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Abstract

The ability of performance technology to keep pace with
the growing complexity of parallel and distributed systems
depends on robust performance frameworks that can at
once provide system-specific performance capabilities and
support high-level performance problem solving. Flexibility
and portability in empirical methods and processes are
influenced primarily by the strategies available for instru-
mentation and measurement, and how effectively they are
integrated and composed. This paper presents the TAU
(Tuning and Analysis Utilities) parallel performance sys-
tem and describe how it addresses diverse requirements
for performance observation and analysis.
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1 Introduction

The evolution of computer systems and of the applications
that run on them — towards more sophisticated modes of
operation, higher levels of abstraction, and larger scale of
execution — challenge the state of technology for empiri-
cal performance evaluation. The increasing complexity of
parallel and distributed systems, coupled with emerging
portable parallel programming methods, demands that
empirical performance tools provide robust performance
observation capabilities at all levels of a system, while
mapping low-level behavior to high-level performance
abstractions in a uniform manner.

Given the diversity of performance problems, evalua-
tion methods, and types of events and metrics, the instru-
mentation and measurement mechanisms needed to support
performance observation must be flexible, to give maximum
opportunity for configuring performance experiments,
and portable, to allow consistent cross-platform perform-
ance problem solving. In general, flexibility in empirical
performance evaluation implies freedom in experiment
design, and choices in selection and control of experiment
mechanisms. Using tools that otherwise limit the type and
structure of performance methods will restrict evaluation
scope. Portability, on the other hand, looks for common
abstractions in performance methods and how these can
be supported by reusable and consistent techniques across
different computing environments (software and hardware).
Lack of portable performance evaluation environments
forces users to adopt different techniques on different sys-
tems, even for common performance analysis.

The TAU (Tuning and Analysis Utilities) parallel per-
formance system is the product of fourteen years of devel-
opment to create a robust, flexible, portable, and integrated
framework and toolset for performance instrumentation,
measurement, analysis, and visualization of large-scale
parallel computer systems and applications. The success
of the TAU project represents the combined efforts of
researchers at the University of Oregon and colleagues at
the Research Centre Juelich and Los Alamos National
Laboratory. The purpose of this paper is to provide a
complete overview of the TAU system. The discussion
will be organized first according to the TAU system archi-
tecture and second from the point of view of how to use
TAU in practice.

2 A General Computation Model for
Parallel Performance Technology

To address the dual goals of performance technology for
complex systems — robust performance capabilities and
widely available performance problem solving method-
ologies — we need to contend with problems of system
diversity while providing flexibility in tool composition,
configuration, and integration. One approach to address
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these issues is to focus attention on a sub-class of compu-
tation models and performance problems as a way to
restrict the performance technology requirements. The
obvious consequence of this approach is limited tool cov-
erage. Instead, our idea is to define an abstract computation
model that captures general architecture and software
execution features and can be mapped straightforwardly
to existing complex system types. For this model, we can
target performance capabilities and create a tool frame-
work that can adapt and be optimized for particular com-
plex system cases.

Our choice of general computation model must reflect
real computing environments, both in terms of the paral-
lel systems architecture and the parallel software envi-
ronment. The computational model we target was initially
proposed by the HPC++ consortium (HPC++ Working
Group 1995) and is illustrated in Figure 1. Two com-
bined views of the model are shown: a physical (hard-
ware) view and an abstract software view. In the model, a
node is defined as a physically distinct machine with one
or more processors sharing a physical memory system
(i.e. a shared memory multiprocessor (SMP)). A node
may link to other nodes via a protocol-based interconnect,
ranging from proprietary networks, as found in tradi-
tional MPPs, to local- or global-area networks. Nodes and
their interconnection infrastructure provide a hardware
execution environment for parallel software computa-
tion. A context is a distinct virtual address space within a
node providing shared memory support for parallel soft-
ware execution. Multiple contexts may exist on a single
node. Multiple threads of execution, both user and sys-
tem level, may exist within a context; threads within a

context share the same virtual address space. Threads in
different contexts on the same node can interact via inter-
process communication (IPC) facilities, while threads in
contexts on different nodes communicate using message
passing libraries (e.g. MPI) or network IPC. Shared-mem-
ory implementations of message passing can also be used
for fast intra-node context communication. The bold arrows
in the figure reflect scheduling of contexts and threads on
the physical node resources.

The computation model above is general enough to
apply to many high-performance architectures as well as
to different parallel programming paradigms. Particular
instances of the model and how it is programmed defines
requirements for performance tool technology. That is,
by considering different instances of the general computing
model and the abstract operation of each, we can identify
important capabilities that a performance tool should sup-
port for each model instance. When we consider a per-
formance system to accommodate the range of instances,
we can look to see what features are common and can be
abstracted in the performance tool design. In this way,
the capability abstraction allows the performance system
to retain uniform interfaces across the range of parallel
platforms, while specializing tool support for the particu-
lar model instance.

3 TAU Performance System Architecture

The TAU performance system (Shende et al. 1998; Malony
and Shende 2000; University of Oregon b) is designed as
a tool framework, whereby tool components and modules
are integrated and coordinate their operation using well-
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Fig. 2 Architecture of TAU Performance System — Instrumentation and Measurement.

defined interfaces and data formats. The TAU framework
architecture is organized into three layers — instrumenta-
tion, measurement, and analysis — where within each layer
multiple modules are available and can be configured in
a flexible manner under user control.

The instrumentation and measurement layers of the
TAU framework are shown in Figure 2. TAU supports
a flexible instrumentation model that allows the user
to insert performance instrumentation calling the TAU
measurement API at different, multiple levels of pro-
gram code representation, transformation, compilation,
and execution. The key concept of the instrumentation

layer is that it is here where performance events are
defined. The instrumentation mechanisms in TAU sup-
port several types of performance events, including
events defined by code location (e.g. routines or blocks),
library interface events, system events, and arbitrary
user-defined events. TAU is also aware of events associ-
ated with message passing and multi-threading parallel
execution. The instrumentation layer is used to define
events for performance experiments. Thus, one output of
instrumentation are information about the events for a
performance experiment. This information will be used
by other tools.



The instrumentation layer interfaces with the measure-
ment layer through the TAU measurement API. TAU’s
measurement system is organized into four parts. The event
creation and management part determines how events are
processed. Events are dynamically created in the TAU
system as the result of their instrumentation and occur-
rence during execution. Two types of events are sup-
ported: entry/exit events and atomic events. In addition,
TAU provides the mapping of performance measurements
for “low-level” events to high-level execution entities.
Overall, this part provides the mechanisms to manage
events as a performance experiment proceeds. It includes
the grouping of events and their runtime measurement
control. The performance measurement part supports two
measurement forms: profiling and tracing. For each form,
TAU provides the complete infrastructure to manage the
measured data during execution at any scale (number of
events or parallelism). The performance data sources part
defines what performance data is measurable and can be
used in profiling or tracing. TAU supports different timing
sources, choice of hardware counters through the PAPI
(Browne et al. 2000) or PCL (Berrendorf, Ziegler, and
Mohr) interfaces, and access to system performance data.
The OS and runtime system part provide the coupling
between TAU’s measurement system and the underlying
parallel system platform. TAU specializes and optimizes
its execution according to the platform features available.

