
Performance Tool Workflows

Wyatt Spear, Allen Malony, Alan Morris, and Sameer Shende

Performance Research Laboritory
Department of Computer and Information Science

University of Oregon, Eugene OR 97403, USA
{wspear,malony,amorris,sameer}@cs.uoregon.edu

Abstract. Using the Eclipse platform we have provided a centralized re-
source and unified user interface for the encapsulation of existing
command-line based performance analysis tools. In this paper we de-
scribe the user-definable tool workflow system provided by this perfor-
mance framework. We discuss the framework’s implementation and the
rationale for its design. A use case featuring the TAU performance anal-
ysis system demonstrates the utility of the workflow system with respect
to conventional performance analysis procedures.

1 Introduction

Performance analysis is an important component of software development, es-
pecially in high performance and parallel computing. With the proliferation of
multicore systems and the growing reliance upon parallel computing in science
and industry, the number of programmers who need to analyze and optimize
application performance as a matter of course is likely to increase.

Collecting performance data can be a complicated and time consuming un-
dertaking. Depending on the performance metrics one intends to collect and the
tools employed the steps may include source level instrumentation, compilation
with performance tool specific compilers or options, execution with performance
tool specific options or composed with a data collection tool, data collection,
storage, analysis, format conversion and visualization. It often requires knowl-
edge of several distinct tools to effectively perform even a subset of these tasks.
This must be accomplished and any technical hurdles must be overcome before
the true goal of performance analysis, actually using collected performance data
to improve the efficiency of an application, can be pursued.

Because performance analysis tools are usually command-line based, multi-step
performance analysis procedures are generally either done by hand or performed
with scripts. Such scripts are invariably specific to the tools being used and some-
times even the application being analyzed. In any case, managing performance
tool inter-operation is left to the end user. Expertise in the use of individual tools
and the collective use of multiple tools must be developed individually, or obtained
via documentation rather than any easily deployable programmatic means.

In more conventional venues of software development the Integrated Develop-
ment Environment has found favor for its productivity enhancing features. Few

M. Bubak et al. (Eds.): ICCS 2008, Part III, LNCS 5103, pp. 276–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Tool Workflows 277

IDEs offer significant support for the development of high performance appli-
cations. Where IDEs do offer performance analysis solutions, they are typically
unique to the IDE in question. If other tools are required the user must return
to the command line or resort to manual data manipulation.

The performance analysis framework for Eclipse attempts to address these
difficulties by providing an extensible, modular, general system for defining per-
formance analysis workflows. Workflow systems have been shown to increase effi-
ciency and ease of use for complex computational activities composed of discrete
steps [6]. With the growing complexity of and need for performance analysis, the
benefits of workflow techniques seem quite applicable. The expertise required to
perform a given performance analysis task or series of tasks can be encapsulated
in a workflow definition for easy distribution and deployment. So long as the
necessary tools are available on the system, the user need only select the desired
workflow and set any necessary starting parameters.

The performance analysis framework we have developed offers a modular,
extensible solution to the problem of performance analysis in IDEs by encapsu-
lating existing command line based tools. In addition to the basic requirement
of offering performance analysis tool functionality, it allows tools to be linked to-
gether in a workflow of performance analysis steps. The components comprising
this system and the steps that led to its development are described below.

2 Eclipse

The Eclipse integrated development environment [3] began as a platform for the
development of Java applications. In recent years its functionality has expanded
to support multiple languages and programming paradigms. The C/C++ De-
velopment Tools (CDT) [2] and Photran [14] projects provide functionality for
C/C++ and Fortran development, respectively. The Parallel Tools Platform
(PTP) [7] project extends the capabilities of the CDT and Photran by offering
parallel development, launch and debugging. These tools make Eclipse a promis-
ing means of enhancing traditional command line tools with IDE based develop-
ment techniques in high performance computing. However, the requirements of
high performance computing extend beyond the productivity-improving features
of a standard IDE.

