
doi: 10.1016/j.procs.2016.05.474 

WOWMON: A Machine Learning-based Profiler for

Self-adaptive Instrumentation of Scientific Workflows

Xuechen Zhang1, Hasan Abbasi2, Kevin Huck3, and Allen D. Malony3

1 Washington State University Vancouver, Vancouver, Washington, U.S.A
xuechen.zhang@wsu.edu

2 Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
habbasi@ornl.gov

3 University of Oregon, Eugene, Oregon, U.S.A
khuck@cs.uoregon.edu, malony@cs.uoregon.edu

Abstract
Performance debugging using program profiling and tracing for scientific workflows can be

extremely difficult for two reasons. 1) Existing performance tools lack the ability to auto-
matically produce global performance data based on local information from coupled scientific
applications of workflows, particularly at runtime. 2) Profiling/tracing with static instrumen-
tation may incur high overhead and significantly slow down science-critical tasks. To gain more
insights on workflows we introduce a lightweight workflow monitoring infrastructure, WOW-
MON (WOrkfloW MONitor), which enables user’s access not only to cross-application perfor-
mance data such as end-to-end latency and execution time of individual workflow components
at runtime, but also to customized performance events. To reduce profiling overhead, WOW-
MON uses adaptive selection of performance metrics based on machine learning algorithms
to guide profilers collecting only metrics that have most impact on performance of workflows.
Through the study of real scientific workflows (e.g., LAMMPS) with the help of WOWMON,
we found that the performance of the workflows can be significantly affected by both software
and hardware factors, such as the policy of process mapping and in-situ buffer size. Moreover,
we experimentally show that WOWMON can reduce data movement for profiling by up to 54%
without missing the key metrics for performance debugging.

Keywords: TAU, Scientific workflows, Performance monitoring

1 Introduction

Data-intensive knowledge discovery requires scientific applications to run concurrently with
analytics and visualization codes as workflows. These coupled applications can be executed
in situ for timely output inspection and knowledge extraction. Performance debugging for
scientific workflows can be more difficult than that for stand-alone applications using existing

Procedia Computer Science

Volume 80, 2016, Pages 1507–1518

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

1507

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.474&domain=pdf


high-performance computing (HPC) performance tools [20, 2] for two reasons. First, they
lack the ability to produce global performance data based on local data from multiple coupled
applications at runtime. Without the global data, for example, it is difficult to observe the total
amount of time that a scientific workflow used to process data produced by an application at a
particular execution step. We refer to this time as end-to-end latency of a workflow. Second,
profiling/tracing of multiple applications with static instrumentation can incur high storage
overhead and slow down the execution of mission-critical scientific tasks.

In this paper we describe a novel monitoring infrastructure called WOWMON to gain deeper
understanding of where and when performance bottleneck happen in scientific workflows. It
provides three unique features: 1) online feedback for timely workflow tuning and adaptation
by accessing in-memory performance data; 2) global monitoring which produces global perfor-
mance data, specifically used for performance debugging of workflows; 3) self-adaptive profiling
which can guide profilers collecting only the metrics that have most impact on performance of
workflows using machine learning algorithms. More specifically, we made the following contri-
butions in this work:

• We designed simple interface for users to access in-memory performance data across mul-
tiple applications/components of workflows, and implemented a flexible and lightweight
runtime system, supporting data sampling, multiple network topologies, metric selection
for customized coverage of performance metrics, and self-adaptive profiling.

• We implemented WOWMON based on TAU [20] and EVpath [4] libraries. With the help
of WOWMON our experiments using realistic scientific workflows (e.g., LAMMPS ) show
that the end-to-end latency of workflows can be affected by the memory buffer size for
in-situ operations and the policy of mapping processes of applications to nodes.

• We demonstrated that WOWMON can evaluate performance metrics at runtime using
feature selection algorithms, and then use its output to further reduce the volume of per-
formance data by 54% for the LAMMPS workflow, while still providing in-depth insights
for end-users.

The rest of this paper is organized as follows. Section 2 discusses the existing tools related
to performance research of scientific applications. Section 3 describes the design and imple-
mentation of WOWMON. Section 4 describes and analyzes experimental results. Finally, we
conclude the paper in Section 5.

