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Abstract

This paper addresses two key parallelization challenges the unstructured mesh-based ocean
modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load
imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and
inter-node performance. Our work analyzes the load imbalance due to naive partitioning of
the mesh, and develops methods to generate mesh partitioning with better load balance and
reduced communication. Furthermore, we present methods that minimize both inter- and intra-
node data movement and maximize data reuse. Our techniques include predictive ordering of
data elements for higher cache efficiency, as well as communication reduction approaches. We
present detailed performance data when running on thousands of cores using the Cray XC30
supercomputer and show that our optimization strategies can exceed the original performance
by over 2x. Additionally, many of these solutions can be broadly applied to a wide variety of
unstructured grid-based computations.
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1 Introduction

Iteration-based computational simulations require an abstract representation of the real-world
state. In most cases, the data is represented as a collection of multidimensional data points
where some of the data points define spatial coordinates. In such applications, the domain is
discretized into cells, forming a mesh or grid. In a distributed parallel environment, these grids
often provide a convenient framework for decomposition of the data into independent, groups
of cells as partitions. Structured meshes have regular cells and connectivity. For example, 2D
structured meshes are typically represented with rectilinear or curvilinear quadrangles which
can often be decomposed into partitions in a straightforward way. Structured meshes are
appropriate when they are sufficient to define regular domains. One problem with structured
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meshes in defining certain domains, such as surfaces of spheres, is that they get distorted in
order to enclose areas such as the poles of spheres, resulting in multiple grid points sharing
the same location creating a coordinate singularity where the tangent space is undefined. On
the other hand, unstructured or irregular meshes have arbitrary polygon cells with irregular
connectivity. As such, partitioning of these meshes is often not obvious and generally driven
by complex algorithms. These meshes are useful in applications requiring multiscale and/or
variable resolution. They map better to curved surfaces, such as surfaces of spheres, avoiding
coordinate singularities and distortions when mapped to 2D [16]. Applications where such
meshes are applicable include adaptive mesh refinement, multi-resolution domains, and finite
element methods on an irregular domain. Often domain decomposition for distributed memory
parallel computations requires the use of ghost or halo cells from neighboring partitions when
cells on the boundary of a partition require input from neighboring cells assigned to a different
partition. Furthermore, decomposition of unstructured meshes that are not fully connected
results in irregular partitions, potentially with high variability in the numbers of halo cells for
each partition. This leads to severe load imbalance, increasing synchronization wait times and
decreasing computational throughput. Deeper halo regions further exacerbate this situation.
The on-node memory access patterns of structured and unstructured codes tend to be very
different. Structured meshes are convenient in that their layout in memory is amenable to opti-
mizations such as blocking, tiling, good cache reuse and vectorization because the cells are often
represented as multidimensional rectilinear arrays. Because of their regular shape and layout,
they have predictable access patterns. In contrast, unstructured meshes are a performance
challenge as they are frequently represented as connected graphs with non-contiguous memory
layouts. Iterating over the “neighbors” of an unstructured mesh cell can result in poor cache
reuse due to pointer chasing since the neighbors may not necessarily be localized in memory. In
this paper, we address these two particular challenges put forth by unstructured meshes — load
imbalance and unstructured data. The issue of load imbalance is addressed in Section 3, and
the issue of unstructured data is addressed in Section 4. We present our results and solutions
in the context of an ocean modeling code, MPAS-Ocean [16], which we briefly describe next.

2 Background
2.1 Ocean Modeling with MPAS

The Model for Prediction Across Scales (MPAS) is a modeling framework collaboratively de-
veloped between Los Alamos National Laboratory and the National Center for Atmospheric
Research [16]. The MPAS framework is built on top of unstructured mesh data structures that
make heavy use of indirect addressing. In this paper, we present our optimization efforts on
unstructured meshes in the context of the ocean modeling core, MPAS-Ocean.

