
POW: System-wide Dynamic Reallocation
of Limited Power in HPC

Daniel A. Ellsworth, Allen D. Malony
University of Oregon

Eugene, Oregon, USA
{dellswor,malony}@cs.uoregon.edu

Barry Rountree, Martin Schulz
Lawrence Livermore National Laboratory

Livermore, California, USA
{rountree4,schulzm}@llnl.gov

ABSTRACT
Current trends for high-performance computing systems are
leading us towards hardware over-provisioning where it is no
longer possible to run each component at peak power with-
out exceeding a system or facility wide power bound. In
such scenarios, the power consumed by individual compo-
nents must be artificially limited to guarantee system oper-
ation under a given power bound. In this paper, we present
the design of a power scheduler capable of enforcing such a
bound using dynamic system-wide power reallocation in an
application-agnostic manner. Our scheduler achievies bet-
ter job runtimes than a näıve power scheduling approach
without requiring a priori knowledge of application power
behavior.

Categories and Subject Descriptors
D.4.m [Operating Systems]: Miscellaneous

Keywords
RAPL; hardware over-provisioning; HPC; power bound

1. INTRODUCTION
Scalable parallel applications have been the driving force

behind the evolution of large-scale parallel systems with
ever-increasing demands for processor, memory, and net-
work performance. The evolution over the past decade has
followed a “horizontal” scaling strategy to increase floating-
point operations per second (flops) and I/O operations per
second (iops) by adding more of the latest hardware. How-
ever, powering a massive cluster at the maximum simulta-
neous power draw of all hardware components is a major
challenge, yet often unnecessary since few applications are
able to fully exploit all components at peak capacity.

An alternative power strategy is hardware over-provisioning,
where more hardware is available than can be powered at
maximal draw at any time [4]. In this case, power provision-
ing and system scale can be designed for the common case,

Publication rights licensed to ACM. ACM acknowledges that this contribution
was authored or co-authored by an employee, contractor or affiliate of the United
States government. As such, the United States Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.

HPDC’15, June 15–20, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749277

but mechanisms are required to prevent the system from
exceeding the predetermined maximal power draw. New
technologies, such as Intel’s Running Average Power Limit
(RAPL), are a key enabling technology for hardware over-
provisioning. However, while RAPL provides the necessary
software configurable and hardware enforced power cap per
CPU socket, an additional power distribution algorithm to
spread the available power across the system is still required.

In this work, we present a dynamic power scheduler that
monitors power consumption and reallocates power across a
cluster. The power control system enforces the global power
bound without requiring integration with the job sched-
uler. Using a simple heuristic our power scheduler reclaimes
wasted power in the overall system to components restricted
by their current power bound. This leads us to a dynamic
power control system that enforces a global power budget
while being completely opaque with respect to the particular
applications in the workload, their power and performance
characteristics, and their mix.

2. APPROACH
Our work targets large-scale high-performance comput-

ing (HPC) systems, primarily with an eye to future exas-
cale platforms. HPC systems represent a substantial capi-
tal investment and are typically shared batch-scheduled re-
sources. An HPC system is composed of many compute
nodes, each with a number of processing elements, including
CPUs and accelerators. Users of the system typically sub-
mit jobs with a desired number of nodes to a job scheduler
where each job is queued. The scheduler will schedule a job
to run when an adequate number of nodes become available.
We will call a subset of the nodes assigned to a job a parti-
tion or enclave, and will assume that any particular node is
a member of only one enclave at a time.

The HPC environment is highly parallel and concurrent.
User jobs are typically multi-node highly-parallel applica-
tions and several jobs will run simultaneously on an HPC
system. A job’s start time is determined by node availabil-
ity and a job’s end time is based on the actual runtime (or
maximum time allocation) of the job. Although the HPC
machine is space-partitioned, in that each job has its own
processing resources, certain shared resources (e.g., network,
file system, power) are used by concurrently executing jobs,
potentially impacting the runtime behavior across jobs.

One of the major challenges in the move from current
petascale to future exascale computation is increasing com-
putational power within realistic electrical power consump-
tion. The current approach of designing power systems to

145

Job

Scheduler

job submission

job
output

P
o
w
e
r

S
c
h
e
d
u
le
r

job
output

measured
power

allocated
power

job
execution

Figure 1: High-level model of system interactions

sustain peak power at all times, even though few jobs con-
sume energy at that rate, is therefore unrealistic. Hard-
ware over-provisioning is likely the only way to achieve the
increase in computing power while maintaining the power
budget, but requires new approaches to distribute the avail-
able power to components and to enforce that components
stay within their assigned power limits.