The tools available for performance analysis and the breadth of features that
they cover make development of new tools specifically for a given IDE a difficult
task. This is further complicated by the fact that most parallel application devel-
opers are already accustomed to some set of tools and development procedures
available on the command line. Those who take the first steps toward IDE based
parallel application development may find the productivity gains provided by
the IDE significantly curtailed if they are faced with unfamiliar or incomplete
tools. The solution to this problem is to wrap the IDE around existing tools,
fully exposing their capabilities in the GUI. By making performance tools avail-
able within Eclipse we not only simplify their usage, often the tools incorporated
into the environment are made more usable than in their initial command-line
based incarnations.

278 W. Spear et al.

The performance analysis framework required a set of general, modular com-
ponents that could be combined to allow any command-line based performance
analysis tool to be incorporated. The movement of other projects toward sup-
porting parallel application development on the Eclipse platform and the plat-
form’s modularity and extensibility makes it an ideal focus for this work.

3 TAU

The performance analysis framework was initially created to add support for
the TAU (Tuning and Analysis Utilities) [8][10]. Like many other performance
analysis systems TAU is primarily oriented toward usage on the command line.
It supports numerous platforms and parallel programming paradigms including
MPI and OpenMP. Its data collection options include tracing, profiling, call-path
profiling, hardware counter data collection and inter-operation with various other
performance analysis systems.

The performance data produced by TAU can be broadly classified as either
trace output or profile output. Depending on TAU’s configuration one or both
types of data may be generated in any of several formats. TAU provides several
performance analysis tools, including ParaProf [1], a scalable graphical profile
analysis tool. It also provides support for database management of performance
profiles via the PerfDMF [4] database system.

TAU’s flexibility necessitates some complexity in deployment. A new config-
uration must be created for each combination of performance analysis options
to be used. In most cases the application to be analyzed must be instrumented
with TAU API calls and linked with the appropriate TAU library.

The use of TAU is greatly simplified by the use of the Performance Database
Toolkit (PDT) [5] and TAU’s compiler wrapper scripts. PDT enables automatic
parsing and instrumentation of a project’s source code, using selective instru-
mentation if necessary. TAU’s compiler wrapper scripts automatically include
the necessary invocations of PDT and modifications to the compilation com-
mand to include TAU libraries. Collecting performance data can be as simple
as replacing the default compiler command with the TAU compiler script in a
project’s makefile and specifying the desired compiler and environmental op-
tions. However, once the raw performance data has been collected there are still
numerous paths to be taken in manipulation and analysis of that data.

4 The TAU Plug-In

The most fundamental way to use TAU in conjunction with Eclipse is to replace
the default compilers used by Eclipse’s build system with the TAU compiler
scripts. Although this can be done manually, the numerous options and features
available to TAU at compile time must still be known to the user to be invoked.
Furthermore the process of adjusting analysis parameters and rebuilding the
application when different performance analysis data are desired still necessitates
manual string editing. Manually collecting performance data with TAU in Eclipse

Performance Tool Workflows 279

Fig. 1. TAU Compiler Option Selection

is no more difficult than typical command-line based usage. The same generally
applies to other performance tools that one might attempt to deploy in Eclipse.
There is clear room for improvement.

The core of the TAU plug-in for Eclipse [9] allows the user to select a TAU con-
figuration graphically. The visual exposure and online documentation of TAU’s
performance data collection options and the easy selection of those options within
the Eclipse environment (Fig. 1) makes the plug-in a significant improvement
over manual inclusion of TAU in the build configuration.

The TAU plug-in also provides options for automatically storing generated
profile data and viewing that data in the ParaProf profile analysis tool. In effect,
it provides a single, static workflow using a pre-set series of tools.

5 The Performance Framework

The development of the TAU plug-in and subsequent refactorings and optimiza-
tions resulted in a modular set of routines for the invocation of tools at various
stages of the Eclipse build and launch procedures. It also resulted in the creation
of a dynamic UI generator which can read user specified option definitions and
create a corresponding set of options in Eclipse’s user interface. Once defined,
these options are automatically applied to the relevant build or launch steps.

Though these components had been directed toward the use of TAU in Eclipse,
many of their capabilities are just as easily applied to other performance analysis
tools. The TAU specific elements of the core plug-ins amounted to the strings
defining the compiler and option names and the logic specific to TAU configura-
tion and option selection. Rather than require other tool developers to develop
their own Eclipse plug-ins, we determined to extend the TAU plug-ins to support

280 W. Spear et al.

essentially arbitrary series of commands which could be assembled for any given
tool without significant knowledge of Eclipse plug-in development.