2 Related Work

Most of the previous work focused on the performance measurement and monitoring of stand-
alone applications. For example, TAU [20] has been very popular as an HPC toolkit for per-
formance instrumentation, measurement, analysis, storage, and visualization. By leveraging
PAPI [2] and source instrumentation, it can access both hardware counters and application
performance data in standard ways. However, TAU’s performance data analysis is typically
performed after data has been written to disk-resident logs, or in a central location. This
restricts the scalability of online monitoring and analysis tasks.

An online monitoring infrastructure is needed to capture transient effects of data-driven be-
haviors. Although many works have been proposed for this purpose, none of them was designed
for capturing performance of workflows. With respect to instrumentation, a salient feature of

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1508



the performance measurement tool Paradyn [13] is flexible selection of metric subsets for bi-
nary instrumentation at runtime, which might take seconds to finish. In contrast, WOWMON
creates initial instrumentation points based on a priori knowledge using the simple WOWMON
API. WOWMON’s runtime library supports online reconstruction of metric sets in networking
layers for reducing monitoring overhead. With respect to online data access, TAUg [10] was
designed to collect performance data of MPI processes for stand-alone applications. Roth et
al. [19] presented an online performance diagnosis system, focusing on optimization of problem
search strategies for finding bottlenecks of large-scale stand-alone applications. The Ganglia
distributed monitoring system [12] is widely used in both enterprise and HPC domains. How-
ever, it only targets on system metrics such as CPU idle time. WOWMON needs to collect
source-level data (e.g., function execution time) as well as track system-level events because
both are critical for the analysis of the workflow performance as shown in Section 4.

Other application-steering software may have built-in monitoring modules. An example is
Peridot [6], which allows programmers to guide analysis process with query and then interacts
with runtime systems. WOWMON can also provide feedback for optimization of the metric
sets. Moreover, it provides key services for performance diagnosis of a workflow not a stand-
alone application. For the latter, performance steering has been well studied. Autopilot [18]
used classification algorithms to produce the hints of making resource management decision
based on collected performance data. WOWMON can also leverage learning algorithms [9]
in order to evaluate importance of metrics. Eisenhauer et al. [3] proposed a steering system
working with multiple collaborated users. Falcon [7] supports online interaction with end users
of complex scientific simulations. Tapus et al. [21] proposed a steering approach, which takes
into account the performance characteristics of linked libraries of binaries.

In summary, WOWMON is the only system, which is designed for performance diagnosis
and steering of the scientific workflows composed of in-situ analytics.

3 The Design of WOWMON

We have three objectives in the design of WOWMON: 1) accessing in-memory data structures
for collecting online performance data; 2) tracking global performance data using the local data
collected from individual workflow components; 3) providing a flexible and lightweight network-
ing layer which can support self-adaptive profiling/tracing using machine learning algorithms.
In addition, WOWMON provides simple APIs for end users to create and track timers, specify
system and application events of interests, and customize communication patterns. We will
discuss them in detail in the following sections.

3.1 Architecture Overview

The WOWMON infrastructure includes three major components, user interface (APIs), a run-
time library, and a workflow manager. Programmers need to instrument source code using the
APIs, as discussed in Section 3.2. At runtime, WOWMON creates relay networks connecting
the processes of applications and the workflow manager using a network topology specified in
the parameter (WOWMON TOPO COMM ) by users (star topology is set by default). Then
software and hardware events can be added to an initial metric set (MetricSetinit), whose
members might be dynamically selected at runtime to control the size of the set, which corre-
lates to monitoring overhead. Specifically, the software events can track program’s performance
such as function execution time, call depth, and memory heap size when entering and exiting
a function. And the hardware events are used to track hardware performance such as cache