We assume future hardware platforms will support an in-
terface with properties similar to Intel’s Running Average
Power Limit (RAPL). In current systems, components sup-
porting RAPL can enforce a configurable maximum rate of
energy consumption over a sliding temporal window. The
particular techniques used to enforce the limit are selected
and implemented completely by the hardware. The RAPL
interface in our testbed uses model-specific registers (MSRs)
(accessible via libmsr [3]) to allow software to interact with
the hardware power management facilities.

A mechanism like RAPL alone, however, is insufficient for
running in an over-provisioned environment, since it only en-
ables the setting of power bounds for individual components.
A global power scheduler is needed to control the individual
power bounds for all components and ensure that the total
sum of all bounds is below the total system bound. Exceed-
ing the total system bound could damage the HPC cluster
or the supporting power infrastructure.

Figure 1 shows a high-level view of the interaction be-
tween a potential power scheduler and an HPC cluster. The
job scheduler is responsible for assigning jobs to hardware re-
sources as well as starting and stopping the jobs. The power
scheduler is solely responsible for analyzing power measure-
ments from the cluster and providing updated power allo-
cations to all cluster components. The HPC cluster itself is
primarily concerned with executing jobs from the scheduler,
but also provides the integrated infrastructure for power
measurement and control used by the power scheduler.

2.1 Power Model
The system-wide power scheduler has the primary objec-

tive of enforcing a global power limit, L. We can think of
the HPC system as having an infinite amount of energy but
having a global maximum limit to the instantaneous rate at
which energy can be used1. Power-optimization and energy-

1Energy and power are separate but related ideas. Energy
is typically measured in joules. Power is a rate typically
measured in watts, representing joules per second.

L System-wide power limit
n Number of sockets
t A timestamp
cti Power consumed by socket i at time t
at
i Power allocated to socket i at time t

wt
i Unused portion of socket i’s allocation at time t

Cmin Min observable socket consumption
Cmax Max observable socket consumption
Amin Min allocation for a socket according to the spec
Amax Max allocation for a socket according to the spec

Table 1: Symbols use in the model

aware techniques reduce the energy consumed [1, 7, 6], often
by reducing the power while maintaining the runtime, allow-
ing more of the hardware over-provisioned system to be used
concurrently. These techniques do not provide a guaran-
tee that global rate of energy consumption remains within a
fixed bound. Reduced energy consumption and optimal run-
times are secondary objectives for a power scheduler charged
with enforcing the global power limit in a hardware over-
provisioned system.

A global power limit L is set by facility limitations or ad-
ministrative policy to protect the power infrastructure from
damage due to exceeding capacity. A system is modeled as
a set of n sockets. Every socket i has a power consumption,
ci, and a power allocation, ai. The delta between ci and
ai is the wasted2 allocation and will be noted as wi. It is
assumed that the hardware enforces ci ≤ ai or equivalently
ai = ci + wi. Thus, the total power allocated to the system
is

∑
ai and the total power consumption is

∑
ci. Further,

due to the hardware enforcement,
∑

ci ≤
∑

ai.
In the following sections, we will use the intuition that

application runtime is roughly the same for any ai such
that ai > ci. Runtime should only be impacted when ai

is less than the amount an application would consume if
there was no power bound. This conclusion is consistent
with Fukazawa et al. [2] and our own experiments, which
have been omitted for length.

2.2 Static Scheduling
A static power scheduler makes a decision about how to

schedule power prior to the job launch. A näıve scheduling
strategy would be to allocate an equal amount of power to
each socket, ai = L

n
, over the lifetime of the machine. Since∑

ci ≤
∑

ai, trivially this strategy maintains L ≥
∑

ci.
Two existing systems at the Lawrence Livermore National
Lab (LLNL) use this strategy presently.

While meeting the technical requirement of enforcing a
global power bound, the näıve static strategy is expected to
under perform. There are two reasons for this. First, prior
work has shown a non-linear relationship between power
allocation and application performance [5]. Setting each
socket to the same level could degrade performance if that
level is too low. Second, power consumption could be dif-
ferent on each socket used. A static, equal power setting for
all sockets could disrupt performance non-uniformly.

A more refined static power scheduler could attempt some
optimization of power distribution if it was aware at schedul-
ing time of an application’s characteristic power consump-

2The power is wasted in that power was allocated to the
system but not used by the system.

146

tion. For instance, if wi reflects performance behavior under
an allocation ai, then wi could be used as a basic metric for
optimization. Rather than allocating an equal amount of
power to each socket, the static scheduler could allocate an
equal amount of wasted allocation, wi, to each socket. The
allocation per socket for such a scheduler can be computed
using ai = ci + wavg where wavg = 1

n
(L−

∑
ci).