Converting the plug-in to a system capable of dynamic command specification
was not a trivial undertaking. The parameters of a selected tool workflow needed
to be associated with data structures that could efficiently propagate through
each stage of performance data generation and analysis. Furthermore, the in-
ternal representations of tool specific configurations had to support essentially
arbitrary combinations of commands and parameters. Fortunately, the highly
modular implementation of the performance framework makes it fairly simple
to add new functionality or extend the workflow definition format should an
analysis tool with an unsupported interface be discovered.

6 Performance Analysis Workflow

There are two essential goals of the workflow definition format. The first is to
grant flexibility to tool developers to integrate their tools into Eclipse without
the need to modify their tools or to devote a great deal of time to learning Eclipse
plug-in development. The second is to grant performance tool users the ability
to easily configure and deploy project-specific performance analysis capabilities
within Eclipse with a relatively small investment of time and effort.

Fig. 2. A General Performance Analysis Workflow

The performance workflows are defined in an XML document stored outside
of the Eclipse workspace. This document may contain an arbitrary number of
individual workflow definitions. Workflow definitions are broken down into com-
pilation, execution and analysis phases (Fig. 2). A single workflow may consist of
several tools. By composing performance data collection and analysis tools it is
possible to produce an instrumented program, execute that program, collect the
performance data and display that data in the chosen performance data viewer
with a single mouse click.

Performance Tool Workflows 281

6.1 Compilation

The compilation phase definition specifies compilers and compiler arguments to
be used by the Eclipse build system. This is primarily useful for performance
tools that require recompilation of the program for instrumentation. Typically
this section will include specification of a compiler, often a compiler wrapper
script associated with the performance tool, and any relevant arguments. The
arguments specified in the tool definition will be combined with any arguments
provided by the build configuration selected for the build process.

Workflows that define a compilation phase require the user to select a build con-
figuration rather than an existing executable file in Eclipse’s launch configuration.
The selected build configuration us used as the basis for the construction of the
new executable. The user interface adjusts for the selection of an executable or a
build configuration depending on the requirements of the selected workflow.

The default behavior of the performance plug-ins, when recompilation is de-
fined in the workflow, is to compile and execute the program and then run any
specified analysis tools once data generation is complete. However the execu-
tion phase may be disabled, for example if the user intends to run the compiled
program outside of Eclipse.

6.2 Execution

The execution phase accommodates the use of tools that prepend the project’s
compiled executable. This element was intended to support performance tools
such as perfsuite’s psrun [13]. However, it has also proven useful for composing
applications for more general purposes. The ability to define a tool configuration
that automatically runs a compiled application with mpirun, for example, has
proven useful on systems where the PTP is unavailable. The composition of
multiple applications in the launch phase is supported. A typical use of this
capability is to initiate a parallel launch of an application using mpirun composed
with an analysis tool.

Unlike most of the other workflow components, the modifications to the stan-
dard launch system for the execution phase to support arbitrary tools were
almost entirely independent of the work done to support TAU. TAU itself does
not make use of composed executable launching. Additionally, unlike modify-
ing the build configuration system, manually arranging a composed executable
launch in Eclipse is not a straightforward process.

6.3 Analysis

The analysis phase is initiated after execution. It consists of a series of commands
and their arguments to be run in sequence. Information on the output of the
workflow’s performance tool is used to pass performance data to the specified
post-processing, data-management or visualization applications. Additionally,
the output of one application can be directed as an argument to another. The
flexibility of the tool definitions available in the analysis phase allow a great deal
of creativity in its use by tool developers and users.

282 W. Spear et al.

It is difficult to dynamically capture the output of the executed program for
use in a given analysis-phase application. In some cases the names of generated
performance files can not be predicted. Presently it is necessary specify the output
to be accessed in the tool definition on a per-application basis. Eventually it should
be possible to specify this dynamically from within the launch configuration.