The TAU measurement systems can be customized and
configured for each performance experiment by compos-
ing specific modules for each part and setting runtime
controls. For instance, based on the composition of mod-
ules, an experiment could easily be configured to measure
the profile that shows the inclusive and exclusive counts
of secondary data cache misses associated with basic
blocks such as routines, or a group of statements. By pro-
viding a flexible measurement infrastructure, a user can
experiment with different attributes of the system and
iteratively refine the performance characterization of a
parallel application.

The TAU analysis and visualization layer is shown in
Figure 3. As in the instrumentation and measurement
layer, TAU flexibility allows use of several modules. These
are separated between those for parallel profile analysis
and parallel trace analysis. For each, support is given to the
management of the performance data (profiles or traces),
including the conversion to/from different formats. TAU
comes with both text-based and graphical tools to visual-
ize the performance profiles. ParaProf (Bell, Malony, and
Shende 2003) is TAU’s parallel profile analysis and visu-
alization tool. Also distributed with TAU is the PerfDMF
(Huck et al. 2005) tool providing multi-experiment paral-
lel profile management. Given the wealth of third-party
trace analysis and visualization tools, TAU does not imple-
ment its own. However, trace translation tools are imple-

mented to enable use of Vampir (Intel Corporation; Nagel
etal. 1996), Jumpshot (Wu et al. 2000), and Paraver (Euro-
pean Center for Parallelism of Barcelona (CEPBA)). It is
also possible to generate EPILOG (Mohr and Wolf 2003)
trace files for use with the Expert (Wolf et al. 2004) anal-
ysis tool. All TAU profile and trace data formats are open.

The framework approach to TAU’s architecture design
guarantees the most flexibility in configuring TAU capa-
bilities to the requirements of the parallel performance
experimentation and problem solving the user demands.
In addition, it allows TAU to extend these capabilities to
include the rich technology being developed by other per-
formance tool research groups. In the sections that follow,
we look at each framework layer in more depth and dis-
cuss in detail what can be done with the TAU perform-
ance system.

4 Instrumentation

In order to observe performance, additional instructions
or probes are typically inserted into a program. This proc-
ess is called instrumentation. From this perspective, the
execution of a program is regarded as a sequence of
significant performance events. As events execute, they
activate the probes which perform measurements. Thus,
instrumentation exposes key characteristics of an execu-
tion. Instrumentation can be introduced in a program at
several levels of the program transformation process. In
this section we describe the instrumentation options sup-
ported by TAU.

4.1 Source-Based Instrumentation

TAU provides an API that allows programmers to manu-
ally annotate the source code of the program. Source-
level instrumentation can be placed at any point in the
program and it allows a direct association between lan-
guage- and program-level semantics and performance
measurements. Using cross-language bindings, TAU pro-
vides its API in C++, C, Fortran, Java, and Python lan-
guages. Thus, language specific features (e.g. runtime type
information for tracking templates in C++) can be lever-
aged. TAU also provides a higher-level specification in
SIDL (Kohn et al. 2001; Shende et al. 2003) for cross-lan-
guage portability and deployment in component-based
programming environments (Bernholdt et al. 2005).

TAU’s API can be broadly classified into the following
five interfaces:

¢ Interval event interface
¢ Atomic event interface
* Query interface

¢ Control interface

* Sampling interface



other profilers

’ xprof Hpapiprof‘

’ gprof H vprof ‘ j

,,,,,,,,,, P

Profile Data Management

profile profile
translators database

Profile Management
Profile Data Model =
<

Analysis

ParaProf

display

Trace Visualizers

e0e

Instrumentation szent .
information _ ________

' profiles
! profiles traces

Trace Data Management

trace trace
translators storage

Trace Analyzers

Expert

ProfileGen

JumpShot

Fig. 3 Architecture of TAU Performance System — Analysis and Visualization.

4.1.1 Interval event interface TAU supports the abil-
ity to make performance measurements with respect to
event intervals. An event interval is defined by its start
events and its stop events. A user may bracket parts of
his/her code to specify a region of interest using a pair of
start and stop event calls. There are several ways to iden-
tify interval events and performance tools have used dif-
ferent techniques. It is probably more recognizable to
talk about interval events as timers. To identify a timer,
some tools advocate the use of numeric identifiers and an
associated table mapping the identifiers to timer names.
While it is easy to specify and pass the timer identifier
among start and stop routines, it has its drawbacks. Main-
taining a table statically might work for languages such

as Fortran 90 and C, but it extends poorly to C++, where
a template may be instantiated with different parameters.
This aspect of compile time polymorphism makes it dif-
ficult to disambiguate between different instantiations of
the same code. Also, it can introduce instrumentation
errors in maintaining the table that maps the identifiers to
names. This is true for large projects that involve several
application modules and developers.

Our interface uses a dynamic naming scheme where
interval event (timer) names are associated with the per-
formance data (timer) object at runtime. An interval event
can have a unique name and a signature that can be obtained
at runtime. In the case of C++, this is done using runtime
type information of objects. Several logically related inter-



val events can be grouped together using an optional pro-
file group. A profile group is specified using a name the
interval event created.

In the case of C++, the TAU interface leverages the
language preprocessing system and object-oriented fea-
tures. A single interval event macro inserted in a routine
is sufficient to track its entry and exit. This is achieved by
defining a pair of objects. The first FunctionInfo object is
a static object whose constructor is invoked exactly once
with parameters such as its name, signature, and group.
The second Profiler object’s constructor and destructor are
invoked when it comes in and goes out of scope respec-
tively. In this manner, the constructor and destructor
mechanism is used to start and stop the interval event
associated with the given basic block.

4.1.2 Atomic event interface TAU also allows for
events that take place atomically at a specific location in
the source code to be identified and tracked. The generic
atomic event interface provides a single trigger method
with a data parameter. This permits the user to associate
application data with such an event. TAU internally uses
this interface for some of its performance measurements,
such as tracking memory utilization and sizes of mes-
sages involved in inter-process synchronization opera-
tions using the MPI library. TAU implements the atomic
event interface by keeping track of the event name, and
the data associated with it. In the profiling mode of meas-
urement, it currently tracks the maxima, minima, mean,
standard deviation and the number of samples.

4.1.3 Profile query interface The profile query inter-
face allows the program to interact with the measurement
substrate to query the performance metrics recorded
by TAU. These metrics are represented as a list of profile
statistics associated with each interval and atomic event.
For each interval event, a set of exclusive and inclusive
values is available in the profile for each performance
measurement source. It provides the number of start/stop
pairs executed (or the number of calls), and also the number
of timers that each timer called in turn. Instead of exam-
ining this data at runtime, an application may ask TAU
to store this information in files at the end of the execu-
tion. The query interface also provides a access for an
online performance monitoring tool external to the appli-
cation.

