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Abstract—Partitioned global address space (PGAS) applica-
tions, such as the Tensor Contraction Engine (TCE) in NWChem,
often apply a one-process-per-core mapping in which each pro-
cess iterates through the following work-processing cycle: (1)
determine a work-item dynamically, (2) get data via one-sided
operations on remote blocks, (3) perform computation on the data
locally, (4) put (or accumulate) resultant data into an appropriate
remote location, and (5) repeat the cycle. However, this simple
flow of execution does not effectively hide communication latency
costs despite the opportunities for making asynchronous progress.
Utilizing nonblocking communication calls is not sufficient un-
less care is taken to efficiently manage a responsive queue of
outstanding communication requests. This paper presents a new
runtime model and its library implementation for managing
tunable “work queues” in PGAS applications. Our runtime
execution model, called WorkQ, assigns some number of on-node
“producer” processes to primarily do communication (steps 1, 2,
4, and 5) and the other “consumer” processes to do computation
(step 3); but processes can switch roles dynamically for the sake
of performance. Load balance, synchronization, and overlap of
communication and computation are facilitated by a tunable
nodewise FIFO message queue protocol. Our WorkQ library
implementation enables an MPI+X hybrid programming model
where the X comprises SysV message queues and the user’s
choice of SysV, POSIX, and MPI shared memory. We develop a
simplified software mini-application that mimics the performance
behavior of the TCE at arbitrary scale, and we show that the
WorkQ engine outperforms the original model by about a factor
of 2. We also show performance improvement in the TCE coupled
cluster module of NWChem.

Keywords—Producer/Consumer, PGAS, Global Arrays, Tensor
Contractions, Quantum Chemistry, Performance Evaluation

I. INTRODUCTION

Many distributed-memory computational applications un-
dergo a basic flow of execution: individual processes deter-
mine a task to complete, receive data from remote locations,
compute on that data, send the result, and repeat until all
tasks are handled or convergence is reached. Accomplishing
this in a performance-optimal manner is complicated by com-
munication wait times and variability of the computational
costs among difference tasks. Several execution models and
programming models strive to account for this by supporting
standard optimization techniques, yet certain conditions ex-
ist for doing so effectively. In message-passing applications,
for example, nonblocking communication routines must be
preferred over blocking routines in order to hide the latency
cost of communication. However, processes must also be

capable of making asynchronous progress while communi-
cation occurs. At the same time, the balance of workload
across processor cores must be maintained so as to avoid
starvation and synchronization costs. If the variability of task
execution time is not considered when incorporating latency-
hiding optimizations, then suboptimal performance occurs. For
instance, if computation of a task finishes before a previous
nonblocking routine completes, then starvation occurs despite
the asynchronous progress. In order to eliminate this problem
in such applications, there must exist a dynamic queue of
task data in shared memory that accommodates irregular
workloads. However, if this queue becomes overloaded with
data relative to other queues on other compute nodes, then
load imbalance and starvation also occur despite asynchrony.
This paper introduces and analyzes an execution model that
accomplishes zero wait-time for irregular workloads while
maintaining systemwide load balance.

Irregularity within computational applications commonly
arises from the inherent sparsity of real-world problems. Load
imbalance is a result of data decomposition schemes that do
not account for variation due to sparsity. Not only is there
fundamental variation in task dimensions associated with work
items from irregular sparse data structures, but the variety
and nonuniformity of compute node architectures and network
topologies in modern supercomputers complicate the wait
patterns of processing work items in parallel. For example,
a process that is assigned a work item may need to wait
for data to be migrated from the memory space of another
process before computation can take place. Not only does
incoming data often cross the entire memory hierarchy of a
compute node; it may also cross a series of network hops from
a remote location. The contention on these shared resources
in turn complicates the development of distributed computa-
tional algorithms that effectively overlap communication and
computation while efficiently utilizing system resources.

While nonblocking communication routines enable asyn-
chronous progress to occur within a process or thread of ex-
ecution, care must be taken to minimize overheads associated
with overlapping. Polling for state and migrating data too often
between process spaces can be expensive. Also, often some
local computation must occur before communication can take
place. The Tensor Contraction Engine (TCE) of NWChem, the
target application of this paper, exhibits this behavior because
a relatively sizable amount of local computation takes place
to determine the global location of sparse tensor blocks before
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communication can take place. For these reasons, performance
may be best when the communication sections have a ded-
icated core, especially in modern many-core environments,
where sacrificing some cores for communication may result
in the most optimal mapping for latency hiding.

