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Abstract. We present a parallel computational environment used to determine
conductivity properties of human head tissues when the effects of skull inhomo-
geneities are modeled. The environment employs a parallel simulated annealing
algorithm to overcome poor convergence rates of the simplex method for larger
numbers of head tissues required for accurate modeling of electromagnetic dy-
namics of brain function. To properly account for skull inhomogeneities, parcel-
lation of skull parts is necessary. The multi-level parallel simulated annealing
algorithm is described and performance results presented. Significant improve-
ments in both convergence rate and speedup are achieved. The simulated anneal-
ing algorithm was successful in extracting conductivity values for up to thirteen
head tissues without showing computational deficiency.

1 Introduction

Accurate knowledge of the geometry of human head tissues and their conductivities
plays a fundamental role in high-resolution neuroimaging. This knowledge is necessary
and essential to create computational models of the electromagnetic characteristics of
the human head, allowing precise monitoring of brain dynamics in both space and time.
Dense-array electroencephalography (EEG) up to 256 sensor channels can be projected
to cortex locations using computational head models (this is known as the inverse or
source mapping problem), but tradeoffs concerning simulation complexity and solution
accuracy and speed will determine model precision. While tissue geometry is observ-
able through structural MRI or CT measures, the regional conductivities of the human
head tissues are largely unknown. Because the skull is the most resistive tissue, the lack
of accurate skull conductivity estimates is particularly problematic given also the de-
velopmental variations in the human skull from infancy through adolescence. Without
an accurate forward model specifying the volume conduction from cortex to scalp, even
advanced inverse efforts cannot achieve precision with EEG data as the error of source
localization due to the conductivity uncertainty may reach a few centimeters [1].

Our group has developed a high-performance modeling framework for simulation of
human head electromagnetics based on finite difference methods (FDM) with realistic
head shape. In our 2005 ICCS paper [2], we combined FDM modeling with a parame-
terized electrical impedance tomography (EIT) measurement procedure and a downhill
simplex algorithm to extract three- and four-tissue conductivities in simulations with
reasonable accuracy. We parallelized the simplex search using a multi-start technique
and good speedup was achieved. However, two factors argue for a new approach. First,
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Fig. 1. The Geodesic Sensor Net, current injection between selected electrode pairs and simulta-
neous acquisition of the return potentials from the sensor array

experimental studies report that skull is anisotropic and highly heterogeneous, and can
not be modeled as a uniform tissue[6]. Second, if we increased the number of seg-
mented tissues to more accurately model skull inhomogeneities, the viability of the
simplex method diminishes quickly. Six tissues are enough to reduce the probability of
convergence to less than 10% and of finding optimal solutions to much less.

This paper reports on our work replacing the simplex method with a simulated
annealing algorithm that can discover conductivities up to thirteen segmented tissues.
We have parallelized the conductivity search problem and evaluated its convergence
and scalability attributes on the SDSC DataStar machine. We have also prototyped
an exponential parallelization strategy and tested its scalability potential. The sections
that follow provide more background on the problem domain, describe the compu-
tational design, and present our performance results. The paper concludes with
future work.

2 Methods

To non-invasively determine head tissue conductivities, a tomographic-based search
procedure must be used to optimally match EEG data measured from a subject’s head
to simulated solutions of the electromagnetic response. Small currents are injected into
the head and electrical response measured at dense-array sensors on the scalp (see Fig-
ure 1). Given these measurements, we can search for conductivity solutions using a
FDM model of the subject’s head. Once a set of conductivities is chosen, “forward”
calculations simulate the electromagnetic effects when current is injected at the chosen
locations. The simulated electrical potentials are computed and compared to those mea-
sured. Based on the error, the “inverse” calculation attempts to improve the next choice
of conductivity parameters. Together, the forward and inverse calculations define the
(indirect) conductivity modeling problem. A complete formal description of the for-
ward and inverse problems can be found in our early ICCS paper [2]. Here we provide
only a brief review.