7 Use Cases

The large number of performance tools and the varied capabilities of each tool
presents a vast number of combinations which can be difficult to wade through for
those who simply want to collect performance data and optimize their software
without focusing on the technical details of performance analysis. Even when
the procedure is straightforward, undertaking a multi-step performance analysis
workflow manually can be time consuming. The use cases presented here provide
some insight into the utility of performance analysis workflows.

7.1 TAU

A common use case for the TAU performance analysis system calls for gener-
ation of trace and profile data for a given application. The trace data is then
merged, converted into a trace format associated with a particular trace viewer
and analyzed in that trace viewer. The profile data is stored in a database and
viewed in ParaProf.

The individual steps are relatively simple once one becomes familiar with the
various tools involved. However, even with expertise in the various tools, the
procedure is still time consuming. To get from compilation to data visualization
as rapidly as possible, it is necessary to observe each of the individual steps and
initiate the next as soon as the previous is complete.

A workflow defined in the performance analysis framework makes this pro-
cedure much more straightforward. After selecting the relevant TAU workflow
(Fig. 3) it is still necessary to select a TAU configuration and specify any com-
pilation or execution specific options. However the user interface provided for
these options require only introductory knowledge of TAU’s capabilities.

With the relevant options selected the performance workflow may be launched.
The application will be recompiled with TAU’s compiler wrapper scripts, au-
tomatically generating instrumented source and linking it with the relevant
libraries. It bears note that for a tool lacking automatic instrumentation ca-
pabilities instrumentation may still need to be performed manually.

The TAU-instrumented executable will be launched immediately with any
parameters specified in the Eclipse launch configuration, in addition to those
provided by the TAU configuration interface. Depending on the type of TAU
configuration specified trace and/or profile data may be produced along with
any output normally generated by the program being analyzed.

By default, profile data will be uploaded to a user-specified PerfDMF database
if one is available. The ParaProf profile analysis tool will be launched on the pro-
file data stored within the database. The profile files are deleted if the database

Performance Tool Workflows 283

Fig. 3. A Workflow for a Common TAU Use Case

upload is successful, otherwise they are placed in a local directory identified by
the launch configuration name and timestamp. The logic for these operations is
coded directly into the performance framework. This behavior is left from the
original TAU specific plug-in. However a similar series of analysis steps could
easily be specified using the workflow definition system.

Trace data manipulation was not supported directly in the TAU specific iter-
ation of the plug-in. In this workflow trace management consists of the following
steps. First tau_treemerge.pl is called to merge tracefiles from multiple pro-
cesses. tau2slog2 is then called on the merged trace output to produce a .slog2
file. Finally, to display the trace Jumpshot is called on the .slog2 file.

Once a launch configuration is configured with the desired workflow and the
relevant performance collection and application options are specified it will per-
sist within the Eclipse workspace. Changes to the source code or the launch
parameters can be tested immediately with minimal oversight by the user.

7.2 Valgrind

A relatively simple workflow using a tool quite different from TAU involves the
use of the memory analysis tool valgrind [12]. A valgrind workflow requires only
the specification of the valgrind executable in the execution phase, along with
any desired options.

When this workflow is selected in the launch configuration no other modifica-
tions are necessary. The executable of the selected project will be composed with
valgrind and any options defined in the workflow. The launch will then proceed
normally. The output from valgrind will be displayed in Eclipse’s console view
unless different output behavior for valgrind is specified in the workflow.

8 Future Work

As of this writing, some of the performance framework’s more advanced capabil-
ities are still somewhat limited to supporting TAU. One priority is extending the

284 W. Spear et al.

selective instrumentation capabilities of the system to support the various selec-
tive instrumentation schemes of alternative performance analysis tools. A related
goal is to support the selection tool options usable by multiple tools, such as PAPI
hardware counters [11], for tools other than TAU using a single interface.

Currently the analysis tools are only invoked after an execution phase has
completed. Although this covers the most typical use cases, it may be useful to
initiate an analysis workflow on performance data already present on the file-
system. Support for analysis-only operations is a priority, though the interface
for this feature is not likely to be an extension of the launch configuration.

Presently the workflow definition format only allows for linear workflows using
some combination of compilation, execution and analysis commands. Soon, the
modular nature of the workflow components will allow the addition of some
logical elements to the workflow system. For example, rather than terminate at
the end of the analysis phase, data collected in analysis could be evaluated and
the compilation and execution phases repeated with modified parameters until
a certain set of conditions is met. This will be useful for performance analysis
procedures that require iterative data collection. The initial implementation of
this capability will likely be to facilitate performance scalability testing.