MPAS-O is a next generation global ocean model, built on top of spherical centroidal Voronoi
tessellations (SCVT). The resultant meshes are composed of arbitrarily shaped polygons which
bring unique challenges to parallel load balancing and data locality. These meshes can be
generated using a density function to produce static mesh refinement in areas of interest (see
Fig. 1). A major advantage of such mesh is that it provides smooth resolution transition
regions, while allowing for drastically different resolutions in different regions of the mesh.
It also eliminates the need for “hanging node” issues that are common in regular structured
variable resolution meshes, while still providing refinement in areas of interest. Building off
of this unstructured mesh, MPAS-O enumerates its data on a staggered horizontal Arakawa
C-Grid, visualized in Fig. 1. While the horizontal data structure is staggered and unstructured,
this mesh has a vertical (ocean depth) data structure that is regular and structured.
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Figure 1: (Left) Global multiscale ocean mesh with refinement over the North Atlantic. The coloring
represents variable resolutions with magenta corresponding to finest resolution to blue for coarsest.
(Center-left) Detail of a region from the global mesh. The actual mesh is overlaid to show the smooth
transitions of the resolutions. (Center-right) The horizontal staggering with variables stored within
cells and on edges and vertices. Blue squares represent scalar data (mass, temperature, etc.), orange
circles represent vorticity related quantities, and red triangles represent vector quantities (velocities).
(Right) An example visualization of the load imbalance in an execution of MPAS-Ocean when the
mesh is partitioned using the Metis tool. The grid used here consists of 1.8 million cells decomposed
into 2048 partitions, one per process. Blue parts have low load and red parts have high load. In this
example, highest load process performs about 3x as much work as the lowest load process.

Global climate modeling is considered a grand challenge problem due to the spatial and tem-
poral scales required to accurately simulate the phenomena. Temporal scales for climate models
are on the order of centuries, while spatial scales are on tens of kilometers. The requirements
for performing global climate simulations require models such as MPAS-O to simulate on large
number of horizontal degrees of freedom of O(10%) to O(107). In addition, MPAS-O performs
simulations generally with 100 vertical levels per horizontal degree of freedom. Hence, MPAS-O
requires efficient execution on high concurrency systems to drive ocean analysis simulations.

2.2 Load Balance

Load balancing across processing units in parallel applications is a widely researched topic due
to its importance in gaining higher parallel efficiency. Load imbalance leads to underutiliza-
tion of computational resources. Achieving an efficient load balance is particularly challenging
with unstructured meshes because their balanced decomposition is not obvious [3,12]. As un-
structured meshes are easily representable as graphs, many of the decomposition strategies are
based on the graph partitioning algorithms. Although the graph partitioning problem is NP-
complete, a number of heuristic-based partitioning algorithms exist [9,15,17,21]. MPAS-O uses
a popular graph partitioning tool, Metis [13]. As will be discussed later, using this approach
directly causes significant imbalance across processes. In addition to the unstructured nature
of the mesh, a primary factor causing the imbalance is the use of deep halo regions in this
application. The cell counts in halo regions of different mesh partitions is hence highly variable.
A visualization showing variability in computation and communication loads across partitions
in a sample execution of MPAS-O is shown in Fig. 1.

It is known that graphs do not model parallel communication volume well. Hypergraphs, on
the other hand, are able to model the communication volume accurately [5,10,11]. Hence, in our
work to improve the mesh partitioning, we build a partitioner using hypergraph partitioning [6,
10,18,19]. We analyze and address this problem of load balance in Section 3.

2.3 Data Locality

Flops are free is the mantra of today’s large-scale parallel systems. This refers to the observation
that the primary bottleneck in nearly all scientific applications today is data movement and
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Figure 2: (Left) The variation in the computation versus communication times for all processes,
represented by a dot, during an example simulation using a partitioning obtained from Metis. This
simulation consists of 1,536 processes, each owning a mesh partition. Communication time varies by
about 42% and computation by 75% showing a large imbalance. (Right) Total cost predicted using
our model compared with actual run times with respect to 700 different mesh partitioning obtained by
using PaToH with different parameter configurations.

not computations. This gap in the cost between computation and data movement is only going
to grow wider in future. Optimizing data movement (both volume and bandwidth) is, hence,
essential in obtaining high performance. To affect this, the main strategies are (1) maximizing
reuse of data once it has been loaded (through reordering data traversal, and “communication-
avoiding” algorithms), and, (2) maximizing bandwidth via streaming access patterns amenable
to acceleration by hardware stream pre-fetchers.

To improve intra-node performance, it is essential that the memory hierarchy (caches) is
used efficiently in data accesses. Data locality, both spatial and temporal, is an important factor
in maximizing efficiency. When operating on unstructured meshes, indirect and semi-random
access to data presents a number of challenges to maximizing cache reuse and attaining high
bandwidth. In this paper, we increase data locality by reordering the input mesh data to make
sure that spatially nearby cells are stored nearby in the memory as well. Researchers have
previously used various strategies for improving cache performance by introducing locality into
structured meshes [2]. In [20], although the authors consider unstructured data, they work with
meshes with high-degree of regularity. Here, we address this problem for generic unstructured
and multiscale meshes in Section 4.