In this paper we study a new execution model, called
WorkQ, that prioritizes the overlap of communication and
computation while simultaneously providing a set of run-
time parameters for architecture-specific tuning. This model
achieves effective load balance while eliminating core star-
vation due to communication latency. Using an implementa-
tion of the WorkQ model, we perform various experiments
on a benchmark that mimics the bottleneck computation
within an important quantum many-body simulation applica-
tion (NWChem), and we show good performance improvement
using WorkQ. Section II provides the necessary background
regarding the partitioned global address space (PGAS) model
and the NWChem application. Section III discusses the motiva-
tion for constructing our execution model. Section IV outlines
the design and implementation of WorkQ, Section V describes
a set of experimental evaluations, Section VI discusses related
work, and Section VII summarizes our conclusions and briefly
discusses future work.

II. BACKGROUND

In this section, we provide the necessary background
information for understanding the context of the WorkQ model
and its applications presented in this paper. Topics include
A) the PGAS paradigm, B) the Global Arrays programming
model, C) NWChem and the coupled cluster technique, and
D) the Tensor Contraction Engine.

A. PGAS

The availability and low cost of commodity hardware com-
ponents have shaped the evolution of supercomputer design
toward distributed-memory architectures. While distributed
commodity-based systems have been a boon for effectively
and inexpensively scaling computational applications, they
have also made it more difficult for programmers to write
efficient parallel programs. This difficulty takes many forms:
handling the diversity of architectures, managing load balance,
writing scalable parallel algorithms, exploiting data locality of
reference, and utilizing asynchronous control, to name a few. A
popular parallel programming model that eases the burden on
distributed-memory programmers is found in PGAS languages
and interfaces.

In the PGAS paradigm, programs are written single pro-
gram, multiple data (SPMD) style to compute on an abstract
global address space. Abstractions are presented such that
global data can be manipulated as though it were located
in shared memory, when in fact data is logically partitioned
across distributed compute nodes with an arbitrary network
topology. This arrangement enables productive development
of distributed-memory programs that are inherently conducive
to exploiting data affinity across threads or processes. Fur-
thermore, when presented with an application programming
interface (API) that exposes scalable methods for working
with global address space data, computational scientists are
empowered to program vast cluster resources without having

to worry about optimization, bookkeeping, and portability of
relatively simple distributed operations.

Popular PGAS languages/interfaces include UPC, Tita-
nium, Coarray Fortran, Fortress, X10, Chapel, and Global
Arrays. The implementation in this work was built on top
of Global Arrays/ARMCI, which is the subject of the next
section.

B. Global Arrays

Global Arrays (GA) is a toolkit for doing PGAS compu-
tations in high-performance computing codes using C/C++,
Fortran, or Python [13]. It is built on top of the aggregate
remote memory copy interface (ARMCI), which provides
efficient one-sided communication primitives optimized for
most remote direct memory access (RDMA) hardware [14]. To
understand the utility of GA, consider the transpose operation
of a matrix in global memory. Mathematically, this is a simple
operation, but it can involve intensive bookkeeping to program
a global transpose in distributed memory. This is a task many
computational scientists would rather avoid. GA provides the
means for accomplishing transposition of a global matrix with
one call that is portable and optimized to efficiently utilize
one-sided RDMA operations with ARMCI. Besides the stan-
dard put/get/accumulate functionality common in one-sided
communication libraries, the GA API provides a number of
other helpful computational operations, including functions for
matrix addition/multiplication/diagonalization/inversion, ghost
cell control, strided gets and puts, and solving linear systems
of equations.

A common misconception is GA’s relationship with the
Message Passing Interface (MPI). Although a large portion
of GA’s communication is done strictly through ARMCI, GA
still requires linking with a message-passing library. This
library need not be MPI (an alternative is TCGMSG [7]), but
there does need to be a message-passing library underneath
the GA stack that provides SPMD capability, process IDs,
synchronization, broadcast and reduction operations, and so
forth. As of this writing, MPI is the de facto standard library for
satisfying these requirements. In addition, one can replace the
entire ARMCI communication layer with equivalent MPI 3.0
RMA routines for doing one-sided communication [3]. This
approach is typically done on newer systems and interconnects
to take advantage of MPI’s portability.

