
doi: 10.1016/j.procs.2015.05.466

Parallel Performance Optimizations on

Unstructured Mesh-Based Simulations

Abhinav Sarje1, Sukhyun Song2, Douglas Jacobsen3, Kevin Huck4, Jeffrey
Hollingsworth2, Allen Malony4, Samuel Williams1, and Leonid Oliker1

1 Lawrence Berkeley National Laboratory {asarje,swwilliams,loliker}@lbl.gov
2 University of Maryland {shsong,hollings}@cs.umd.edu
3 Los Alamos National Laboratory {douglasj}@lanl.gov
4 University of Oregon {khuck,malony}@cs.uoregon.edu

Abstract

This paper addresses two key parallelization challenges the unstructured mesh-based ocean
modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load
imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and
inter-node performance. Our work analyzes the load imbalance due to naive partitioning of
the mesh, and develops methods to generate mesh partitioning with better load balance and
reduced communication. Furthermore, we present methods that minimize both inter- and intra-
node data movement and maximize data reuse. Our techniques include predictive ordering of
data elements for higher cache efficiency, as well as communication reduction approaches. We
present detailed performance data when running on thousands of cores using the Cray XC30
supercomputer and show that our optimization strategies can exceed the original performance
by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of
unstructured grid-based computations.

Keywords: Unstructured Mesh, Ocean Modeling, Graph Partitioning, Performance Optimization

1 Introduction

Iteration-based computational simulations require an abstract representation of the real-world
state. In most cases, the data is represented as a collection of multidimensional data points
where some of the data points define spatial coordinates. In such applications, the domain is
discretized into cells, forming a mesh or grid. In a distributed parallel environment, these grids
often provide a convenient framework for decomposition of the data into independent, groups
of cells as partitions. Structured meshes have regular cells and connectivity. For example, 2D
structured meshes are typically represented with rectilinear or curvilinear quadrangles which
can often be decomposed into partitions in a straightforward way. Structured meshes are
appropriate when they are sufficient to define regular domains. One problem with structured

Procedia Computer Science

Volume 51, 2015, Pages 2016–2025

ICCS 2015 International Conference On Computational Science

2016 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.466&domain=pdf

meshes in defining certain domains, such as surfaces of spheres, is that they get distorted in
order to enclose areas such as the poles of spheres, resulting in multiple grid points sharing
the same location creating a coordinate singularity where the tangent space is undefined. On
the other hand, unstructured or irregular meshes have arbitrary polygon cells with irregular
connectivity. As such, partitioning of these meshes is often not obvious and generally driven
by complex algorithms. These meshes are useful in applications requiring multiscale and/or
variable resolution. They map better to curved surfaces, such as surfaces of spheres, avoiding
coordinate singularities and distortions when mapped to 2D [16]. Applications where such
meshes are applicable include adaptive mesh refinement, multi-resolution domains, and finite
element methods on an irregular domain. Often domain decomposition for distributed memory
parallel computations requires the use of ghost or halo cells from neighboring partitions when
cells on the boundary of a partition require input from neighboring cells assigned to a different
partition. Furthermore, decomposition of unstructured meshes that are not fully connected
results in irregular partitions, potentially with high variability in the numbers of halo cells for
each partition. This leads to severe load imbalance, increasing synchronization wait times and
decreasing computational throughput. Deeper halo regions further exacerbate this situation.

The on-node memory access patterns of structured and unstructured codes tend to be very
different. Structured meshes are convenient in that their layout in memory is amenable to opti-
mizations such as blocking, tiling, good cache reuse and vectorization because the cells are often
represented as multidimensional rectilinear arrays. Because of their regular shape and layout,
they have predictable access patterns. In contrast, unstructured meshes are a performance
challenge as they are frequently represented as connected graphs with non-contiguous memory
layouts. Iterating over the “neighbors” of an unstructured mesh cell can result in poor cache
reuse due to pointer chasing since the neighbors may not necessarily be localized in memory. In
this paper, we address these two particular challenges put forth by unstructured meshes – load
imbalance and unstructured data. The issue of load imbalance is addressed in Section 3, and
the issue of unstructured data is addressed in Section 4. We present our results and solutions
in the context of an ocean modeling code, MPAS-Ocean [16], which we briefly describe next.

2 Background

2.1 Ocean Modeling with MPAS

The Model for Prediction Across Scales (MPAS) is a modeling framework collaboratively de-
veloped between Los Alamos National Laboratory and the National Center for Atmospheric
Research [16]. The MPAS framework is built on top of unstructured mesh data structures that
make heavy use of indirect addressing. In this paper, we present our optimization efforts on
unstructured meshes in the context of the ocean modeling core, MPAS-Ocean.