4.14 Event control interface The purpose of the event
control interface is to allow the user to enable and disable
a group of events at a coarse level. The user can disable
all the groups and selectively enable a set of groups for
refining the focus of instrumentation. Similarly, the user
can start with all groups in an enabled state and selec-
tively disable a set of groups. Again, the instrumentation

here is at the source level and the programmer is insert-
ing event control calls into their program.

4.1.5 Sampling interface TAU’s sampling interface
can be used to set up interrupts during program execution.
Control of interrupt period and selection of system prop-
erties to track are provided. Once enabled, an interrupt
handler is invoked when a certain duration of time elapses.
It tracks one or more entities by calling the atomic event
interface. The user can set, enable or disable the sampling
of events using the control interface.

While manual instrumentation affords the most flexi-
bility, it can be tedious if the instrumentation involves
manually annotating each routine in a large project. For
automating the process of instrumentation TAU provides
several powerful options described below.

4.2 Preprocessor-Based Instrumentation

The source code of a program can be altered by a preproc-
essor before it is compiled. This approach typically
involves parsing the source code to infer where instru-
mentation probes are to be inserted. As a example of auto-
matic instrumentation through the preprocessing built
into a compiler, TAU’s memory allocation/deallocation
tracking package can be used to re-direct the references to
the C malloc/free calls. The preprocessor invokes TAU’s
corresponding memory wrapper calls with the added infor-
mation about the line number and the file. The atomic event
interface can then track the size of memory allocated and
deallocated to help locate potential memory leaks.
Preprocessor-based instrumentation is also commonly
used to insert performance measurement calls at interval
entry and exit points in the source code. To support auto-
matic performance instrumentation at the source level, the
TAU project has developed the Program Database Toolkit
(PDT) (Lindlan et al. 2000). The purpose of PDT, shown
in Figure 4 is to parse the application source code and
locate the semantic constructs to be instrumented. PDT is
comprised of commercial-grade front-ends that emit an
intermediate language (IL) file, IL analyzers that walk the
abstract syntax tree and generate a subset of semantic
entities in program database (PDB) ASCII text files, and a
library interface (DUCTAPE) to the PDB files that allows
us to write static analysis tools. PDT uses the Edison Design
Group’s (EDG) C99 and C++ parsers, Mutek Solutions’
Fortran 77 and Fortran 90 parser based on EDG, and we
have recently added Cleanscape Inc. Flint Fortran 95 parser
to PDT. The DUCTAPE library provides TAU a uniform
interface to entities from several languages such as C,
C++, and Fortran 77/90/95. We have developed a source-
to-source instrumentation tool fau_instr that uses PDT. It
re-writes the original source code with performance anno-
tations to record the interval event transitions (e.g. routine



Application —D.PDBhtml
. =
/ Library
C/C++ Fortran 77/90/95
Parser Parser —P.SIDLgen
*EDG * Mutek

* Cleanscape

C/C++
IL Analyzer

F77/F90
IL Analyzer

Program
Database

(PDB) @

Fig. 4 Program Database Toolkit (PDT).

entry and exit). The instrumented source code is then
compiled and linked with the TAU measurement library
to produce an executable code. When the application is
executed subsequently, performance data is generated.

TAU also supports OpenMP instrumentation using a pre-
processor tool called Opari (Mohr). Opari inserts POMP
(Mohr et al. 2002) annotations and rewrites OpenMP direc-
tives in the source code. TAU’s POMP library tracks the
time spent in OpenMP routines based on each region in
the source code. To track the time spent in user-level rou-
tines, Opari instrumentation can be combined with PDT
based instrumentation as well.

4.3 Compiler-Based Instrumentation

A compiler can add instrumentation calls in the object
code that it generates. There are several advantages to
instrumentation at the compiler level. The compiler has full
access to source-level mapping information. It has the abil-
ity to choose the granularity of instrumentation and can
include fine-grained instrumentation. The compiler can
perform instrumentation with knowledge of source trans-
formations, optimizations and code generation phases.
Flexibility of instrumentation allows for examining the
performance of a program to an arbitrary level of detail.
Fine-grained instrumentation at the source level, how-
ever, interacts with compiler optimizations: instrumentation
may inhibit compiler optimizations, and optimizations may
corrupt measurement code. We have developed an Instru-
mentation-Aware Compiler that extends a traditional com-
piler to preserve the semantics of fine-grained performance
instrumentation despite aggressive program restructuring.
The compiler strips the instrumentation calls from the

source code and optimizes the compiled source code. It
then re-instruments the optimized code using mappings
maintained in the compiler that associate the optimized
instructions to the original source code (Shende 2001).
The instrumentor uses a fast-breakpoint scheme (Kessler
1990) that replaces an instruction with a branch instruc-
tion. The code branches to a new location, the global state
(registers) is saved, an instrumentation call is invoked, the
global state is restored, and the original replaced instruc-
tion is executed. The code then executes a branch to the
instruction following the original instruction to continue
execution.

4.4 Wrapper Library-Based Instrumentation

A common technique to instrument library routines is to
substitute the standard library routine with an instrumented
version which in turn calls the orginal routine. The prob-
lem is that you would like to do this without having to
develop a different library just to alter the calling inter-
face. MPI provides an interface (Forum 1994) that allows
a tool developer to intercept MPI calls in a portable man-
ner without requiring a vendor to supply proprietary source
code of the library and without requiring the application
source code to be modified by the user. This is achieved by
providing hooks into the native library with a name-shifted
interface and employing weak bindings. Hence, every
MPI call can be accessed with its name shifted interface
as well. The advantage of this approach is that library-
level instrumentation can be implemented by defining a
wrapper interposition library layer that inserts instrumen-
tation calls before and after calls to the native routines.

We developed a TAU MPI wrapper library that inter-
cepts calls to the native library by defining routines with
the same name, such as MPI Send. These routines then
call the native library routines with the name shifted rou-
tines, such as PMPI_Send. Wrapped around the call, before
and after, is TAU performance instrumentation. An added
advantage of providing such a wrapper interface is that the
profiling wrapper library has access to not only the rou-
tine transitions, but also to the arguments passed to the
native library. This allows TAU to track the size of mes-
sages, identify message tags, or invoke other native library
routines. This scheme helps a performance tool track inter-
process communication events.

TAU and several other tools (e.g. Upshot (Gropp and
Lusk), VampirTrace (Intel Corporation), and EPILOG
(Mohr and Wolf 2003)) use the MPI profiling interface.
However, TAU can also utilize its rich set of measurement
modules that allow profiles to be captured with various
types of performance data, including system and hard-
ware data. In addition, TAU’s performance grouping capa-
bilities allows MPI events to be presented with respect to
high-level categories such as send and receive types.