C. NWChem and Coupled Cluster

The NWChem computational chemistry framework is a
popular open-source software package designed to support the
scalability of a wide variety of methods on high-performance
computer systems. NWChem is known for its strong capabil-
ities in ab initio quantum chemistry methods invoking molec-
ular electron structure theory, yet it also provides modules
for simulating classical molecular dynamics. Furthermore, the
QM/MM module enables the exploration of hybrid simulations
that combine quantum mechanics computations in regions of
high interest (such as a protein binding site) with molecular
mechanics calculations in regions of lesser interest [21].

The coupled cluster (CC) component of NWChem is a
important molecular electronic structure module highly utilized
by the quantum chemistry and physics communities [2]. CC is



a numerical technique for solving the electronic Schrödinger
equation using an exponential ansatz operator sum acting
upon a one-electron reference wave function [12]. A detailed
explanation is beyond the scope of this paper, but it suffices
to say that the sum of operators is truncatable to arbitrary-
order accuracy (analogous to a Taylor series expansion). Each
operator is evaluated via a series of tensor contractions (de-
scribed in the next section). When truncating CC to include
only the “doubles-order” term, the method is referred to as
CCD. When including both singles and doubles, the method
is called CCSD. With triples and quadruples, the methods are
called CCSDT and CCSDTQ, respectively. Moreover, impor-
tant perturbative methods (such as CCSD(T) and CCSD(Q))
exist that can approximate the addition of a higher-order
term without requiring the full increase in computational and
memory requirements.

D. Tensor Contraction Engine

The Tensor Contraction Engine is a domain-specific lan-
guage for automatically generating high-performance pro-
grams which compute the working equations of second quan-
tized many-electron theories, such as coupled cluster [8].
The primary motivation for supporting such a tool is that
symbolic manipulation of these equations is an extremely time
consuming and error-prone process when done by hand: the
TCE facilitates the generation of portable and efficient parallel
code that is verified for correctness. TCE is a core component
of ab initio chemistry capabilities in NWChem, as well as in
UTChem, developed at the University of Tokyo [22].

TCE generates GA programs written in Fortran that exploit
spin, spatial, and index permutation symmetries among the
working set of equations to reduce the computational and
memory requirements of these methods. Despite these efforts,
the computations of CC methods have polynomial algorithmic
complexity in terms of the number of FLOPS and memory
usage. For example, CCSD equations have algorithmic com-
plexity of O(n6) for operations and O(n4) for memory (where
n is the sum of occupied and virtual electron orbitals).

The overall TCE computation consists of several Jacobi
iterations through a directed acyclic graph where each node
refers to a calculation of a tensor contraction intermediate
(corresponding to the truncatable sum of operators described
in the previous section). Before computation begins, the GA
data is arranged into tiles that each contain orbitals with the
same spin and spatial symmetries. The granularity of these
tiles is crucial for performance because it determines the total
number of work items. The tile size must be small enough
for there to be more tasks than the number of processes in the
application. At the same time, the tile size must be sufficiently
large because an excessive number of work items leads to
unnecessary accumulation of overhead on the dynamic load
balancer [17].

TCE reduces the contraction of two high-dimensional ten-
sors into a summation of the product of several 2D arrays.
Therefore, the performance of the underlying BLAS library
strongly influences the overall performance of TCE. For the
purposes of this paper, each tensor contraction routine can be
thought of as a global task pool of tile-level 2D DGEMM
(double-precision general matrix-matrix multiplication) opera-

tions. This pool of work items is processed according to the
following execution model:

1) A unique work item ID is dynamically assigned via
an atomic read-modify-write operation to a dynamic
load balancing counter (see [17] for details).

2) The global addresses of two tiles (A and B) in the
global array space is determined (TCE hash lookup).

3) The corresponding data is copied to the local process
space (via one-sided RMA) with GA_Get() calls.

4) A contraction is formed between the local copies of
tiles A and B and stored into C. When necessary,
a permute-DGEMM-permute pattern is performed in
order to arrange the indices of the tensor tiles to align
with the format of matrix-matrix multiplication.

5) Steps 2, 3, and 4 repeat over the work-item tile
bundle; then C is accumulated (GA_acc() call) into
a separate global array at the appropriate location.

Although this algorithm is specific to CC, we note we that it
falls under a more general get/compute/put model that is
common to many computational applications. For example, the
problem of numerically solving PDEs on domains distributed
across memory spaces certainly falls under this category.