2.4 Computational Environment

The experiments described in this paper were executed on Fdison, a Cray XC30 system at
NERSC. Each Edison node consists of two 12-core Intel Ivy Bridge sockets. Each socket is
attached to 32 GB of DDR3 DRAM via a memory controller providing about 44 GB/s of
bandwidth. Nodes are connected via Cray’s high-performance Aries (dragonfly) network. In
all the experiments presented in this paper, we run with 12 MPI processes per socket.

The mesh used is a 15 km resolution world ocean mesh, consisting of about 1.85M cells and
5.5M edges. Each cell has 3 to 40 vertical levels, representing vertical depth of the ocean.

3 Mesh Partitioning
3.1 Load Imbalance Analysis

As previously mentioned, MPAS-O uses Metis to decompose an input mesh into partitions. Each
partition may then be assigned to a different processors during simulations. Deep halo regions
are created for each partition which represent the data that needs to be communicated from the
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neighboring partitions, performing “halo-exchanges”. To demonstrate the computational and
communication load imbalance due to a given Metis partitioning, across the different processes
during an execution, we show the variation in the computation and communication time for
each process for a sample run in Fig. 2. It can be observed that in this example the computation
and communication times vary by 75% and 42%, respectively, showing a high imbalance.

Available partitioners generate a partitioning by (1) balancing the number of cells in all
partitions, and (2) minimizing the total number of edge cuts. Based on our analysis of load-
imbalance due to a straightforward Metis partitioning, it is clear that a different approach is
required to achieve better load balancing, which would effectively balance the computation as
well as the actual communication distribution. Therefore, this partitioner should balance the
partitions with respect to total cells including the halo cells, and minimize the communica-
tion volume. We turn to partitioning via hypergraphs using the PaToH partitioner [7], which
promises to model the communication overhead more accurately.

The communication overhead between processes is due to halo exchanges, and because of the
unstructured and non-contiguous nature of meshes, each partition has different number of halo
cells, with high variability across all partitions. The effect of halo cells is magnified when deep
halos are used. MPAS-O typically requires halos with depth of three cells. Since graph/hyper-
graph partitioning algorithms do not take these halo cells into account, a different partitioning
strategy is necessary for a better balance. In order to develop a halo-aware partitioning scheme,
we first construct a cost model for a given partitioning to accurately represent computation and
communication costs, and then use this model to design our partitioning algorithm.

3.2 Partitioning-based Cost Modeling

The computational cost for a processor includes the cost due to computations on the local cells
and on the halo cells. The cost may be different for a local cell and a halo cell. For p total
partitions, let a represent the ratio between computation performed on a halo and local cells.
Given a partition k£, we model its computational cost, C,, as:

1 iEN}, i€ H)y,
Oa:F’(p)(Z:wi_Fazi:wi) (1)

where N}, is the set of local cell for partition k, Hy is the set of halo cells for partition k, and
w; is weight of a cell . F(p) is a function of p, the number of partitions, and represents the
fact that the cost decreases with increasing p.

The communication volume depends on the number of halo cells for each partition, and the
number of neighbors each processor needs to communicate with. We model the communication
cost for a partition k as:

1 hg
_ s N 2
Cs Fo) b + (iglﬁ](cz) Ck> (2)

where hy, = |Hg|, by = number of neighbors of partition k, ¢ is the total computational cost of
partition k. Hence, the first term represents the average communication load to each neighbor,
and the second term represents the wait time for processor owning partition k.

We perform extensive experiments with the actual cost of representative simulations with
varying concurrency and input meshes, and use the obtained performance data to perform a
least-squares line fit in order to find the computation-communication ratio, and the value of
F(p). From the data collected from these experiments, we obtain the fitted values a = 0.7 and
F(p) = log(4p). We confirm the correctness of our cost model as shown in Fig. 2.
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3.3 Halo-aware Partitioning

To model deep halos, we could naively use BFS or DFS starting from each cell and identify
all the [ distance neighbors to construct [-depth halos. However, given that graphs can be
represented as sparse matrices, a more efficient approach is to compute the I-th power of a
matrix, through sparse matrix-matrix multiplication (SpMM), which identifies all nodes in the
corresponding graph that are at a distance [ and connects them with an edge. Therefore, given
A as the sparse matrix representation of the input mesh, computing A! determines the [ depth
halo cells. We utilize the CombBLAS package [4] to perform the matrix power operations.
Aggregating the edges from A, A2, ..., A' identifies all the halo cells for any given partitioning.