4.5 Binary Instrumentation

TAU uses DyninstAPI (Buck and Hollingsworth 2000)
for instrumenting the executable code of a program.
DyninstAPI is a dynamic instrumentation package that
allows a tool to insert code snippets into a running pro-
gram using a portable C++ class library. For DyninstAPI
to be useful with a measurement strategy, calls to a meas-
urement library (or the measurement code itself) must be
correctly constructed in the code snippets. Our approach
for TAU uses the DyninstAPI to construct calls to the
TAU measurement library and then insert these calls into
the executable code. TAU can instrument a program at
runtime, or it can re-write the executable image with calls
to the TAU measurement library at routine entry and exit
points. TAU’s mutator program (tau_run) loads a TAU
dynamic shared object (the compiled TAU measurement
library) in the address space of the mutatee (the applica-
tion program). It parses the executable image for symbol
table information and generates the list of modules and
routines within the modules that are appropriate for
instrumentation; TAU routines and Dyninst modules are
excluded from consideration. Using the list of routines
and their names, unique identifiers are assigned to each
routine. The list of routines is then passed as an argument
to a TAU initialization routine that is executed once by
the mutatee (as a one time code). This initialization rou-
tine creates a function mapping table to aid in efficient
performance measurement. Code snippets are then inserted
at entry and exit transition points in each routine.

Dynaprof (Mucci) is another tool that uses DyninstAPI
for instrumentation. It provides a TAU probe that allows
TAU measurements to interoperate with Dynaprof instru-
mentation. An interval event timer is defined to track the
time spent in un-instrumented code. This timer is started
and stopped around each routine callsite. This enables us
to precisely track the exclusive time spent in all other
instrumented routines. Dynaprof can also use a PAPI
probe and generate performance data that can be read by
ParaProf. This illustrates the clear separation between the
instrumentation, measurement, and analysis layers in TAU.
A user may choose to use TAU instrumentation, meas-
urement, and analysis using tau_run and ParaProf or she
may choose Dynaprof for instrumentation, TAU for meas-
urement, and ParaProf or Vampir for analysis, or she may
choose Dynaprof for instrumentation, a PAPI probe for
measurement, and ParaProf for analysis.

4.6 Interpreter-Based Instrumentation

Interpreted language environments present an interesting
target for TAU integration. Often such environments sup-
port easy integration with native language modules. In this
case, it is reasonable to attempt to recreate the source-

based instrumentation in the interpreted language, call-
ing through the native language support to the backend
TAU measurement system. However, it is also true that
interpreted language environments have built-in support
for identifying events and monitoring runtime system
actions.

TAU has been integrated with Python by leveraging the
Python interpreter’s debugging and profiling capabilities
to instrument all entry and exit calls. By including the tau
package and passing the top level routine as a parameter
to the tau package’s run method, all Python routines
invoked subsequently are instrumented automatically at
runtime. A TAU interval event is created when a call is
dispatched for the first time. At routine entry and exit
points, TAU’s Python API is invoked to start and stop the
interval events. TAU’s measurement library is loaded by
the interpreter at runtime. Since shared objects are used in
Python, instrumentation from multiple levels see the
same runtime performance data.

Python is particularly interesting since it can be use to
dynamically link and control multi-language executable
modules. This raises the issue of how to instrument a pro-
gram constructed from modules derived from different
languages and composed at runtime. We have demon-
strated the use of TAU with the Python-based VTF (Cali-
fornia Institute of Technology) code from ASCI ASAP
center at Caltech. This program involved three modes of
instrumentation:

* Python source level

* MPI wrapper interposition library level

e PDT-based automatic instrumentation of Fortran 90,
C++, and C modules

The ability to target multiple instrumentation option con-
currently makes it possible for TAU to be used effectively
in complex programming systems.

4.7 Component-Based Instrumentation

Component technology extends the benefits of scripting
systems and object-oriented design to support reuse and
interoperability of component software, transparent of
language and location (Szyperski 1997). A component is
a software object that implements certain functionality
and has a well-defined interface that conforms to a com-
ponent architecture defining rules for how components
link and work together (Bernholdt et al. 2005). It consists
of a collection of ports, where each port represents a set of
functions that are publicly available. Ports implemented
by a component are known as provides ports, and other
ports that a component is uses are known as uses ports.
The Common Component Architecture (CCA) (CCA
Forum) is a component-based methodology for develop-



ing scientific simulation codes. The architecture consists
of a framework which enables components (embodiments
of numerical algorithms and physical models) to work
together. Components are peers and derive no implemen-
tation from others. Components publish their interfaces
and use interfaces published by others. Components pub-
lishing the same interface and with the same functional-
ity (but perhaps implemented via a different algorithm or
data structure) may be transparently substituted for each
other in a code or a component assembly. Components are
compiled into shared libraries and are loaded in, instanti-
ated and composed into a useful code at runtime.

How should a component-based program be instru-
mented for performance measurement? The challenge
here is in supporting an instrumentation methodology that
is consistent with component-based software engineering.
The approach taken with TAU for CCA was to develop a
TAU performance component that other components could
use for performance measurement. The TAU instrumenta-

tion API is thus recreated as the performance compo-
nent’s interface, supporting event creation, event control,
and performance query. There are two ways to instru-
ment a component based application using TAU. The first
requires calls to the performance component’s measure-
ment port to be added to the source code. This is useful
for fine-grained measurements inside the component. The
second approach interposes a proxy component in front of
a component, thus intercepting the calls to its provides
port. In this case, for each edge that represents a port in
the component connection graph, we can interpose the
proxy along that edge. A proxy component implements a
port interface and has a provides and a uses port. The pro-
vides port is connected to the caller’s uses port and its
uses port is connected to the callee’s provides port. The
proxy performs measurements using TAU’s Mastermind
or Measurement port (Shende et al. 2003; Ray et al. 2004)
as shown in the wiring diagram of CFRFS CCA combus-
tion component ensemble in Figure 5.
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ance-related data.



To aid in the construction of proxies, it is important to
note that we only need to construct one proxy component
for each port. Different components that implement a given
port use the same proxy component. To automate the proc-
ess of creating a proxy component, TAU’s proxy genera-
tor uses PDT to parse the source code of a component that
implements a given port. It infers the arguments and
return types of a port and its interfaces and constructs the
source code of a proxy component, which when compiled
and instantiated in the framework allows us to measure
the performance of a component without any changes to
its source or object code. This provides a powerful capa-
bility to build performance-engineered scientific compo-
nents that can provide computational quality of service
(Notris et al. 2004) and allows us to build intelligent, per-
formance-aware components.