The next section discusses motivation for the development
of an alternative execution model that is able to perform this
same computation more efficiently.

III. MOTIVATION

In this section we briefly present performance measure-
ments that support our motivation for developing a new run-
time execution model for processing tasks in applications such
as the TCE-CC within Global Arrays. We begin by considering
measurements from a simple trace of a tensor contraction
kernel. We then discuss the implications of a new execution
model.

A. Communication/Computation Overlap

In order to better understand the performance behavior
of the TCE task execution model described at the end of
section II-D, we develop a mini-application that executes the
same processing engine without the namespace complications
introduced by quantum many-body methods. The details of
this mini-app will be discussed in Sections IV-B and V-A, but
here we present a simple trace and profile of the execution
to better motivate and influence the design of our runtime in
Section IV.

The (A) and (B) portions of Fig. 1 show an excerpt of a
trace collected with the TAU parallel performance system [18]
for 12 MPI processes on 1 node within a 16 node application
executed on the ACISS cluster (described in Section V). This
trace is visualized in Jumpshot with time on the horizontal
axis, each row corresponding to an MPI process and each color
corresponding to a particular function call in the application.
Specifically, the purple bars correspond to step 1 in the TCE
execution model described in the previous section. The green
bars correspond to the one-sided get operation on the two
tiles A and B from step 3 (step 2 is implicit in the mini-
app and is thus not contained in a function). The yellow bars
are non-communication work cycles, and the pink bars are



Fig. 1. (Top:) TAU trace of original code (A) compared to WorkQ (B)
for a 192 MPI process job. Yellow is computation, purple is ARMCI_Rmw
(corresponding to Nxtval call), green is ARMCI_NbGetS (corresponding to
GA_Get call), and pink is DGEMM. (Bottom:) Profile information comparing
the two execution models for a larger 960 MPI process job. The work queue
implementation accomplishes full overlap without sacrificing load balance.

DGEMM (these are small because of the relatively small tile
size in this experiment). Yellow and pink together correspond
to step 4. Step 5 is not shown in this timeline but occurs at
a future point at the end of this task bundle. The 12 rows in
portion (B) show a corresponding trace with our alternative
parallel execution model in which 6 MPI processes dedicate
their cycles to computation, and the other 6 processes dedicate
their cycles to communication.

The bottom half of Fig. 1 contains timing information
extracted from TAU profiles for a larger job with 960 MPI
processes. The measurements clearly show that the work queue
execution model accomplishes effective overlap of communi-
cation with computation without sacrificing load imbalance.
This results in a speedup of almost 2x over the original
get/compute/put model for this experiment. The advantage can
be inferred from the trace: in the original execution, there are
moments when hardware resources are fully saturated with
computation (i.e., all rows are yellow at a particular time)
yet other moments where starvation is occurring (i.e., rows
are green at a particular time). Besides dramatically reducing
moments of work starvation, the alternative model enables tun-
ability: for instance, the optimal number of computation versus
communication processes can be determined empirically.

B. Variability in Work-Item Processing

The TCE engine uses blocking GA_get() and
GA_acc() calls to gather and accumulate tiles, respectively,
into the global space. While it is reasonable to use the
corresponding nonblocking API for GA (GA_nbget and
GA_nbacc) to accomplish overlap, doing so will not achieve
optimal performance in the face of highly irregular workloads.
For example, one can submit a nonblocking get before doing
computation on local data; but if the computation finishes
before the communication request is satisfied, then starvation

occurs. Variation in execution time occurs often, because of
either system noise or inherent differences in task sizes. This
variablity necessitates the calling of multiple nonblocking
communication operations managed by a queue so that data is
always available once an iteration of computation finishes. On
the other hand, the number of work items in this queue must
be throttled so that the queue does not become overloaded
with respect to other queues on other nodes. If this were to
happen, then load imbalance would surely occur without the
usage of techniques such as internode work stealing, which
potentially incur high overheads.

IV. DESIGN AND IMPLEMENTATION

The desire to overlap communication and computation in
a dynamic and responsive manner motivates the development
of a library for managing compute node task queuing and
processing within SPMD applications. We have implemented
such a library, which we call WorkQ. This section presents
the software architectural design for WorkQ, describes some
implementation details and possible extensions, and presents
a portion of the API and how it can be deployed for efficient
task processing in distributed memory SPMD programs.