For the more refined static approach, the scheduler must
know a priori the corresponding ci and wavg values in the
system. The behavior of a job can change based on the
parameters used for execution and there is also an expecta-
tion of greater uncertainty in behavior as systems are scaled
due to increasing runtime and interactions with other jobs.
For long lived clusters, where numerous jobs of various sizes
asynchronously enter and exit the system,

∑
ci across the

system is expected to vary greatly over time as jobs enter
and leave the system. Even within a single job, different
phases may consume energy at different rates. Knowledge
of per socket power consumption in advance of execution is
therefore not feasible in the general case.

2.3 Dynamic Scheduling
Static power scheduling at job launch time cannot main-

tain wavg across the full machine in the presence of dynamic
job power consumption and missing knowledge of future
jobs. A dynamic approach to power scheduling is likely re-
quired to respond to the dynamic power consumption ob-
served at runtime. Rather than attempting to set ai once
at job start time, a dynamic scheduler can periodically ad-
just any ai in the system, even when there is an active job
running on the socket.

Extending the model to include time, the scheduler must
guarantee for all times t that L ≥

∑
cti. A basic dynamic

scheduler strategy may assume that the power consumption
of a running job remains fairly consistent over time, rep-
resented by the heuristic cti ≈ ct−1

i . At time t, the sched-
uler can know the values ct−1

i and at−1
i , as reported by the

socket, as well as L. The updated per socket allocation can
be computed as at

i = ct−1
i + wt−1

avg .
Using the formulation above, a dynamic power scheduler

can maintain wavg without any control of the job schedul-
ing. If the scheduler is able to maintain wavg > 0 then all
applications are expected to complete with their unbounded
runtime by the intuition that runtime is not degraded when
at
i > cti. The power scheduler only requires cti and at

i for all
sockets as input to set all at+1

i during runtime.
Up to this point in the discussion, there has been an as-

sumption that there is sufficient power to run all scheduled
jobs at the optimal power consumption, cti < at

i for all i and
t. This assumption requires a job scheduler that is guaran-
teed to never oversubscribe power. Due to the challenges dis-
cussed for static power scheduling, requiring the job sched-
uler to produce a schedule that never oversubscribes power
and can consume the full system wide power allocation is
not practical.

A dynamic scheduler reading where cti = at
i could indi-

cate that the power is set to exactly what the application
using the socket can consume. Alternatively, cti = at

i could
indicate that at

i was too low and that the hardware reduced
consumption on the socket, degrading application perfor-
mance. The responsiveness of a dynamic power scheduler to
increased consumption, using the formulation in this section,
is expected to be impacted by both the scheduling interval

and the per socket wasted power allocation due to the as-
sumption cti ≈ ct+1

i and hardware enforcement of cti ≤ at
i.

3. DESIGN
POWsched is a dynamic power scheduler based on the

model and approach discussed in the previous section. Schedul-
ing decisions in POWsched are per socket and are completely
agnostic with respect to job, enclave, and node the socket is
associated with. POWsched maintains a system-wide power
bound without job scheduler coordination using only per
socket observed power consumption to guide power schedul-
ing across a cluster.

Pseudocode for the scheduler is provided in Algorithm 1.
The scheduling task is performed in three phases during each
scheduling interval. In Phase 1 POWsched collects recent
consumption readings from all sockets. In Phase 2 power
is greedily recovered from the existing allocations for later
distribution. In Phase 3 additional power is given to sockets
that may be able to use the power. At the end of Phase 3,
POWsched sleeps the remainder of the scheduling interval.

Separation of power allocation into two phases is needed
to guarantee that the system wide power limit is never ex-
ceeded due to communication delays. Recall that at

i ≤ L
must be maintained for RAPL to successfully enforce cti ≤ L.
Assume at

0 + at
1 = L. If the scheduler computes at

0 > at+1
0

and at
1 < at+1

1 and sends at+1
0 and at+1

1 at the same time,
communication delays might cause socket 1 to update the
allocation before socket 0. For a short interval the allocated
power will be at

0 + at+1
1 > L, which is a violation of the

system power bound. POWsched must be certain that all
sockets receiving a lower allocation have been updated be-
fore any sockets receiving a higher allocation are updated.

POWsched does not compute wavg. A target wi is used
to account for the measurement jitter and greedily reclaim
power from under consuming sockets. POWsched assumes
the system is oversubscribed and steals a percentage of the
allocation for each socket allocated more than the system
wide average per socket allocation (ai >

L
n

) when no power
can be reclaimed and very little surplus power is available.
When adjusting allocations up, POWsched divides the sur-
plus power evenly across the sockets consuming near their
current allocation. When power is abundant, the allocation
up behavior is expected to result in a lot of wasted power
that can then be greedily collected in the next scheduling
round. When power is scarce, the allocation up and power
stealing behavior will eventually converge at a fair allocation
across all sockets.