4.8 Virtual Machine-Based Instrumentation

Support of performance instrumentation and measurement
in language systems based on virtual machine (VM) execu-
tion poses several challenges. Consider Java and the JVM.
Currently, Java 2 (JDK1.2+) incorporates the Java Virtual
Machine Profiler Interface (JVMPI) (SUN Microsystems
Inc.; Viswanathan and Liang 2000) which we have used
for our work. This interface is re-organized in JDK 1.5+
as Java Virtual Machine Tool Interface (JVMTI). JVMPI
provides profiling hooks into the virtual machine and
allows a profiler agent to instrument the Java application
without any changes to the source code, bytecode, or the
executable code of the JVM. This is ideal since JVMPI
provides a wide range of events that it can notify to the
agent, including method entry and exit, memory alloca-
tion, garbage collection, and thread start and stop; see the
Java 2 reference for more information. When the profiler
agent is loaded in memory, it registers the events of inter-
est and the address of a callback routine to the virtual
machine using JVMPI. When an event takes place, the
virtual machine thread generating the event calls the pro-
filer agent callback routine with a data structure that con-
tains event specific information. The profiling agent can
then use JVMPI to get more detailed information regard-
ing the state of the system and where the event occurred.
The downside of this approach is that JVMPI is a heavy-
weight mechanism.

When the TAU agent is loaded in the JVM as a shared
object, a TAU initialization routine is invoked. It stores
the identity of the virtual machine and requests the JVM
to notify it when a thread starts or terminates, a class is
loaded in memory, a method entry or exit takes place, or
the JVM shuts down. When a class is loaded, TAU exam-
ines the list of methods in the class and creates an associ-
ation of the name of the method and its signature, as
embedded in the TAU object, with the method identifier

obtained, using the TAU Mapping API (see the TAU
User’s Guide (University of Oregon b)). When a method
entry takes place, TAU performs measurements and cor-
relates these to the TAU object corresponding to the
method identifier that it receives from JVMPIL. When a
thread is created, it creates a top-level routine that corre-
sponds to the name of the thread, so the lifetime of each
user and system level thread can be tracked.

To deal with Java’s multi-threaded environment, TAU
uses a common thread layer for operations such as getting
the thread identifier, locking and unlocking the perform-
ance database, getting the number of concurrent threads,
and so on. (This is an example of the benefit of basing TAU
on a general computation model.) The thread layer is then
used by the multiple instrumentation layers. When a thread
is created, TAU registers it with its thread module and
assigns an integer identifier to it. It stores this in a thread-
local data structure using the JVMPI thread API described
above. It invokes routines from this API to implement
mutual exclusion to maintain consistency of performance
data. It is important for the profiling agent to use the same
thread interface as the virtual machine that executes the
multi-threaded Java applications. This allows TAU to
lock and unlock performance data in the same way as
application level Java threads do with shared global appli-
cation data. TAU maintains a per-thread performance data
structure that is updated when a method entry or exit takes
place. Since this is maintained on a per thread basis, it
does not require mutual exclusion with other threads and
is a low-overhead scalable data structure. When a thread
exits, TAU stores the performance data associated with
the thread to stable storage. When it receives a JVM shut-
down event, it flushes the performance data for all run-
ning threads to the disk.

Shende and Malony (2003) demonstrated how MPI
events can be integrated with Java language events from
the JVM. Here, the JVM was running the Just-in-time
(JIT) compiler where the Java bytecode is converted into
native code on the fly as the application executes. TAU
can also be used to profile Java code using Sun’s HotSpot
compiler embedded within the JVM while it transforms
time-consuming segments of code to native code at runt-
ime. This is in contrast to the operation of the JIT com-
piler where all bytecode is converted to native code at
runtime.

4.9 Multi-Level Instrumentation

As the source code undergoes a series of transformations
in the compilation, linking, and execution phases, it poses
several constraints and opportunites for instrumentation.
Instead of restricting the choice of instrumentation to one
phase in the program transformation, TAU allows multi-
ple instrumentation interfaces to be deployed concurrently



for better coverage. It taps into performance data from
multiple levels and presents it in a consistent and a uni-
form manner by integrating events from different lan-
guages and instrumentation levels in the same address
space. TAU maintains performance data in a common struc-
ture for all events and allows external tools access to the
performance data using a common interface.

4.10 Selective Instrumentation

In support of the different instrumentation schemes TAU
provides, a facility for selecting which of the possible
events to instrument has been developed (Malony et al.
2003). The idea is to record a list of performance events
to be included or excluded by the instrumentation in a
file. The file is then used during the instrumentation proc-
ess to restrict the event set. The basic structure of the file
is a list of names separated into include and exclude lists.
File names can be given to restrict instrumentation focus.

The selective instrumentation mechanism is being
used in TAU for all automatic instrumentation methods,
including PDT source instrumentation, DyninstAPI exe-
cutable instrumentation, and component instrumentation.
It has proven invaluable as a means to both weed out
unwanted performance events, such as high frequency,
small routines that generate excessive measurement over-
head, and provide easy event configuration for custom-
ized performance experiments.

4.11 TAU_COMPILER

To simplify the integration of the source instrumentor
and the MPI wrapper library in the build process, TAU
provides a tool, tau_compiler.sh that can be invoked
using a prefix of $ (TAU_COMPILER) before the name
of the compiler. For instance, in an application makefile,
the variable:

FI90=mpx1£f90
is modified to
F90=$ (TAU_COMPILER) mpx1£f90.

This tool invokes the compiler internally after extract-
ing the names of source or object files and compilation
parameters. During compilation, it invokes the parser
from PDT, then the tau_instrumentor for inserting meas-
urement probes into the source code, and compiles the
instrumented version of the source to generate the desired
object file. It can distinguish between object code crea-
tion and linking phases of compilation and during linking,
it inserts the MPI wrapper library and the TAU measure-
ment library in the link command line. In this manner, a

user can easily integrate TAU’s portable performance
instrumentation in the code generation process. Optional
parameters can be passed to all four compilation phases.

5 Measurement

All TAU instrumentation code makes calls to the TAU
measurement system through an API that provides a port-
able and consistent set of measurement services. Again,
the instrumentation layer is responsible for defining the
performance events for an experiment, establishing rela-
tionships between events (e.g. groups, mappings), and
managing those events in the context of the parallel com-
puting model being used. Using the TAU measurement
API, event information is passed in the probe calls to be
used during measurement operations to link events with
performance data. TAU supports parallel profiling and
parallel tracing. It is in the measurement system configu-
ration and usage where all choices for what performance
data to capture and in what manner are made. Thus, per-
formance experiments are created by selecting the key
events of interest to observe and by configuring measure-
ment modules together into a particular composition of
measurement capabilities (Dongarra et al. 2003).

In the sections that follow, we will discuss in detail
what the TAU measurement layer provides, first from the
point of view of profiling, and then of tracing. We begin
with a discussion of the sources of performance data TAU
supports.

The TAU measurement system is the heart of TAU’s
capabilities. It is highly robust, scalable, and has been
ported to all HPC platforms.

5.1 Performance Data Sources

TAU provides access to various sources of performance
data. Time is perhaps the most important and ubiquitous
data type, but it comes in various forms on different system
platforms. TAU provides the user with a flexible choice of
time sources based on what the range of sources a partic-
ular system supplies. At the same time, it abstracts the
timer interface so as to insulate the rest of the measure-
ment system from the nuances of different timer imple-
mentations. In a similar manner, TAU integrates alternative
interfaces for access to hardware counters (PAPI (Browne
et al. 2000) and PCL (Berrendorf, Ziegler, and Mohr) are
supported) and other system-accessible performance data
sources. Through TAU configuration, all of the linkages
to these packages are taken care of.