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1509





”void compute and send(bond record ptr) [bonds.c 398,1-469,1]” 1. Function signatures can be
obtained using the existing profiling tools, such as TAU. WOWMON GET GLOBAL DATA()
is called to send performance data to the workflow manager. For data sampling users can
specify a subset of processes as the samples of profiling data using WOWMON PATTERN,
which should be in the range of 0 to nprocs, which is the total number of processes of an
application. When it is set to i, only data from the process of rank 0 to i − 1 are collected
and sent to the workflow manager. By default it is set to nprocs. This feature is very useful
for reducing communication overhead when workflows are executed at scale with thousands of
processes. Data collection can be disabled by setting WOWMON PATTERN to 0 when users
are not interested in the metrics from a particular component or the latency between directly
connected components. When a program is finalized, WOWMON DEREGISTER VIEW() is
needed to disconnect from runtime and clean up state buffers. WOWMON INIT TIMER() and
WOWMON TRACK TIMER() are called to create and track a user timer placed at a specific
location in source code.

3.3 The Runtime Library

In the design of WOWMON runtime, we optimize its profiling operations, buffer management,
and communication considering both portability and scalability. Three components, including
a profiler, a buffer manager, and a relay network, interact with the workflow manager to achieve
lightweight monitoring, as shown in Figure 1.

The profiler maintains in-memory data structures to keep tracking of the values of timers
and events instrumented by programmers. WOWMON uses the existing profiling software such
as TAU and PAPI for this purpose, although other tools can be supported easily because only
∼50 lines of code are profiler-dependent. When TAU is used as the profiler, WOWMON calls
two key functions TAU GET EVENT NAMES() and TAU GET FUNC VALS() [22] to read
the values of the metrics in MetricSetinterest and stores them in data buffers.

The buffer manager tracks MetricSetinterest and MetricSetinit for each application of a
workflow. Based on MetricSetinterest it reads in-memory profiles, creates buffers for data
messages, and then sends those messages to the workflow manager. As a receiver, it also updates
MetricSetinterest when control messages for adaptive profiling are received. The format of the
data messages is composed of both data fields, each corresponds to a metric inMetricSetinterest,
and meta-data fields such as application ID, process ID, and communicator ID, which are then
used by the workflow manager to identify the messages from various running instances and
produce global performance data (e.g., end-to-end latency of workflows) based on profiled local
information.

The relay network is a thin communication layer between the runtime of applications
(sources) and workflow managers (sinks). The messages sent from the source to sink nodes may
be processed through multi-level relay nodes in order to remove a networking bottleneck caused
by a centralized workflow manager and improve the scalability of the network. EVpath [5] is
selected for relay network management for its proven performance on high-end machines and
support of multiple networking drivers (e.g., TCP/IP, Infiniband [14], and ENET [17] etc). If
WOWMON TOPO COMM is set to star, all the sources are directly connected to the workflow
manager. This topology should only be used for small scale runs. If WOWMON TOPO COMM
is set to tree, a network having a spanning tree topology is created for the applications having
more than 128 processes. In this scenario, only a limited number of relay nodes are directly

1compute and send() is an expensive function in the Bonds code of the LAMMPS workflow. More details
of the workflow are presented in Section 4.1.

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1511





ADIOS [1]. With respect to software configurations, QueueDepth for ADIOS is set to 20. We
run one LAMMPS process per core unless specified otherwise.

4.1 Driving Scientific Workflows

We instrumented LAMMPS (Large Scale Atomic/Molecular Massively Parallel Simulator) [15]
and its analytics Bonds and Csym, which are executed concurrently as the driving scientific
workflow in the experiments. LAMMPS has been widely used for material science study.
Bonds reads input from LAMMPS and performs all-nearest neighbor calculation to determine
which atoms are bonds together. Csym then uses the output of Bonds to further determine
whether there are deformation zones in the material. If they are detected, Csym continues
to calculate the conditions under which a crack occurred. Therefore, its execution time and
resource utilization may change over the whole period of simulation.

We manually select 12 metrics related to key functions of the LAMMPS workflow for tracing.
As shown in Table 2, the metrics, such as bonds read input and csym output results, are related
to I/Os for moving data from upstream applications to downstream analytics or to disks.
And the metrics such as bonds compute send and csym compute send are related to computing
kernels of Bonds and Csym, respectively. The other metrics are used to measure memory usage
of a function. For example, csym compute send mem measures the heap size of the function
csym compute send.