MPAS-O is a next generation global ocean model, built on top of spherical centroidal Voronoi
tessellations (SCVT). The resultant meshes are composed of arbitrarily shaped polygons which
bring unique challenges to parallel load balancing and data locality. These meshes can be
generated using a density function to produce static mesh refinement in areas of interest (see
Fig. 1). A major advantage of such mesh is that it provides smooth resolution transition
regions, while allowing for drastically different resolutions in different regions of the mesh.
It also eliminates the need for “hanging node” issues that are common in regular structured
variable resolution meshes, while still providing refinement in areas of interest. Building off
of this unstructured mesh, MPAS-O enumerates its data on a staggered horizontal Arakawa
C-Grid, visualized in Fig. 1. While the horizontal data structure is staggered and unstructured,
this mesh has a vertical (ocean depth) data structure that is regular and structured.

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

2017

neighboring partitions, performing “halo-exchanges”. To demonstrate the computational and
communication load imbalance due to a given Metis partitioning, across the different processes
during an execution, we show the variation in the computation and communication time for
each process for a sample run in Fig. 2. It can be observed that in this example the computation
and communication times vary by 75% and 42%, respectively, showing a high imbalance.

Available partitioners generate a partitioning by (1) balancing the number of cells in all
partitions, and (2) minimizing the total number of edge cuts. Based on our analysis of load-
imbalance due to a straightforward Metis partitioning, it is clear that a different approach is
required to achieve better load balancing, which would effectively balance the computation as
well as the actual communication distribution. Therefore, this partitioner should balance the
partitions with respect to total cells including the halo cells, and minimize the communica-
tion volume. We turn to partitioning via hypergraphs using the PaToH partitioner [7], which
promises to model the communication overhead more accurately.

The communication overhead between processes is due to halo exchanges, and because of the
unstructured and non-contiguous nature of meshes, each partition has different number of halo
cells, with high variability across all partitions. The effect of halo cells is magnified when deep
halos are used. MPAS-O typically requires halos with depth of three cells. Since graph/hyper-
graph partitioning algorithms do not take these halo cells into account, a different partitioning
strategy is necessary for a better balance. In order to develop a halo-aware partitioning scheme,
we first construct a cost model for a given partitioning to accurately represent computation and
communication costs, and then use this model to design our partitioning algorithm.

3.2 Partitioning-based Cost Modeling

The computational cost for a processor includes the cost due to computations on the local cells
and on the halo cells. The cost may be different for a local cell and a halo cell. For p total
partitions, let a represent the ratio between computation performed on a halo and local cells.
Given a partition k, we model its computational cost, Cα as:

Cα =
1

F (p)

(
i∈Nk∑

i

wi + a

i∈Hk∑
i

wi

)
(1)

where Nk is the set of local cell for partition k, Hk is the set of halo cells for partition k, and
wi is weight of a cell i. F (p) is a function of p, the number of partitions, and represents the
fact that the cost decreases with increasing p.

The communication volume depends on the number of halo cells for each partition, and the
number of neighbors each processor needs to communicate with. We model the communication
cost for a partition k as:

Cβ =
1

F (p)

hk

bk
+

(
max
i∈[1,p]

(ci)− ck

)
(2)

where hk = |Hk|, bk = number of neighbors of partition k, ck is the total computational cost of
partition k. Hence, the first term represents the average communication load to each neighbor,
and the second term represents the wait time for processor owning partition k.

We perform extensive experiments with the actual cost of representative simulations with
varying concurrency and input meshes, and use the obtained performance data to perform a
least-squares line fit in order to find the computation-communication ratio, and the value of
F (p). From the data collected from these experiments, we obtain the fitted values a = 0.7 and
F (p) ≈ log(4p). We confirm the correctness of our cost model as shown in Fig. 2.

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

2020

3.3 Halo-aware Partitioning

To model deep halos, we could naively use BFS or DFS starting from each cell and identify
all the l distance neighbors to construct l-depth halos. However, given that graphs can be
represented as sparse matrices, a more efficient approach is to compute the l-th power of a
matrix, through sparse matrix-matrix multiplication (SpMM), which identifies all nodes in the
corresponding graph that are at a distance l and connects them with an edge. Therefore, given
A as the sparse matrix representation of the input mesh, computing Al determines the l depth
halo cells. We utilize the CombBLAS package [4] to perform the matrix power operations.
Aggregating the edges from A,A2, ..., Al identifies all the halo cells for any given partitioning.

However, because the halo cells cannot be identified until a partitioning has been performed,
their cost cannot be added for balancing during the partitioning process. Therefore, our new
partitioning strategy follows an iterative approach. The strategy is designed as a Monte-Carlo
based partitioning scheme that iteratively refines the partitioning using total cost estimated
for previous iteration’s partitioning. Each iteration, thus, includes a call to the hypergraph
partitioning tool PaToH. This scheme is as follows for an input mesh G:
1: procedure HaloAwarePartition(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraph H0 for A1···l
5: while not converged do
6: Construct partitioning Pi of Hi, and construct halos for each partition in Pi

7: Compute cost prediction for each partition k and assign weights to the cells, distributing the cost of
halo cells equally among partition cells, and hence compute total partition weights Wk

8: Compute imbalance measure, fi =
(
1− mink(Wk)

maxk(Wk)

)

9: Accept Pi with probability m = min
(
1, e(fi−1−fi)/2

)
� (Metropolis-Hastings probability)

10: if Pi is accepted then
11: Update Hi with the new cell weights to construct H(i+1)

12: else
13: Reject Pi by setting Pi = Pi−1 and fi = fi−1

14: end if
15: end while
16: Output last accepted partitioning as the result
17: end procedure

The above procedure ensures that the costs due to halos are taken into account by assigning
weights to the cells and refining the partitioning iteratively. Experimental results show that
the convergence is reached quickly, generally within 10 iterations.