Within the measurement system, TAU allows for mul-
tiple sources of performance data to be concurrently active.
That is, it is possible for both profiling and tracing to
work with multiple performance data. TAU also recognizes
that some performance data may come directly from the



parallel program. This is supported in two ways. First,
the TAU API allows the user to specify a routine to serve
as a counter source during performance measurement.
Second, the TAU measurement system supplies some
standard events and counters that can be used to track
program-related performance (e.g. tracking memory uti-
lization and sizes of messages).

5.2 Profiling

Profiling characterizes the behavior of an application in
terms of aggregate performance metrics. Profiles are typ-
ically represented as a list of various metrics (such as
wall-clock time) and associated statistics for all perform-
ance events in the program. There are different statistics
kept for interval events (such as routines or statements in
the program) versus atomic events. For interval events,
TAU profile measurements compute exclusive and inclu-
sive metrics spent in each routine. Time is a commonly
used metric, but any monotonically increasing resource
function can be used. Typically one metric is measured
during a profiling run. However, the user may configure
TAU with the -MULTIPLECOUNTERS configuration
option and then specify up to 25 metrics (by setting envi-
ronment variables COUNTER [1-25]) to track during a
single execution. For atomic events, different counters can
be used. As indicated above, statistics measured include
maxima, minima, mean, standard deviation, and the number
of samples. Internally, the TAU measurement system main-
tains a profile data structure for each node/context/thread.
When the program execution completes, a separate pro-
file file is created for each. The profiling system is opti-
mized to work with the target platform and profiling
operations are very efficient.

5.3 Flat Profiling

The TAU profiling system supports several profiling var-
iants. The most basic and standard type of profiling is
called flat profiling. If TAU is being used for flat profil-
ing, performance measurements are kept for interval
events only. For instance, flat profiles will report the
exclusive performance (e.g. time) for a routine, say A, as
the amount of time spent executing in A exclusively. Any
time spent in routines called by A will be represented in
A’s profile as inclusive time, but it will not be differenti-
ated with respect to the individual routines A called. Flat
profiles also keep information on the number of times A
was called and the number of routines (i.e. events) called
by A. Again, TAU will keep a flat profile for every node/
context/thread of the program’s execution.

TAU implements a sophisticated runtime infrastructure
for gaining both profiling measurement efficiency and
robustness. In particular, we decided to maintain inter-

nally a runtime event callstack that shrinks and grows at
every interval event exit and entry. It is a simple matter to
account for inclusive and exclusive performance using
the event callstack. The real power of the callstack is dem-
onstrated for the other profiling forms. It is important to
understand that the callstack is a representation of the
nesting of interval performance events. This makes it
more than just a routine callstack representation.

5.3.1 Callpath profiling To observe meaningful per-
formance events requires placement of instrumentation in
the program code. However, not all information needed to
interpret an event of interest is available prior to execu-
tion. A good example of this occurs in callgraph profil-
ing. Here the objective is to determine the distribution of
performance along the dynamic routine (event) calling
paths of an application. We speak of the depth of a call-
path as the number of routines represented in the callpath.
A callpath of depth 1 is a flat profile. A callpath of depth
k represents a sequence of the last k — 1 routines called by
a routine at the head of the callpath. The key concept to
understand for callpath profiling is that a callpath repre-
sents a performance event. Just as a callpath of depth 1
will represent a particular routine and TAU will profile
exclusive and inclusive performance for that routine, every
unique callpath of depth k in a program’s execution will
represent a unique performance event to be profiled.
Unlike flat profiling, the problem with callpath profil-
ing is that the identities of all kK — 1 depth calling paths
ending at a routine may not be, and generally are not,
known until the application finishes its execution. How,
then, do we identify the dynamic callpath events in order
to make profile measurements? One approach is not to
try to identify the callpaths at runtime, and instead instru-
ment just basic routine entry and exit events and record
the events in a trace. Trace analysis can then easily calcu-
late callpath profiles. There are two problems with this
approach. One, it is not a profile-based measurement, and
two, the trace generated may be excessively large.
Unfortunately, the measurement problem is significantly
harder if callpath profiles are calculated online. If the
whole source is available, it is possible to determine the
entire static callgraph and enumerate all possible callpaths,
encoding this information in the program instrumenta-
tion. These callpaths are static, in the sense that they could
occur; dynamic callpaths are the subset of static callpaths
that actually do occur during execution. Once a callpath
is encoded and stored in the program, the dynamic call-
path can then be determined directly by indexing a table
of possible next paths using the current routine id. Once
the callpath is known, the performance information can
be easily recorded in pre-reserved static memory. This
technique was used in the CATCH tool (DeRose and
Wolf 2002). Unfortunately, this is not a robust solution



for several reasons. First, source-based callpath analysis
is non-trivial and may only be available for particular
source languages, if at all. Second, the application source
code must be available if a source-based technique is
used. Third, static callpath analysis is possible at the
binary code level, but the routine calls must be explicit
and not indirect. This complicates C++ callpath profiling,
for instance. To deliver a robust, general solution, we
decided to pursue an approach where the callpath is cal-
culated and queried at runtime.

As noted above, the TAU measurement system main-
tains a callstack that is updated with each entry/exit per-
formance event. Thus, to determine the k — 1 length
callpath when an event (e.g. routine) is entered, all that is
necessary is to traverse up the callstack to determine the
last events that define the callpath. If this is a newly
encountered callpath, it represents a new event, and a
new measurement profile must be created at that time
because it was not pre-allocated. The main problem is
how to do all of this efficiently.

Although performance events in TAU are handled
dynamically, in the sense that they are not pre-determined
and pre-assigned event identities, “standard” performance
events will have pre-allocated profile data structures, as a
result of the instrumentation inserted in the program code.
Unfortunately, callpaths do not occur as a result of spe-
cific event instrumentation, but instead as a result of the
state of the event callstack. Thus, new callpaths occur
dynamically, requiring new profile data objects to be cre-
ated at runtime. TAU builds a profile object for each call-
path encountered in an associative map and creates a key
to use to retrieve it. The key is formed from the callpath
depth and callpath event names. It is constructed on the
fly when an interval entry call takes place. Thus, no string
operations are performed in looking up the key in the hash
table. To compare two keys, we first examine the callpath
depth by looking at the first element of the two arrays. If
they’re equal, then we traverse the other elements com-
paring a pair of addresses at each stage. When TAU is
configured with the -PROFILECALLPATH configura-
tion option, callpath profiling is enabled. A user sets the
desired callpath depth as a runtime parameter by setting
the environment variable TAU CALLPATH_DEPTH to
the appropriate value. If it is not set, a default value of 2 is
assumed.