A. WorkQ Library

As described in Section III, the TCE-CC task-processing
engine has the potential to experience unnecessary wait times
and relatively inefficient utilization of local hardware re-
sources. Here we describe an alternative runtime execution
model with the goals of (1) processing tasks with less wait time
and core starvation, (2) exposing tunability to better utilize
hardware resources, and (3) responding dynamically to real-
time processing variation across the cluster.

Here we simplify the operations of TCE described in
Section II-D into a pedagogical model that is akin to tiled
matrix multiplication of two arrays, A and B . In this model,
A and B contain GA data that is distributed across a cluster of
compute nodes. The overall goal of the application is to mul-
tiply corresponding tiles of A and B, then to accumulate the
results into the appropriate location of a separate global array,
C. In order to accomplish this within the original execution
engine, individual processes each take on the execution loop
from Section II-D: get(A); get(B); compute(A,B);
acc(C). The behavior of a single compute node involved in
this computation is characterized by the trace in the top half
of Fig. 1: at any given moment in time, processes work within
a particular stage of the execution loop.

In the WorkQ runtime, each compute node contains an
FIFO message queue, Q1, in which some number of courier
processes are responsible for placing A and B tile metadata
onto Q1, then storing the incoming tiles into node-local shared
memory. Meanwhile, the remaining worker processes dequeue
task metadata bundles as they become available, then use this
information to follow a pointer to the data in shared memory
and perform the necessary processing. Once a worker process
is finished computing its task result, it places the resultant data
into a separate FIFO message queue, Q2, which contains data
for some courier process to eventually accumulate into C.

We now describe the four primary components of the
WorkQ implementation: the dynamic producer/consumer sys-



Fig. 2. Flow diagram for the dynamic producer/consumer version of the
WorkQ execution model. The left green column represents the activities of
courier processes, and the right yellow column represents activities of worker
processes. In this system, couriers can temporarily become workers and vice
versa.

tem, the on-node message queues, the on-node shared memory,
and the WorkQ library API.

1) Dynamic Producer/Consumer: This runtime system ex-
hibits a form of the producer/consumer model in which courier
processes are the producers and worker processes are the
consumers. In the model described so far, couriers perform
mostly remote communication, and workers constantly read-
/write data from/to local memory and perform a majority of the
FLOPS in this phase of the application. However, we found via
performance measurements that this system can still struggle
with unacceptable wait times and starvation from the point of
view of the workers. This situation occurs, for example, when
Q1 is empty because of either relatively long communication
latencies or not enough couriers to keep the workers busy. For
this reason, the WorkQ implementation allows for the dynamic
switching of roles between courier and worker.

Figure 2 displays how role switching occurs in the WorkQ
runtime. To bootstrap the system, both couriers and workers
perform an initial get() operation. This “initialization” of Q1

is done to avoid unnecessary work starvation due to an empty
initial queue. We determined this to be critical for performance,
especially when the time to get/enqueue a task is greater than
or equal to the compute time. If this is the case (and the number
of workers approximately equals the number of couriers), the
workers may experience several rounds of starvation before
the couriers can “catch up.”

After the first round (with workers computing on tiles they
themselves collected), workers dequeue subsequent tasks to get
data placed in Q1 by the couriers. If Q1 ever becomes empty
when a worker is ready for a task, the worker will get its own
data and carry on. On the other hand, if a courier finds either
that Q1 is overloaded (as determined by a tunable runtime
threshold parameter) or that Q2 is empty with no remaining
global tasks, then the courier will become a worker, dequeue
a task, and compute the result. In either case, the process will
return to its original role as a courier until both Q1 and Q2

are empty.

2) Message Queues: The nodewise metadata queues are
implemented by using the System V (SysV) UNIX interface
for message queues. This design decision was made because
SysV message queues exhibit the best trade-off between la-
tency/bandwidth measurements and portability compared with
other Linux variants [19]. Besides providing atomic access
to the queue for both readers and writers, SysV queues
provide priority, so that messages can be directed to specific
consumer processes. For example, this functionality is utilized
to efficiently end a round of tasks from a pool: when a courier
is aware it has enqueued the final task from the pool, it
then enqueues a collection of finalization messages with a
process-unique mtype value corresponding to the other on-
node process IDs.