Ultimately we hope to provide a means of visually defining and modifying
tool workflows within Eclipse. This will remove the need for users or developers
to interact with the tool definition XML file and make the full capabilities of the
workflow system more accessible and obvious.

9 Conclusion

By providing a general framework for performance analysis in a popular IDE
we hope to simplify the process of performance analysis just as IDEs have as-
sisted with simplifying other aspects of the software development cycle. Ideally
this work can benefit not only existing software developers, but will also be of
use to newcomers to high performance software engineering who may be more
accustomed to IDE-based software development.

Perhaps more importantly, we have created a means for expert users to en-
capsulate their expertise in a programmatic way. A given series of performance
analysis operations can be defined as a workflow by a tool developer or advanced
user. This can then be made available to others who desire the final output of
the potentially complex performance analysis procedure, but have no desire to
engage in the manual, multi-step process every time they need to collect the
data from their application.

References

1. Bell, R., Malony, A.D., Shende, S.: A Portable, Extensible, and Scalable Tool
for Parallel Performance Profile Analysis. In: Proc. EUROPAR 2003 conference.
LNCS, vol. 2790, pp. 17–26. Springer, Heidelberg (2003)

2. CDT - C/C++ Development Tools, http://www.eclipse.org/cdt

http://www.eclipse.org/cdt

Performance Tool Workflows 285

3. Eclipse, http://www.eclipse.org
4. Huck, K., Malony, A.D., Bell, R., Li, L., Morris, A.: PerfDMF: Design and imple-

mentation of a parallel performance data management framework. In: Proc. Inter-
national Conference on Parallel Processing (ICPP 2005). IEEE Computer Society,
Los Alamitos (2005)

5. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R.,
Rasmussen, C.: A Tool Framework for Static and Dynamic Analysis of Object-
Oriented Software with Templates. In: Proceedings of SC 2000: High Performance
Networking and Computing Conference, Dallas (November 2000)

6. Oinn, T., et al.: Taverna/myGrid: aligning a workflow system with the life sciences
community. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Work-
flows for e-Science: scientific workflows for Grids, pp. 300–319. Springer, Guildford
(2007)

7. PTP - Parallel Tools Platform, http://www.eclipse.org/ptp
8. Shende, S., Malony, A.D.: The TAU Parallel Performance System. International

Journal of High Performance Computing Applications, ACTS Collection Special
Issue (2005)

9. Spear, W., et al.: Integrating TAU With Eclipse: A Performance Analysis System in
an Integrated Development Environment. In: Gerndt, M., Kranzlmüller, D. (eds.)
HPCC 2006. LNCS, vol. 4208, pp. 230–239. Springer, Heidelberg (2006)

10. TAU - Tuning and Analysis Utilities,
http://www.cs.uoregon.edu/research/tau/home.php

11. Moore, S., Cronk, D., Wolf, F., Purkayastha, A., Teller, P., Araiza, R., Aguilera,
M., Nava, J.: Performance Profiling and Analysis of DoD Applications using PAPI
and TAU. In: Proceedings of DoD HPCMP UGC 2005. IEEE, Nashville, TN (2005)

12. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: Proceedings of ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation (PLDI 2007), San Diego, Cal-
ifornia, USA (June 2007)

13. Kufrin, R.:PerfSuite: An Accessible, Open Source Performance Analysis Environ-
ment for Linux. In: 6th International Conference on Linux Clusters: The HPC
Revolution 2005. Chapel Hill, NC (April 2005)

14. Photran - Fortran Development Tools, http://www.eclipse.org/photran/

http://www.eclipse.org
http://www.eclipse.org/ptp
http://www.cs.uoregon.edu/research/tau/home.php
http://www.eclipse.org/photran/

	Performance Tool Workflows
	Introduction
	Eclipse
	TAU
	The TAU Plug-In
	The Performance Framework
	Performance Analysis Workflow
	Compilation
	Execution
	Analysis

	Use Cases
	TAU
	Valgrind

	Future Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