5.3.2 Calldepth profiling TAU’s callpath profiling
will generate a profile for each callpath of a depth desig-
nated by TAU_CALLPATH_DEPTH, not just those that
include the topmost root event. For some performance
evaluation studies, it is desired to see how the perform-
ance is distributed across program parts from a top-down,
hierarchical perspective. Thus, a parallel profile that
showed how performance data was distributed at differ-

ent levels of an unfolding event call tree could help to
understand the performance better. TAU’s implementation
of calldepth profiling does just that. It allows the user to
configure TAU with the ~-DEPTHLIMIT option and spec-
ify in the the environment variable TAU_DEPTH_LIMIT
how far down the event call tree to observe performance.
In this case, the profiles created show performance for
each callpath in the rooted call tree pruned to the chosen
depth. The implementation of calldepth profiling is simi-
lar to callpath profiling in that it requires dynamic event
generation and profile object creation, but it benefits
from certain efficiencies in pruning its search on the call-
stack.

5.3.3 Phase profiling While callpath profiling and
calldepth profiling allow the distribution of performance
to be understood relative to event calling relationships, it
is equally reasonable to want to see performance data rel-
ative to execution state. The concept of a phase is com-
mon in scientific applications, both in terms of how
developers think about the structural, logical, and numer-
ical aspects of a computation, and how performance can
be interpreted. It therefore worthwhile to consider whether
support for phases in performance measurement can aid
in the interpretation of performance information. Phase
profiling is an approach to profiling that measures per-
formance relative to the phase of execution. TAU has
implemented a phase profiling API that is used by the
developer to create phases and mark their entry and exit.
When TAU is configured with the —-PROFILEPHASE
option, TAU will effectively generate a separate profile
for each phase in the program’s execution.

Internally, phase profiling support in TAU builds on
similar mechanisms used in callpath profiling. A phase
event (enter and exit phase) activates special processing
in TAU to record the transition between phases. A phase
can be static (where the name registration takes place
exactly once) or dynamic (where it is created each time).
Phases can also be nested, in which case profiling fol-
lows normal scoping rules and is associated with the
closest parent phase obtained by traversing up the call-
stack. Phases should not overlap, as it also true for inter-
val events (Shende et al. 1998). Each thread of execution
in an application has a default phase and this corresponds
to the top level event. This top level phase contains other
routines and phases that it directly invokes, but excludes
routines called by child phases.

5.4 Tracing

While profiling is used to get aggregate summaries of
metrics in a compact form, it cannot highlight the time
varying aspect of the execution. To study the post-mortem
spatial and temporal aspect of performance data, event



tracing, that is, the activity of capturing an event or an
action that takes place in the program, is more appropri-
ate. Event tracing usually results in a log of the events that
characterize the execution. Each event in the log is an
ordered tuple typically containing a time stamp, a loca-
tion (e.g. node, thread), an identifier that specifies the
type of event (e.g. routine transition, user-defined event,
message communication, etc.) and event-specific infor-
mation.

TAU implements a robust, portable, and scalable per-
formance tracing facility. With tracing enabled, every
node/context/thread will generate a trace for instru-
mented events. TAU will write traces in its modern trace
format as well as in VTF3 (Seidl 2003) format. Support
for a counter value to be included in event records is fully
implemented. In addition, certain standard events are
known by TAU’s tracing system, such as multi-threading
operations and message communication. TAU writes per-
formance traces for post-mortem analysis, but also sup-
ports an interface for online trace access. This includes
mechanisms for online and hierarchical trace merging
(Brunst et al. 2003; Brunst, Nagel, and Malony 2003).

The following describes important aspects of TAU
tracing system in more detail.

5.4.1 Dynamic event registration For runtime trace
reading and analysis, it is important to understand what
takes place when TAU records performance events in
traces. The first time an event takes place in a process, it
registers its properties with the TAU measurement library.
Each event has an identifier associated with it. These
identifiers are generated dynamically at runtime as the
application executes, allowing TAU to track only those
events that actually occur. This is in contrast to static
schemes that must predefine all possible events that could
possibly occur. The main issue here is how the event
identifiers are determined. In a static scheme, event IDs
are drawn from a pre-determined global space of IDs,
which restricts the scope of performance measurement
scenarios. This is the case with most other performance
tracing systems. In our more general and dynamic scheme,
the event identifiers are generated on the fly, local to a
context. Depending on the order in which events first
occur, the IDs may be different for the same event (i.e.
events with the same name) across contexts. When event
streams are later merged, these local event identifiers are
mapped to a global identifier based on the event name.
Previously, TAU wrote the event description files to
disk when the application terminated. While this scheme
was sufficient for post-mortem merging and conversion
of event traces, it could not be directly applied for online
analysis of event traces. This was due to the absence of
event names that are needed for local to global event
identifier conversion. To overcome this limitation, we

have re-designed our trace merging tool, tau_merge, so it
executes concurrently with the executing application
generating the trace files. From each process’s trace file,
tau_merge reads event records and examines their glo-
bally synchronized timestamps to determine which event
is to be recorded next in the ordered output trace file.
When it encounters a local event identifier that it has not
seen before, it reads the event definition file associated
with the given process and updates its internal tables to
map that local event identifier to a global event identifier
using its event name as a key. The trace generation library
ensures that event tables are written to disk before writ-
ing trace records that contain one or more new events. A
new event is defined as an event whose properties are not
recorded in the event description file written previously
by the application. This scheme, of writing event defini-
tions prior to trace records, is also used by the tau_merge
tool while writing a merged stream of events and event
definitions. It ensures that the trace analysis tools down
the line that read the merged traces also read the global
event definitions and refresh their internal tables when
they encounter an event for which event definitions are
not known.

5.4.2 TAU trace input library To make the trace data
available for runtime analysis, we implemented the TAU
trace input library. It can parse binary merged or unmerged
traces (and their respective event definition files) and pro-
vides this information to an analysis tool using a trace
analysis API. This API employs a callback mechanism
where the tool registers callback handlers for different
events. The library parses the trace and event description
files and notifies the tool of events that it is interested in,
by invoking the appropriate handlers with event specific
parameters. We currently support callbacks for finding
the following:

* Clock period used in the trace

* Message send or receive events

* Mapping event identifiers to their state or event prop-
erties

* Defining a group identifier and associated group name

* Entering and leaving a state

Each of these callback routines have event specific
parameters. For instance, a send event handler has source
and destination process identifiers, the message length,
and its tag as its parameters. Besides reading a group of
records from the trace file, our API supports file manage-
ment routines for opening or closing a trace file and for
navigating the trace file by moving the location of the cur-
rent file pointer to an absolute or relative event position. It
supports both positive and negative event offsets. This
allows the analysis tool to read, for instance, the last



10000 events from the tail of the event stream. The trace
input library is used by VNG (Brunst et al. 2003) to ana-
lyze at runtime the merged binary event stream generated
by an application instrumented with TAU.