3) Shared Memory: The message queues just described
contain only metadata regarding tasks; the data itself is stored
elsewhere in node-local shared memory. This approach is taken
for three reasons: (1) it reduces the cost of contention on the
queue among other node-resident processes, (2) Linux kernels
typically place more rigid system limits on message sizes in
queues (as seen with ipcs -l on the command line), and
(3) the size and dimension of work items vary significantly.
The message queue protocol benefits in terms of simplicity
and performance if each queued item has the same size
and structure. Within each enqueued metadata structure are
elements describing the size and location of the corresponding
task data. The WorkQ library allows for either SysV or
POSIX shared memory depending on user preference. There
is also an option to utilize MPI 3 shared-memory windows
(MPI_Win_allocate_shared) within a compute node.
This provides a proof of concept for doing MPI+MPI [9]
hybrid programming within the WorkQ model.

4) Library API: The WorkQ API provides a productive and
portable way for an SPMD application to initialize message
queues on each compute node in a distributed-memory system,
populate them with data, and dequeue work items. Here we
list a typical series of calls to the API (because of space
constraints, arguments are not included; they can be found in
the source [16]):
• workq_create_queue(): a collective operation

that includes on-node MPI multicasts of queue info
• workq_alloc_task(): pass task dimensions and

initialize pointer to user-defined metadata structure
• workq_append_task(): push a microtask’s

data/metadata onto the two serialized bundles
• workq_enqueue(): place macrotask bundle into

the queue then write real-data into shared memory
• workq_dequeue(): remove a macrotask bundle

from the queue and read data from shared memory
• workq_get_next(): pop a microtask’s metadata

and real data in preparation for computation
• workq_execute_task(): (optional) a callback so

data can be computed upon with zero copies
• workq_free_shm(): clean up the shared memory
• workq_destroy(): clean up the message queues

WorkQ also includes a wrapper to SysV semaphores, which is
needed only if the explicit synchronization control is needed
(i.e., if certain operations should not occur while workers
are computing). These functions are workq_sem_init(),
sem_post(), sem_release(), sem_getvalue(), and
sem_wait().



B. TCE Mini-App

The performance of the WorkQ runtime system implemen-
tation is evaluated in two ways: directly, with the original
NWChem application applied to relevant TCE-CC ground-
state energy problems, and indirectly, with a simplified mini-
app that captures the overall behavior of the TCE performance
bottleneck (described in Section II-D). The primary advantage
of the mini-app is that it removes the need to filter through
the plethora of auxiliary TCE functionalities, such as the TCE
hash table lookups, or the many other helper functions within
TCE. Although the mini-app will not compute any meaningful
computational chemistry results, it captures the performance
behavior of TCE in a way that is more straightforward to
understand and simpler to tune. Furthermore, the tuned runtime
configuration within the mini-app environment can be applied
to NWChem on particular system architectures.

The TCE mini-app implements the pedagogical model
described in Section IV-A: corresponding tiles from two global
arrays (A and B) are multiplied via a DGEMM operation and
put into a third global array C. The mini-app is strictly a
weak-scaling application that allows for a configurable local
buffer length allocation on each MPI process. These buffers
are filled with arbitrary data in the creation/initialization of
A, B, and C. As in TCE, all global arrays are reduced to
their one-dimensional representations [8]. The heap and stack
sizes fed to the global arrays memory allocator [13] are set
to as large as possible on a given architecture. Two versions
of the code are implemented to calculate the entire pool of
DGEMMs: one with the original get/compute/put model
on every process and one with the WorkQ model on every
compute node. The resulting calculation is verified in terms of
the final vector norm calculated on C.

V. EXPERIMENTAL RESULTS

The performance of the WorkQ execution runtime com-
pared wwitho the standard get/compute/put model is
evaluated on two different platforms. The first is the ACISS
cluster located at the University of Oregon. Experiments are
run on the 128 generic compute nodes, each an HP ProLiant
SL390 G7 with 12 processor cores per node (2x Intel X5650
2.67 GHz 6-core CPUs) and 72 GB of memory per node.
This is a NUMA architecture with one memory controller per
processor. ACISS employs a 10 gigabit Ethernet interconnect
based on a 1-1 nonblocking Voltaire 8500 10 GigE switch that
connects all compute nodes and storage fabric. The operating
system is RedHat Enterprise Linux 6.2, and MPICH 3.1 is
used with the -O3 optimization flag.