However, because the halo cells cannot be identified until a partitioning has been performed,
their cost cannot be added for balancing during the partitioning process. Therefore, our new
partitioning strategy follows an iterative approach. The strategy is designed as a Monte-Carlo
based partitioning scheme that iteratively refines the partitioning using total cost estimated
for previous iteration’s partitioning. FEach iteration, thus, includes a call to the hypergraph
partitioning tool PaToH. This scheme is as follows for an input mesh G:

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G

3: Compute A2,--- Al and Ay..; = Zl Al

4: Construct hypergraph Ho for A;...;

5: while not converged do

6: Construct partitioning P; of H;, and construct halos for each partition in P;

7 Compute cost prediction for each partition k and assign weights to the cells, distributing the cost of

halo cells equally among partition cells, and hence compute total partition weights W,

8: Compute imbalance measure, f; = (1 — 73;1’; EVV‘;’; )))

9: Accept P; with probability m = min (1, e(fifl_fi)/z) > (Metropolis-Hastings probability)
10: if P; is accepted then

11: Update H; with the new cell weights to construct H;41)
12: else
13: Reject P; by setting P; = P;_1 and f; = fi—1
14: end if

15: end while
16: Output last accepted partitioning as the result
17: end procedure

The above procedure ensures that the costs due to halos are taken into account by assigning
weights to the cells and refining the partitioning iteratively. Experimental results show that
the convergence is reached quickly, generally within 10 iterations.

3.4 Variable Cell Weights

In general a mesh may have variable cell weights. For MPAS-O the cells in the input mesh have
variable depths, representing the ocean depth at the corresponding location. This introduces
another opportunity for optimization, since the computational cost of a cell is proportional
to the number of depth layers it defines (varying between 3-40). To take this into account,
variable weights corresponding to the cell depth are assigned to each cell while calculating the
cost using the performance model. The next subsection presents the impact of our depth and
halo-aware partitioning strategies compared with assigning the original partitioning.

3.5 Performance Results

We perform experiments on the Edison system (Section 2.4), using a 15 km resolution mesh to
simulate 10 days, with the following four partitioning strategies: (1) Original Metis partitioning.
(2) Hypergraph partitioning from PaToH. (3) Halo-aware partitioning. (4) Depth and halo-aware
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Figure 3: (Left) The ranges of times involved in communication among all processes in each run.
Comparison of the four types of partitioning is depicted for varying number of processes. The number
of partitions is equal to number of processors, and each partition is assigned to a different processor.
(Center) The ranges of times spent in computations in each run. (Right) Total application execution
times with varying number of processes are shown for each of the four types of partitionings.

partitioning. Each partitioning used in the experiments was selected from a sample size of 10
on the basis of best performance.

The performance as communication and computation times of each run is shown in Figure 3.
These plots capture the maximum to minimum ranges for all processes in a run. Observe that
the communication time drops significantly for the partitions obtained from our new partition-
ers, with a small increase in the computation time. This is because the new partitioner attempt
to combine the computation and communication cost, and better overall cost may be achieved
by increasing the maximum compute time and decreasing the maximum communication time.
It should be noted that these plots do not show the correspondence between the minimum and
maximum of computation and communication time for each process, and total time taken is
not simply the sum of the two. The total execution time taken by each run is shown in Fig. 3.
It can be seen that at 12,288 cores, performance improvement of our scheme is more than 2x
over the base graph partitioning. Lower concurrencies also show performance improvements,
although less dramatic. Note that due to the significant reduction in communication costs, our
partitioning scheme improves performance as well as scalability.

4 Ordering Data

An unstructured mesh implicitly means that the data layout is also unstructured, causing the
involved data structures to be mapped to the memory in no particular order. Taken as is,
there is nearly no locality, leading to inefficient use of the memory hierarchies. In our case,
the meshes have no regularity, and no assumptions regarding the data ordering can be made.
Since maintaining locality is essential for high performance, particularly in presence of memory
hierarchies, we need to introduce spatial data locality by re-arranging data so that the data
with temporal locality reside nearby in the memory as much as possible. Currently, since the
MPAS-O mesh can be directly represented as a sparse matrix, to create locality, its generation
process follows a cell ordering called the reverse Cuthill-McKee [8] (RCM) ordering, which is
an algorithm for permuting a symmetric sparse matrix to convert it into a band matrix with
a small bandwidth. We will show below that even though it follows some locality pattern, its
performance can get nearly as low as a complete random ordering.
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Figure 4: A part of the mesh covering Earth’s oceans is shown for each of the four cell orderings:
random (top-left), original (top-right), Hilbert (bottom-left) and Morton (bottom-right). The ordering
of the cells is shown using white lines connecting the cells.