2.1 Forward and Inverse Problems

The electrical forward problem can be stated as follows: given the positions and mag-
nitudes of current sources, as well as geometry and electrical conductivity of the head
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volume Ω calculate the distribution of the electrical potential on the surface of the head
(scalp) ΓΩ . Mathematically, it means solving the linear Poisson equation [3]:

∇ · σ(x, y, z)∇φ(x, y, z) = S, (1)

in Ω with no-flux Neumann boundary conditions on the scalp:

σ(∇φ) · n = 0 , (2)

on ΓΩ . Here n is the normal to ΓΩ , σ = σij(x, y, z) is an inhomogeneous tensor of
the head tissues conductivity and S is the source current. We have built a FD forward
problem solver for Eq. (1) and (2) based on the multi-component alternating directions
implicit (ADI) algorithm [4]. It is a generalization of the classic ADI algorithm [5].

The inverse problem for the electrical imaging modality has the general tomographic
structure. From the assumed distribution of the head tissue conductivities, σij , and the
given injection current configuration, S, it is possible to predict the set of potential
measurement values, φp , given a forward model F (Eq. (1), (2)), as the nonlinear
functional [5]:

φp = F (σij(x, y, z)). (3)

Then an appropriate objective function is defined, which describes the difference
between the measured, V , and predicted data, φp, and a search for the global minimum
is undertaken using advanced nonlinear optimization algorithms. In this paper, we used
the simple least square error norm:

E =

(
1
N

N∑
i=1

(φp
i − Vi)

2

)1/2

, (4)

where N is a total number of the measuring electrodes. With the constraints imposed
by the segmented MRI data, one needs to know only the average regional conductivities
of a few tissues, for example, scalp, skull, cerebrospinal fluid (CSF), and brain, which
significantly reduces the dimensionality of the parameter space in the inverse search.

In our earlier work, to solve the nonlinear optimization problem in Eq. (4), we em-
ployed the downhill simplex method of Nelder and Mead. Our observation was that
simplex search performs well when the number of parameters is few (three or four pa-
rameters), while it fails completely when the number of parameters is larger than six.
To avoid the local minima in the simplex search, we used a statistical approach. The
inverse procedure was repeated for hundreds sets of conductivity guesses from appro-
priate physiological intervals, and then the solutions closest to the global minimum
solutions were selected using a simple error threshold criteria E < Ethreshold.

2.2 Skull Inhomogeneities

The human skull includes eight cranial bones and fourteen facial bones in addition to
the sutures. Figure 2 shows how the head bones are parcellated based on anatomical fea-
tures. It is expected that anatomically different parts of the skull have different conduc-
tivities values and experiments bear this out [6]. For instance, conductivity of trilayer
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Fig. 2. Anatomically parcellated-skull into 11 major bones

bones increases linearly with thickness, the parts with absence of cancellous bones are
less conductive, and sutures are highly conductive. Thus, it is important to characterize
the skull inhomogeneities as much as possible in the conductivity modeling.

However, increasing the number of modeled tissues also increases search and com-
putational complexity. For this reason, it has been impossible to date to determine the
tradeoffs of tissue dimensionality, simulation time-to-solution, and conductivity model
accuracy. We know that the simplex method is not viable beyond six tissues. When
skull parts are separately modeled, a more powerful technique is required. The results
here are based on the simulated annealing algorithm [7]. For evaluation purposes, we
computed scalp potentials for thirteen preset tissue conductivities and tested how well
the model performed as the number of tissues varies. To address the increased computa-
tional demands, we parallelized the conductivity search based on simulated annealing.
The computational design is described in the next section.

3 Computational Design

With higher resolution and more detailed parcellation of the skull, the computational
requirements of the forward and inverse calculation increase significantly. Beyond thir-
teen search parameters and 1mm3 MRI/CT resolution, the computation quickly
becomes impractical. Certainly, to pursue higher dimensionality, it is clear we must
replace the simplex method used in our earlier work. We chose the advanced simu-
lated annealing algorithm [7] which has been shown to be more robust for optimization
across complex multi-variate search spaces. This algorithm has allowed us to extend the
conductivity modeling to study the impact of skull inhomogeneities on the conductivity
modeling convergence and performance.

The simulated annealing method consists of three nested loops:

Temperature cooling: The outer loop controls the temperature cooling, the temper-
ature is reduced by a factor of r after executing Nt search-radius loops.

Search radius: The intermediate loop, the search radius loop, executes the inner
loop Ns times before the maximum step length adjusted. The maximum step
lengths are adjusted such that approximately half of the moves are accepted.