The second platform is the Laboratory Computing Re-
source Center “Blues” system at Argonne National Laboratory.
The 310 available compute nodes each have 16 cores (2x
Sandy Bridge 2.6 GHz Pentium Xeon with hyperthreading
disabled) and 64 GB of memory per node. All nodes are
interconnected by InfiniBand Qlogic QDR. The operating
system is Linux running kernel version 2.6.32. MVAPICH2 1.9
built with the Intel 13.1 compiler was used for our experiments.

Unless otherwise specified, performance experiments are
executed with 1 MPI process per core, leaving 1 core open on
each compute node for the ARMCI helper thread (for example,
11 processes per node on ACISS and 15 processes per node on

Fig. 3. Weak-scaling performance of the TCE mini-app with ARMCI over
sockets on ACISS (top) and ARMCI over InfiniBand on Blues (bottom) for
different tile sizes. On ACISS the WorkQ implementation was run with 6
courier processes and 5 worker processes, and on Blues with 3 couriers and
4 workers. On both architectures, the WorkQ execution shows better relative
speedup with small tile sizes but better absolute performance for relatively
larger tile sizes.

Blues). Previous work has shown this mapping to be optimal
for reducing execution time as suggested by detailed TAU
measurements in NWChem TCE-CC [6].

The systems above provide a juxtaposition of the perfor-
mance benefits gained with the WorkQ runtime between two
very different network interconnects: Ethernet and InfiniBand
(IB). The GA/ARMCI and MPI layers utilize socket-based
connections on ACISS, meaning that the servicing of message
requests involves an active role of each compute node’s operat-
ing system. Blues, on the other hand, has full RDMA support,
so data can be transferred between nodes without involving
the sender and receiver CPUs.

A. TCE Mini-App

Our first experiment considers the weak scaling perfor-
mance of the TCE mini-app on ACISS and Blues for two
different tile sizes. The tile size in the mini-app corresponds
to the common dimension of the blocks of data collected from
the GAs described in Section IV-B. In this experiment, all
DGEMM operations are performed on matrices with square
dimensions, N×N , where N is the so-called tile size. Figure 3



Fig. 4. Time per CCSD iteration for w3 aug-cc-pVDZ on ACISS versus tile
size. The top row contains execution measurements on 32 nodes (384 MPI
processes), and the bottom row contains measurements on 16 nodes (192 MPI
processes).

considers tile sizes 50 (2,500 total double-precision floating-
point elements) and 500 (250,000 elements). The mini-app
is a weak-scaling application in which a constant amount of
memory is allocated to each process/core at any given scale.
That is, if the scale is doubled, then the size of the overall
computation is doubled (hence, execution time increases for
higher numbers of processes). GA’s internal memory allocator
is initialized so that the total heap and stack space per node is
about 20 GB.

Figure 3 clearly shows that using the relatively large tile
size of 500 results in better overall absolute performance for
both the WorkQ execution model and the original execution
model. This phenomenon is well understood [17] and is due
mainly to the overhead associated with data management and
dynamic load balancing when tile size is relatively small. In
general, larger tile sizes are desirable in order to minimize this
overhead, but at a certain point large tiles are detrimental to
performance because it leads to work starvation. For instance,
if more processes/cores are available to the application than
there are number of tiles, then work starvation will surely
occur.

On the other hand, the best speedups achieved with the
WorkQ model on both systems are seen with the smaller tile
size of 50, particularly at relatively large scales. Our TAU pro-
files show that at a tile size of 50, the total time spent in com-
munication calls (ARMCI_NbGetS and ARMCI_NbAccS) is
considerably larger than with a tile size of 500. These results
suggest that at smaller tile sizes, there is more cumulative
overhead from performing one-sided operations and therefore
more likelihood that processes will spend time waiting on
communication. This scenario results in more opportunity
for overlap but worse absolute performance because of the
incurred overhead of dealing with more tasks than necessary.

B. NWChem

We now analyze the performance of the WorkQ model ap-
plied to TCE in NWChem by measuring the time of execution
to calculate the total energy of water molecule clusters. These
problems are important because of their prevalence in diverse

chemical and biological environments [1]. We examine the
performance of the tensor contraction that consistently con-
sumes the most execution time in the TCE CCSD calculation,
corresponding to the term

rp3p4

h1h2
+=

1

2
tp5p6

h1h2
vp3p4
p5p6

(see [8] for details regarding the notation). In TCE, this
calculation is encapsulated within routine ccsd_t2_8() and
occurs once per iteration of the Jacobi method.