4.1 Space Filling Curves

Space Filling Curves (SFCs) [1,14] are generally used to map a higher dimensional data on to
a one-dimensional line. A number of SFCs have been developed and have proven to be widely
applicable for solving scientific problems as well as for improving performance of applications.
In our case, SFCs are an obvious choice to explore for the introduction of data locality, but
due to the lack of any regularity in the underlying mesh, they cannot be directly applied since
SFCs are defined for regular and/or repeating grid patterns. Fortunately, the SCVT mesh
under consideration exists in 3D space, which allows overlaying a structured grid on top of the
unstructured mesh for the purposes of data reordering.

Given an unstructured mesh defined in a 3-dimensional space, we represent each cell as a
single point at its centroid. We then define an octree-based rectangular grid enclosing all these
points. This grid constructed by recursive decomposition such that each point resides in a sep-
arate leaf node. Once we have this representation, we simply order the octree leaves according
to an SFC of choice. This leads to an ordering of the corresponding points representing the
unstructured mesh. This ordering is then mapped onto the corresponding mesh cells to reorder
the data. Due to the mesh definition on a spherical surface and the discontinuities, the applica-
tion of the above strategy to the complete mesh at once causes a number of “jumps” between
cells along the ordering, which are not spatially close but appear next to each other in the
ordering. Hence, instead of reordering the full mesh, we apply ordering to each mesh partition
independently. This minimizes the number of jumps and allows for better data locality. We
considered several SFCs to improve simulation performance, and present two top approaches:
Hilbert curve, and Morton ordering (or Z-SFC). Examples of the ordering of the mesh cells
produced by these curves is shown in Fig. 4. In addition to ordering the cells, we also follow
the same scheme to reorder the vertices and edges in the mesh.

4.2 Performance Impact

We perform experiments to analyze the performance due to each ordering. In Fig. 5, the results
are summarized as the total application execution time taken using each of the following four
mesh orderings: (1) Random ordering, for reference. (2) Original RCM ordering. (3) Morton
SFC ordering. (4) Hilbert SFC ordering. The on node performance improvement observed for
the Hilbert and Morton orderings is as high as 40% with respect to the original (RCM) and
random orderings. All these experiments have been performed using our depth and halo-aware
partitioning, hence, the observed benefits are on top of the previously presented improvements.

The benefit of introducing data locality into the mesh by using the two SFCs are clearly
observed with smaller number of partitions, and the performance gain gradually diminishes.
With strong scaling, this is expected because as the partition sizes grow smaller, more of the
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Figure 5: (Left) Speedup of the total application execution time, relative to the original (RCM)
ordering, for the various mesh data orderings is shown. (Right) Total numbers of misses for L3 cache
and T'LB during the application execution with the four mesh data orderings are shown. Optimized
depth and halo-aware partitioning as obtained from previous section are used for all cases.

mesh data can fit into the caches, which makes their ordering not as important. Nevertheless,
the benefits are more profound on higher resolution meshes as they scale to even larger number
of processors. Further, to analyze how the cache behavior is affected by the reordering, we
collect cache statistics using hardware counters. The total numbers of cache misses for L3
cache and TLB, during the execution of the application are shown in Fig. 5. These show that
ordering the data is definitely beneficial for improving cache performance.

5 Conclusions

In this work we address two of the primary performance challenges, load balance and data
locality, when faced with computations over unstructured meshes. We demonstrated that dis-
tributing a work load across processors with an unstructured mesh partitioning, it is necessary
to consider the computation and communication costs due to any halos used in order to reduce
overall communication and gain higher performance. We therefore devised a new hypergraph-
based depth- and halo-aware partitioning strategy, which allowed significant improvement for
MPAS-O at scaling. We additionally applied an SFC-based ordering to the unstructured mesh
by mapping it to a 3D regular domain, showing that ordering is essential to reduce data move-
ment when the data size is significantly larger than the system cache size.

Overall our optimizations attained up to 2.2x speedup compared with the original imple-
mentation, allowing additional MPAS short simulations that improve statistics via increased
ensembles. Additionally, our improved scaling enables increased resolution and throughput of
higher resolution meshes thus, allowing the optimized MPAS version to answer novel science
question of importance to the climate modeling community.
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