4.2 The End-to-end Latency of the LAMMPS Workflow

The end-to-end latency of the LAMMPS workflow determines the time spent on analyzing
physics of atoms using data generated by LAMMPS. We added 90 lines of code for source in-
strumentation of the metrics listed in Table 2. WOWMON can help capture transient behavior
of workflows. To demonstrate this we show a breakdown of the end-to-end latency after com-
pletion of each simulation step during the execution of the LAMMPS workflow. The number
of processes of LAMMPS, Bonds, and Csym are set to 128, 1, and 1, respectively.

From Figure 3, we observed that the end-to-end latency reached the maximum at the 42th
step. According to its execution time breakdown, we found that during the execution of the
workflow compute times of all the components did not change. In contrast, data transfer time
is increased by 110% on average for both LAMMPS and Csym. With a careful study of this
performance issues offline, we found the reason is that the ADIOS library uses in-memory
queues to buffer output data of upstream applications for asynchronous execution. When the
buffers became full after the 42th step, queuing time was dominant in the data transfer time
as well as in the end-to-end latency.

4.3 Impact of a Workflow Mapping Policy

Given the same number of compute nodes, the policies of mapping processes of workflow com-
ponents to nodes may significantly impact the end-to-end latency of scientific workflows. Using
LAMMPS as an example, we demonstrate the performance difference between two mapping
policies given 11 compute nodes. More specifically, PolicyCB has Csym and Bonds placed on
a dedicated node, while LAMMPS is executed on the other 10 nodes. There is no resource
contention between LAMMPS and Csym or LAMMPS and Bonds. PolicyCL has Csym and
LAMMPS placed on the same nodes sharing memory and CPU resources. The above policies
are different from the mapping policy used in the previous experiments in which processes use
dedicated cores. In the experiment, LAMMPS, Bonds and Csym are configured with 128, 1,

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1513



Metric name Description
bonds read input Gives us a handle on throughput for reading data in

Bonds.
bonds list output Gives us a handle on throughput for moving data out

of Bonds.
bonds compute send Monitors the main computation function in Bonds.

Most of its time is spent on building the adjacent-
format output.

bonds read input mem The memory usage for executing bonds read input()
bonds compute send mem The memory usage for executing

bonds compute send()
csym read input Gives us a handle on throughput for reading data in

Csym.
csym compute send Monitors the main computation function in Csym.

Most of its time is spent on converting input data.
csym output results The corresponding function, which follows

csym output results(), denotes the end of the
workflow and where we end the latency measure-
ment.

csym read input mem The memory usage for executing
csym read input mem()

csym compute send mem The memory usage for executing
csym compute send mem()

lammps start timer The timer is triggered when the generated data is
placed in buffers on LAMMPS end.

csym stop timer The timer is triggered when the last analytic finishes.

Table 2: The selected metrics for the LAMMPS workflow

Figure 3: An execution time breakdown. X-(Tran) and X-(Comp) denote data transfer time
and compute time of application X (Csym, Bonds, and LAMMPS), respectively.

and 1 processes, respectively. The end-to-end latency of each step with both PolicyCB and
PolicyCL are shown in Figure 4. The average end-to-end latencies are 35.6s and 40.0s for

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1514







5 Conclusion and Future Work

In the paper we present the design and implementation of WOWMON, a lightweight and power-
ful monitoring infrastructure, specifically designed for scientific workflows with in-situ analytics
targeting large-scale computing platforms. It enables the online observation of adaptive work-
flow behavior. Evaluation with real scientific workflows shows that workflow performance can
be affected by both software and hardware factors, such as the policy of process mapping and
the size of memory buffer for in-situ processing. In addition, we show that WOWMON can
automatically rank the correlation of each metric relative to the end-to-end latency of workflows
using machine learning algorithms and reduce monitoring overhead with self-adaptive profil-
ing/tracing. The overhead of WOWMON is 7% on average compared to the legacy profiling
tools, making it well suit for online performance monitoring and analysis.

Future work for WOWMON will focus on the study of the effect of performance metrics
across different runs with various input parameters to analytics (e.g., R 1 which determines
how close atoms are for Bonds). In addition, with the help of WOWMON, we need to fur-
ther understand the changes of data-driven behaviors of scientific workflows in emerging HPC
platforms with deep memory hierarchies for caching in-situ output data.