Figure 4 shows the minimum measured time spent in an
iteration of ccsd_t2_8() on a 3-water molecule cluster
using the aug-cc-pVDZ basis set across a range of tile sizes.
These measurements are on the ACISS cluster at two different
scales: 32 compute nodes in the top plot and 16 compute nodes
in the bottom plot, with 12 cores per node in each case. Here
we use the minimum measured execution time for a series of
runs because it is more reproducible than the average time [5].
On 16 nodes, we see overall performance improvement with
WorkQ across most measured tile sizes. As in the TCE mini-
app (Fig. 3), WorkQ shows better performance improvement at
small tile sizes but best absolute performance with a medium-
sized tile. The performance with the small tile size is important
because NWChem users do not know a priori which tile size is
appropriate for a given problem. It is typically best to initially
choose a relatively small tile size because load imbalance
effects can be avoided with a finer granularity of task sizes.

VI. RELATED WORK

Other execution and programming models incorporate
node-local message queues for hiding latency and supporting
the migration of work units. For example, Charm++ provides
internal scheduling queues that can be used for peeking ahead
and prefetching work units (called chares) for overlapping
disk I/O with computation [10]. The Adaptive MPI (AMPI)
virtualization layer can represent MPI processes as user-level
threads that may be migrated like chares, enabling MPI-like
programming on top of the Charm++ runtime.

Another interesting new execution model targeted to ex-
ascale development is ParalleX, which is implemented by
the HPX runtime [20]. The ParalleX model extends PGAS
by permitting migration of objects across compute nodes
without requiring transposition of corresponding virtual names.
The HPX thread manager implements a work-queue-based
execution model, where parcels containing active messages are
shipped between “localities.” Like ParalleX, WorkQ provides
the benefit of implicit overlap and load balance with the added
feature of dynamic process role switching, which keeps the
queue populated if too few items are enqueued and throttled
if too many are enqueued. Unlike HPX and Charm++, the
WorkQ library API enables such implicit performance control
on top of other portable parallel runtimes, such as MPI itself
and Global Arrays/ARMCI.

In execution models based on node-local message queues,
work stealing enables more adaptive control over load balance.
The work-stealing technique is well studied, especially in
computational chemistry applications [4], [15]. In a typical
work-stealing implementation, local work items are designated
as tasks that may be stolen by other processes or threads. In
some sense, most tasks in WorkQ are stolen from on-node



couriers by workers. Couriers work on their own tasks only if
the queue is deemed overloaded, and workers take tasks from
the global pool if the queue is running empty.

Novel developments in wait-free and lock-free queuing
algorithms with multiple enqueuers and dequeuers [11] could
potentially improve performance of this execution system by
reducing contention in shared memory. SysV and POSIX
queues provide atomicity and synchronization in a portable
manner, but neither is wait-free or lock-free.

VII. CONCLUSION

The get/compute/put model is a common approach
for processing a global pool of tasks, particularly in PGAS
applications. This model suffers from unnecessary wait times
on communication and data migration that could potentially
be overlapped with computation and node-level activities.
The WorkQ model introduces an SPMD-style programming
technique in which nodewise message queues are initialized
on each compute node. A configurable number of courier
processes dedicate their efforts to communication and to
populating the queue with data. The remaining worker pro-
cesses dequeue and compute tasks. We show that a mini-
application that emulates the performance bottleneck of the
TCE achieves performance speedups up to 2x with a WorkQ
library implementation. We also show that WorkQ improves
the performance of NWChem TCE-CCSD across many tile
sizes on the ACISS cluster.

Future work will include the incorporation of internode
work stealing between queues and performance analysis of the
queuing system using event-based simulation techniques.

ACKNOWLEDGMENTS

D. Ozog is supported by the Department of Energy Com-
putational Science Graduate Fellowship (DOE CSGF) program
under contract DE-FG02-97ER25308. This research used re-
sources of the Argonne Leadership Computing Facility and the
Laboratory Computing Resource Center at Argonne National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357. The research at the University of Oregon was
supported by grants from the U.S. Department of Energy,
Office of Science, under contracts DE-FG02-07ER25826, DE-
SC0001777, and DE-FG02-09ER25873.

REFERENCES
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