURATION LED TO NO

TANGIBLE PERFORMANCE DIFFERENCES, THEN A GIVEN

CONFIGURATION WOULD BE SLOWER HALF THE TIME, I.E., FOR 67.5 OF

THE 135 TESTS. THE “EXPECTED FOR IDENTICAL” ROW IN THE TABLE

CAPTURES THIS. OF THE 37 TESTS WHERE GPU 3/3/2 WAS SLOWER,
WE LOOKED AT THE AVERAGE NUMBER OF PARTICLES ADVECTED (I.E.,
THE PARTICLE DENSITIES FROM §IV-A3). THIS AVERAGE WAS 468, 000

PARTICLES, COMPARED TO 261, 000 PARTICLES FOR THE GPU 4X2
AND A 222, 000 PARTICLE AVERAGE OVER ALL WORKLOADS. FROM

THESE DATA POINTS, WE CONCLUDE THAT CONTENTION DOES AFFECT

THE GPU 3/3/2 TESTS, AND THAT IT AFFECTS IT MOST WHEN THE

PARTICLE DENSITY IS HIGH. WE ALSO COMMENT THAT THE REDUCED

NUMBER OF NODES PROVIDES A COMMUNICATION BENEFIT TO

OVERALL EXECUTION TIME, SO THE FULL EXTENT OF THE CONTENTION

MAY BE SOMEWHAT GREATER THAN WHAT WE MEASURED.

configurations, since it has twenty-four processes executing,

while all other configurations have eight processes. This also

means that the workload is partitioned twenty-four ways (not

eight ways), and so each of the twenty-four processes has

less work to do, relatively speaking.

Our tests found that the extra GPUs were helpful in cases

where the particle density was high. Twenty-four of our

workloads were able to achieve a speedup of 2.5X over

their GPU 8x1 counterparts. All twenty-four of these tests

come from the four highest densities (503, 653, 803, 1003).

Surprisingly, the best speedups came from high density

workloads with small or medium durations, as seen in

Table V. These workloads are in a sweet spot where there

is enough work to saturate the extra GPUs, but they also

finish quickly enough for load imbalance to not be an issue.

This contrasts with tiny and little durations, which do not

provide enough work, and with long durations, which end

up having significant idle time while waiting for a handful

of particles to finish executing.

Particle Duration

Density Tiny Little Short Medium Long

503 0.76X 1.35X 2.02X 2.48X 2.41X

653 0.76X 1.54X 2.31X 2.69X 2.42X

803 0.94X 1.84X 2.52X 2.77X 2.48X

1003 1.20X 2.22X 2.72X 2.85X 2.50X

Table V
THE AVERAGE SPEEDUP OF THE GPU 8X3 CONFIGURATION OVER

GPU 8X1. EACH ENTRY IN THE TABLE IS THE AVERAGE OF THE

EXPERIMENTS FOR THE GIVEN DURATION AND DENSITY. THE

SPEEDUPS GET BETTER AS DENSITIES INCREASE, AND ARE AT THEIR

HIGHEST FOR SHORT AND MEDIUM DURATIONS, WHICH ARE LESS

PRONE TO LOAD IMBALANCE COMPARED TO THE LONG DURATION.

VI. SUMMARY OF PARTICLE ADVECTION-HARDWARE

FINDINGS

An important goal of this effort was to illuminate the best

hardware for particle advection problems for visualization



scientists. We summarize the findings from the previous

sections:

On the value of additional cores on a node (§V-A):

• High density workloads with medium or longer dura-

tion will benefit from using more and more cores on a

CPU node.

• Low density workloads will not benefit from adding

more cores.

• The remaining workloads fall between these extremes.

On comparisons between GPUs (§V-B1):

• When particle advection densities become large (i.e.,

503 or more), the GPUs became saturated, and so using

faster GPUs led to speedups proportional to their FLOP

rates.

• When particle advection densities are low, the network

is the most important factor in performance.

On comparisons between CPU and GPU nodes (§V-B2):

• CPUs with lots of cores are competitive with GPUs.

• CPUs with few cores can be significantly slower than

GPUs.

• CPUs often beat GPUs when a test’s execution time is

short.

On comparisons with a fixed number of GPUs, but a

variable number of nodes (§V-C1):

• Runtimes do not vary considerably, and any configura-

tion is likely acceptable.

• Very fast tests benefit from packing GPUs onto fewer

nodes, since fewer nodes lead to increased network

performance.

• Tests with many particles appear to stress contention

on the PCI bus, although the effect is modest.

On increasing the number of GPUs (§V-C2):

• Additional GPUs are only valuable if there is sufficient

work to occupy them.

• Problems with idle time from load imbalance do not

significantly benefit from extra GPUs; these problems

may benefit early in their execution, but the later

phases, characterized by excessive waiting, makes over-

all times comparable to those with fewer GPUs. We

observed the effects of such imbalances from workloads

with long durations.

VII. CONCLUSION

This study explored the impact of hardware architecture of

a data-intensive workload (particle advection). It considered

eleven architectures and 135 workloads, for a total of 1, 485
different tests. We feel the results illuminate the benefit

of increased computational power that will inform future

in situ workloads, as well as informing the choice of

which hardware architecture is best for different particle

advection problems in a distributed-memory parallel setting.

(See §VI for specific findings.) We think this latter result

is important because it will help visualization scientists

answer two important questions: One, when collaborating

with simulation scientists to do in situ analysis, which

particle advection techniques will be appropriate given the

resources? And, two, when presented with multiple hardware

architecture options for running particle advection-based

post hoc analysis, which hardware architecture is the best

choice?

This study suggests several interesting future directions.

Our study’s tests used at most eight nodes. As more nodes

are added, the opportunities for load imbalance increase,

with the resulting idle time eroding potential hardware

speedups. While we believe our present study is an excellent

start on the problem and a substantial contribution for un-

derstanding matches between particle advection workloads

and hardware architectures in a distributed-memory setting,

we believe that looking at higher scales is an important next

step.
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