We implemented POWsched in C using libmsr to access
the RAPL MSRs and MPI for collective communication.
In our experiments with POWsched on the cab cluster at
LLNL, POWsched is deployed as a separate process co-
resident with the actual application workload3. This strat-
egy allows us to use existing system setups within the con-
straints of the existing job scheduler. In future systems
power scheduling is likely to be provided as part of the sys-
tem stack by a global operating system.

Our preliminary results indicate overall runtime can be
improved over näıve power scheduling. We have observed a
10% reduction in runtime versus näıve scheduling in most
experiments where power is constrained.

3A workload in our experiments consist of several concurrent
jobs.

147

Algorithm 1 POWsched logic in pseudocode

q ← target wi

C stores {c0, · · · , cn−1}
A stores {a0, · · · , an−1}
M stores {m0, · · · ,mn−1}
numdown ← count of nodes yielding power
interval ← scheduling interval
reclaimfactor ← power to reserve when stealing

procedure Main
while True do

getReadings . Phase 1
allocDown . Phase 2
allocUp . Phase 3
sleep rest of interval

end while
end procedure

procedure getReadings
for all sockets do

Update ci with the current reading
end for

end procedure

procedure allocDown
numdown ← 0
for all sockets do

if ci < ai − q then
Update ai to max{ci + q,Amin}
numdown ← numdown + 1
Update mi to False

else
Update mi to True

end if
end for
if numdown= 0 and

∑
ai + n ≥ L then

for all sockets do
if ai >

L
n

then

ai ← ai − (ai − L
n

)× (1−reclaimfactor)
mi ← True

end if
end for

end if
for all sockets do

Set the socket to limit ai

end for
end procedure

procedure allocUp

u← (L−
∑

ai)
n−numdown

for all sockets do
if mi then

ai ← min{ai + u,Amax}
end if

end for
for all sockets do

Set the socket to limit ai

end for
end procedure

4. CONCLUSION
We have described a system-wide dynamic power sched-

uler that enforces a global power limit on an HPC system
without requiring application specific profiling or application
modification. POWsched monitors power consumption dur-
ing the execution of multiple simultaneous applications and
reallocates power to individual node sockets based on simple
heuristic. We expect POWsched to out perform static fixed
power allocation without a priori application analysis due to
the ability to dynamically reallocate power from under con-
suming sockets to power bound sockets. Future work will
focus on performance evaluation and assessing scalability is-
sues in anticipation of next-generation exascale systems.

5. ACKNOWLEDGMENTS
Part of this work was performed under the auspices of the

U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-669276). Work by the University of Oregon is sup-
ported by the DOE Office of Science, through a Sub-Contract
No. 3F-32643 from the University of Chicago, Argonne, LLC
(as operator of Argonne National Laboratory), under Prime
Contract No. DE-AC02-06CH11357.

6. REFERENCES
[1] M. Bambagini, M. Bertogna, M. Marinoni, and

G. Buttazzo. An energy-aware algorithm exploiting
limited preemptive scheduling under fixed priorities. In
8th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 3–12. IEEE, 2013.

[2] K. Fukazawa, M. Ueda, M. Aoyagi, T. Tsuhata,
K. Yoshida, A. Uehara, M. Kuze, Y. Inadomi, and
K. Inoue. Power consumption evaluation of an mhd
simulation with cpu power capping. In Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 612–617. IEEE,
2014.

[3] L. L. N. S. LLC. libmsr.
https://github.com/scalability-llnl/libmsr.

[4] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski. Exploring hardware overprovisioning
in power-constrained, high performance computing. In
27th ACM International Conference on
Supercomputing, pages 173–182. ACM, 2013.

[5] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K.
Lowenthal, and M. Schulz. Beyond dvfs: A first look at
performance under a hardware-enforced power bound.
In IEEE 26th International Parallel and Distributed
Processing Symposium Workshops (IPDPSW),, pages
947–953. IEEE, 2012.

[6] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
making dvs practical for complex hpc applications. In
23rd ACM International Conference on
Supercomputing, pages 460–469. ACM, 2009.

[7] A. Tiwari, M. Laurenzano, J. Peraza, L. Carrington,
and A. Snavely. Green queue: Customized large-scale
clock frequency scaling. In Second International
Conference on Cloud and Green Computing (CGC),
pages 260–267. IEEE, 2012.

148