Control point: The inner loop considers new moves in all directions by perturbing
the control point in all direction; the perturbation is constraint between 0 and the
maximum step length in each direction.
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input : Initial Temprature T0 and initial Point X0

output: Xoptimal

T = T0, X = X0, F = Cost(X0)
while T>0 do

for i ← 0 to Nt do
for j ← 0 to Ns do

for k ← 0 to N do
Xk ← purturb(X,k)
Fk ← Cost(Xk)
ΔF ← Fk − F
if ΔF < 0 then accept Xk and update Xoptimal

else accept Xk with propability ∝ exp(ΔF/T )
end

end
adjust-maximum-step-length

end
check-termination-condition
reduce temparature T = rT

end (a)

input : Initial Temprature T0 and initial Point X0

output: Xoptimal

T = T0, X = X0, F = Cost(X0)
Ntask = Ns/Number of tasks
while T>0 do

for i ← 0 to Nt do
Xbest = X, Fbset = F
for j ← 0 to Ntask do

for k ← 0 to N do
Xk ← purturb(X,k)
Fk ← Cost(Xk)
ΔF ← Fk − F
if ΔF < 0 then accept Xk and update Xbest

else accept Xk with propability ∝ exp(ΔF/T )
end

end
MPI communication
adjust-maximum-step-length

end
Master task gets each task best point
Update Xoptimal

check-termination-condition
Master task Brodcast Xoptimal

X = Xoptimal, F = Foptimal

reduce temparature T = rT
end (b)

Fig. 3. Pseudo code for simulated annealing algorithm: a) Serial search about the control point
with parallel forward calculations, and b) Parallelization along the search radius with parallel
forward calculations

Transitions that lower the cost function are always accepted, while transitions that raise
the cost function are accepted with probability based on the temperature and the size
(cost) of the move (Metropolis criteria). The acceptance of the uphill moves allows
the system to overcome local minima and make the algorithm insensitive to the initial
starting values. The simulated annealing converges when the minimum become stable
that does not change for more than epsilon after several temperature reduction loop
iterations. To reduce the number of forward calculation, we added a second termination
condition when the value of the cost function becomes less than some tolerance value.
The complete algorithm is given in Figure 3(a).

The inner loop spends most of the time in solving the forward problem, since the
forward solver is the highest cost component of conductivity modeling. In our earlier
work, we parallelized the forward solver using OpenMP and achieved speedups of 5.8
on eight processors and 8.2 on sixteen processors on a 16-processor IBM p690 system
(see [2]). Here we also parallelized the simulated annealing algorithm along the search-
radius, modifying the parallel MPI-based methods described in [7] for our problem do-
main. Figure 4(a) shows a high-level view of the parallel simulated annealing approach,
with the intermediate loop distributed across several nodes (1 task per node), each run-
ning parallelized forward calculations. All tasks start with the same initial values, but
with different random generator seeds. Each task perform a random search around the
control point by perturbing the control point in all direction. The perturbation is con-
strained to be within the maximum step length. At the end of the search radius loop,
the master task gathers every task best solution and updates the optimal solution and all
nodes communicate to adjust the maximum step length. At the end of the temperature
reduction loop all tasks updates the control point with optimal solution. The complete
algorithm is given in Figure 3(b).
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Fig. 4. Alternative parallel simulated annealing algoriths: a) Two-level parallelism – parallel ex-
ecution occurs on the level of the intermediate loop, where each task runs the parallel forward
calculation, and b) Three-level parallelism – in addition to the parallel forward calculation, each
task computes the inner loop in parallel

Most of the performance numbers reported in the next section are for the parallel
simulated annealing algorithm in Figure 4(a). Choosing twelve tasks and 16-way for-
ward solves allows the amount of parallel execution to reach 192 processors. There
does not appear to be much benefit in increasing the number of tasks beyond twelve
and the OpenMP performance flattens beyond sixteen processors. To create greater po-
tential parallelism, we decided to enumerate all possible perturbation paths around the
control point, increasing the number of candidate points from N to 2N , and breaking
the serialization introduced in the former algorithm when the next perturbation point
depends on the acceptance or rejection of the prior point. This new algorithm (shown
graphically in Figure 4(b)) effectively multiplies the degree of parallelism by 2N/N
with a potential performance gain of N . The numbers in Figure 4 for each case indicate
the different types of parallelism. Interestingly, the nature by which this algorithm was
created guarantees it to produce at least as optimal results as the former, but it requires
significantly more resources to achieve greater performance benefits.