3.4 Variable Cell Weights

In general a mesh may have variable cell weights. For MPAS-O the cells in the input mesh have
variable depths, representing the ocean depth at the corresponding location. This introduces
another opportunity for optimization, since the computational cost of a cell is proportional
to the number of depth layers it defines (varying between 3–40). To take this into account,
variable weights corresponding to the cell depth are assigned to each cell while calculating the
cost using the performance model. The next subsection presents the impact of our depth and
halo-aware partitioning strategies compared with assigning the original partitioning.

3.5 Performance Results

We perform experiments on the Edison system (Section 2.4), using a 15 km resolution mesh to
simulate 10 days, with the following four partitioning strategies: (1) Original Metis partitioning.
(2) Hypergraph partitioning from PaToH. (3) Halo-aware partitioning. (4)Depth and halo-aware

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

2021

References

[1] M. Bader. Space-Filling Curves. An Introduction With Applications in Scientific Computing.
Springer, Oct. 2012.

[2] M. A. Bender, B. C. Kuszmaul, S.-H. Teng, and K. Wang. Optimal Cache-Oblivious Mesh Layouts.
Theory of Computing Systems, 48(2):269–296, Feb. 2011.

[3] M. Berzins. A new metric for dynamic load balancing. Applied Mathematical Modelling, 2000.

[4] A. Buluc and J. R. Gilbert. The Combinatorial BLAS: Design, implementation, and applications.
International Journal of High Performance Computing Applications, 2011.

[5] Ü. Catalyürek. Hypergraph models for sparse matrix partitioning and reordering. PhD thesis, 1999.

[6] Ü. Catalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication. Parallel and Distributed Systems, IEEE Transactions on, 10(7):673–
693, 1999.

[7] U. Catalyurek and C. Aykanat. PaToH: Partitioning Tool for Hypergraphs, March 2011.

[8] E. Cuthill and J. McKee. Reducing the Bandwidth of Sparse Symmetric Matrices. In Proceedings
of the 1969 24th National Conference, ACM ’69, pages 157–172, 1969.

[9] J. M. Dennis. Inverse space-filling curve partitioning of a global ocean model. In International
Parallel and Distributed Processing Symposium (IPDPS’07), pages 1–10. IEEE, 2007.

[10] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and Ü. V. Catalyürek. Parallel hy-
pergraph partitioning for scientific computing. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, page 10 pp. IEEE, 2006.

[11] O. Fortmeier, H. M. Bücker, B. O. F. Auer, and R. H. Bisseling. A new metric enabling an exact
hypergraph model for the communication volume in distributed-memory parallel applications.
Parallel Computing, 39(8):319–335, Aug. 2013.

[12] Y. F. Hu and R. J. Blake. Load balancing for unstructured mesh applications. Parallel and
Distributed Computing Practices, 1999.

[13] G. Karypis. METIS: A Software Package for Partitioning UnstructuredGraphs, Partitioning
Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Mar. 2013.

[14] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties of the
Hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering, 13(1):124–
141, 2001.

[15] I. Moulitsas and G. Karypis. Architecture Aware Partitioning Algorithms. In ICA3PP ’08:
Proceedings of the 8th international conference on Algorithms and Architectures for Parallel Pro-
cessing. Springer-Verlag, June 2008.

[16] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud. A multi-
resolution approach to global ocean modeling. Ocean Modeling, 69(C):211–232, Sept. 2013.

[17] K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic multi-constraint graph
partitioning. Concurrency and Computation: Practice and Experience, 14(3):219–240, 2002.

[18] N. Selvakkumaran and G. Karypis. Multi-Objective Hypergraph Partitioning Algorithms for Cut
and Maximum Subdomain Degree Minimization. IEEE Transactions on Computer Aided Design,
pages 1–14, Apr. 2005.

[19] B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix partitioning. SIAM
review, 49(4):595–603, 2007.

[20] H. T. Vo, C. T. Silva, L. F. Scheidegger, and V. Pascucci. Simple and Efficient Mesh Layout with
Space-Filling Curves. Journal of Graphics Tools, 16(1):25–39, 2012.

[21] C. Walshaw, M. Cross, and M. G. Everett. Dynamic mesh partitioning: A unified optimisation
and load-balancing algorithm. 1995.

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

2025