6 Acknowledgements

We are grateful to the anonymous reviewers. We thank Jai Dayal and Matthew Wolf for
their support on the LAMMPS workflow instrumentation. We also thank Wyatt Spear for
many discussions during this work. This research was partially supported by DOE grant DE-
SC0012381 funded by the Scientific Data Management, Analysis and Visualization (SDMAV)
program and WSU Seed Grant.

References

[1] Adaptable IO System (ADIOS).
https://www.olcf.ornl.gov/center-projects/adios/.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming Interface
for Performance Evaluation on Modern Processors. International Journal of High Performance
Computing Applications, 14(3):189–204, 2000.

[3] Greg Eisenhauer and Karsten Schwan. An object-based infrastructure for program monitoring and
steering. In 2nd SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT’98), pages
10–20, 1998.

[4] Greg Eisenhauer, Matthew Wolf, Hasan Abbasi, and Karsten Schwan. Event-based systems:
Opportunities and challenges at exascale. DEBS ’09, pages 2:1–2:10. ACM, 2009.

[5] EVpath Library.
http://svn.cc.gatech.edu/kaos/evpath/.

[6] Michael Gerndt, Andreas Schmidt, Martin Schulz, and R Wismuller. Performance analysis for
teraflop computers: a distributed automatic approach. In 10th Euromicro Workshop on Parallel,
Distributed and Network-based Processing, pages 23–30. IEEE, 2002.

[7] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko, and Je rey Vetter.
Falcon: On-line monitoring and steering of large-scale parallel programs. In Proceedings of the 5th
Symposium of the Frontiers of Massively Parallel Computing, pages 422–429, 1995.

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, 2009.

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1517



[9] Mark A. Hall. Correlation-based feature selection for machine learning. Technical report, 1999.

[10] Kevin A. Huck, Allen D. Malony Sameer Shende, and Alan Morris. TAUg: Runtime Global
Performance Data Access Using MPI. In EuroPVM/MPI 2006, 2006.

[11] Richard E. Korf. Depth-first iterative-deepening. Artificial Intelligence, 27(1):97 – 109, 1985.

[12] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed monitoring
system: Design, implementation and experience. Parallel Computing, 30:2004, 2003.

[13] Barton P. Miller, Jonathan M. Cargille, R. Bruce Irvin, Krishna Kunchithapadam Mark D.
Callaghan, Jeffrey K. Hollingsworth, Karen L. Karavanic, and Tia Newhall. The Paradyn Parallel
Performance Measurement Tools. Computer, 28:37–46, 1995.

[14] White Paper. Interconnect Analysis:10GigE and InfiniBand in High Performance Computing.
HPC Advisory Council Network of Expertise.

[15] S. Plimpton, R. Pollock, and M. Stevens. Particle-Mesh Ewald and rRESPA for Parallel Molecular
Dynamics Simulations. In Proc of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, 2007.

[16] R.Bell, A.D. Malony, and S. Shende. A Portable, Extensible, and Scalable Tool for Parallel
Performance Profile Analysis. In EUROPAR’ 03.

[17] Reliable UDP networking library.
http://enet.bespin.org/.

[18] Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The autopilot performance-directed adap-
tive control system. In Future Generation Computer Systems, pages 175–187, 1997.

[19] Philip C. Roth and Barton P. Miller. On-line automated performance diagnosis on thousands of
processes. PPoPP ’06.

[20] S. Shende and A. D. Malony. TAU: The TAU Parallel Performance System. International Journal
of High Performance Computing Applications, pages 287–311, 2006.

[21] Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active Harmony: Towards Auto-
mated Performance Tuning. In Supercomputing 2002, 2002.

[22] TAU Software.
https://www.cs.uoregon.edu/research/tau/downloads.php.

[23] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos, and
Gregory R. Ganger. Storage device performance prediction with cart models. pages 588–595, 2004.

A Machine Learning-based Profiler for Self-adaptive Instrumentation Zhang et al.

1518