4 Computational Results

We conducted a series of experiments to test both the convergence properties and the
performance of the conductivity modeling based on parallel simulated annealing. All
experiments were performed on the San Diego Supercomputing Centere DataStar sys-
tem, a cluster of shared-memory nodes consisting of 16-processor IBM p690 and
8-processor IBM p655 machines. All results presented below were performed using
8-way OpenMP tasks running forward calculations each on a separate p655 node.

As mentioned earlier, we preset thirteen tissue conductivity values (eleven skull
parts, scalp, brain) and ran experiments to test the conductivity model accuracy on fewer
tissue numbers. We started with eleven tissue to verify convergence to acceptable val-
ues. The simulated annealing search starts with initial random conductivities selected
from the biomedical ranges and stops when one of three criteria is met as described in
the computational design. Our results verify the ability of simulated annealing to extract
eleven tissues with good accuracy and precision. Figure 5(right) shows the dynamics of
the 11-tissue inverse search convergence, giving the temperature cooling, the cost func-
tion, and one tissue’s conductivity. This calculation was done on a single 8-processor
p655 node in our lab and took approximately 31 hours to complete.

Having verified convergence for a large number of tissues, we decided to limit the
number of tissues to five (three skull parts, scalp, brain) to test the performance
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Fig. 5. The Speedup, the mean and the standard deviation of the execusion time of the two-level
parallel simulated annealing solver. Each point corresponds to three experimental runs using 5
tissues (left). Simulated annealing dynamics, the temperature cooling scheduale, cost function,
and the retrieved conductivity of frontal bone (right).

properties of the parallel simulated annealing algorithm. This will allow us also to
contrast performance with the earlier simplex outcome. The execution time and per-
formance speedup for a 2mm3 size problem from one to twelve tasks (each task run
on a 8-processor p655 node) is shown in Figure 5(left). The speedup is almost linear
with the number of nodes. Three experiments were run on each data point to show the
performance variation due to the random number generator sequence.

Even though we have excellent speedup, the degree of parallelism is limited. The
second version significantly increases parallelism by generating N random numbers,
one for perturbing the control point in each direction, and generated all possible points
by enumerating the perturbation in all directions. Then the cost function at these points
is evaluated in parallel. After computing all possible paths, the simulated annealing
criteria is applied. In theory this parallelism can speedup the computation by a factor
of N. In addition, we can get further speedup by selecting the best point from all points
that was computed and not only from those points on a simulated annealing path. This
speedup is due to speeding the convergence.

For verification purposes, we compared this new algorithm with the former for a
problem where the conductivities of three tissues are found. We used a single task and
two processors for the forward calculation. Thus, in the former algorithm, the paral-
lelism degree is two. In the new algorithm, the parallelism is of degree sixteen (23 per-
turbed points by two processors in the forward calculation), allowing two 8-processor
p655 nodes to be used, with a speedup potential of three (the number of tissues). Our
experimental results show an overall performance improvement of 1.98. The best point
selection gives a convergence speedup of 8%, while the inner loop parallelism produces
a speedup of 1.77. We believe better speedup can be achieved by eliminating commu-
nication overheads. For larger numbers of tissues, the number of processors needed to
realize the potential parallelism in the new algorithm increases by a power of two. When
this resource scaling is unavailable, the method can be throttled to use a smaller degree
of perturbation fanout.
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5 Conclusion

We provided an efficient computational environment that made the reconstruction of the
human head tissues conductivities possible. The simulated annealing algorithm proved
to be stable in extracting up to 13 tissues without any sign of failure. Remarkably,
using the parallel simulated annealing algorithm, we were able to extract five tissues
in 40 minutes, compared to over three days using our previous simplex methods. More
importantly, the new algorithms are very robust. In all the testing for this paper, the
simulated annealing runs never failed to converge.

There are still improvements to come. The potential parallelism in our new algorithm
begs for large-scale testing. For instance, with eleven tissues, over 2048-way parallelism
is possible. We intend to perform experiments on IBM BG/L and Cray XTE machines
soon. This level of performance is important because our research group at the Neuroin-
formatics Center will begin creating a head model database for several demographic
populations in the next year.
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