5.5 Measurement Overhead

The selection of what events to observe when measuring
the performance of a parallel application is an important
consideration, as it is the basis for how performance data
will be interpreted. The performance events of interest
depend mainly on what aspect of the execution the user
wants to see, so as to construct a meaningful performance
view from the measurements made. Typical events include
control flow events that identify points in the program
that are executed, or operational events that occur when
some operation or action has been performed. As we have
discussed, events may be atomic or paired to mark certain
begin and end points. Choice of performance events also
depends on the scope and resolution of the performance
measurement desired. However, the greater the degree of
performance instrumentation in a program, the higher the
likelihood that the performance measurements will alter
the way the program behaves, an outcome termed perform-
ance perturbation (Malony 1990). Most performance tools,
including TAU, address the problem of performance per-
turbation indirectly by reducing the overhead of perform-
ance measurement.

We define performance intrusion as the amount of per-
formance measurement overhead incurred during a per-
formance experiment. Thus, intrusion will be a product of
the numbers of events that occurred during execution and
the measurement overhead for processing each event. We
define performance accuracy as the degree to which our
performance measures correctly represent “actual” per-
formance. That is, accuracy is associated with error. If we
are trying to measure the performance of small events, the
error will be higher because of the measurement uncer-
tainty that exists due to the relative size of the overhead
versus the event. If we attempt to measure a lot of events,
the performance intrusion may be high because of the
accumulated measurement overhead, regardless of the
measurement accuracy for that event.

Performance experiments should be concerned with both
performance intrusion and performance accuracy, espe-
cially in regards to performance perturbation. TAU is a
highly-engineered performance system and delivers excel-
lent measurement efficiencies and low measurement over-
head. However, it is easy to construct naively an experiment
that will result in significant performance intrusion. Indeed,
TAU’s default instrumentation behavior is to enable all
events it can instrument. We are developing a set of tools
in TAU to help the user manage the degree of perform-
ance instrumentation as a way to better control performance

intrusion. The approach is to help the user identify perform-
ance events that have either poor measurement accuracy
(i.e. they are small) or a high frequency of occurrence.
Once these events are identified, the event selection
mechanism described above can be used to reduce the
instrumentation degree in the next experiment, thereby
reducing performance intrusion in the next program run.

5.6 Overhead Compensation

Unfortunately, by eliminating events from instrumenta-
tion, we lose the ability to see those events at all. If the
execution of small routines accounts for a large portion of
the execution time, that may be hard to discern without
measurement. On the other hand, accurate measure-
ment is confounded by high relative overheads. Opti-
mized coarse-grained instrumentation helps the process
of improving the accuracy of measurements using selec-
tive instrumentation. However, any instrumentation per-
turbs a program and modifies its behavior. The distortion
in gathered performance data could be significant for a
parallel program where the effects of perturbation are
compounded by parallel execution and accumulation of
overhead from remote processes. Such distortions are
typically observed in wait times where processes syn-
chronize their operation. Given an event stream stored in
log files, it is possible under certain assumptions to cor-
rect the performance perturbation in a limited manner by
compensating for the measurement overhead and correct-
ing event orderings based on known causality constraints,
such as imposed by inter-process communication (Mal-
ony 1990; Sarukkai and Malony 1993). Tracing the pro-
gram execution is not always feasible due to the high
volume of performance data generated and the amount of
trace processing needed.

We have developed techniques in TAU profiling to
compensate for measurement overhead at runtime. Using
an estimate of measurement overhead determined at
runtime, TAU will subtract this overhead during profile
calculation of inclusive performance. The way this is
accomplished is quite clever by tracking the number of
descendant events and adjusting the total inclusive time
at event exit. This inclusive value is then used to compute
the corrected exclusive time for the routine by subtract-
ing the corrected inclusive time from the exclusive
time of each routines parent. A TAU measurement library
configured with the ~-COMPENSATE configuration option
performs online removal of overhead during the meas-
urement stage.

5.7 Performance Mapping

The ability to associate low-level performance measure-
ments with higher-level execution semantics is important



in understanding parallel performance data with respect
to application structure and dynamics. Unfortunately, most
performance systems do not provide such support except
in their analysis tools, and then only in a limited manner.
The TAU measurement system implements a novel per-
formance observation feature call performance mapping
(Shende 2001). The idea is to provide a mechanism
whereby performance measurements, made by the occur-
rence of instrumented performance events, can be associ-
ated with semantic abstractions, possible at a different
level of performance observation. For instance, a meas-
urement of the time spent in a MPI communication rou-
tine might be associated with a particular phase of program
execution.

TAU has implemented performance mapping as an
integral part of its measurement system. In addition to
providing an API for application-level performance map-
ping, TAU uses mapping internally to implement callpath
profiling, calldepth profiling, and phase profiling. In the
case of phase profiling, TAU’s measurement system treats
a phase profile as a callpath profile of depth 2. Here, a
caller-callee relationship is used to represent phase inter-
actions. At a phase or event entry point, we traverse the
callstack until a phase is encountered. Since the top level
event is treated as the default application phase, each rou-
tine invocation occurs within some phase. To store the
performance data for a given event invocation, we need to
determine if the current (event, phase) tuple has executed
before. To do this, we construct a key array that includes
the identities of the current event and the parent phase.
This key is used in a lookup operation on a global map of
all (phase, timer) relationships. If the key is not found, a
new profiling object is created with the name that repre-
sents the parent phase and the currently executing event
or phase. In this object, we store performance data rele-
vant to the phase. If we find the key, we access the profil-
ing object and update its performance metrics. As with
callpath profiling, a reference to this object is stored to
avoid a second lookup at the event exit.

6 Analysis

TAU gives us the ability to track performance data in
widely diverse environments, and thus provides a wealth
of information to the user. The usefulness of this infor-
mation, however, is highly dependent on the ability of
analysis toolsets to manage and present the information.
As the size and complexity of the performance informa-
tion increases, the challenge of performance analysis and
visualization becomes more difficult. It has been a con-
tinuing effort to include as part of TAU a set of analysis
tools which can scale not only to the task of analyzing
TAU data, but also to a more diverse arena outside of the
TAU paradigm. This section discusses the developement

of these tools, and the resulting benefits to the user in
performing the often complex task of analyzing perform-
ance data.

Our approach in this section will be to show the use of
the TAU analysis tools on a single parallel application,
S3D (Subramanya and Reddy 2000). S3D is a high-fidelity
finite difference solver for compressible reacting flows
which includes detailed chemistry computations.

6.1 ParaProf

The TAU performance measurement system is capable of
producing parallel profiles for thousands of processes
consisting of hundreds of events. Scalable analysis tools
are required to handled this amount of detailed perform-
ance information. The ParaProf parallel profile analysis
tool represents more than six years of development. Shown
in Figure 6, ParaProf abstracts four key components in its
design: the Data Source System (DSS), the Data Man-
agement System (DMS), the Event System (ES), and the
Visualization System (VS). Each component is independ-
ent, and provides well-defined interfaces to other compo-
nents in the system. The result is high extensibility and
flexibility, enabling us to tackle the issues of re-use and
scalability.

Current performance profilers provide a range of dif-
fering data formats. As done in HPCView (Mellor-Crum-
mey, Fowler, and Marlin 2002) external translators have
typically been used to merge profile data sets. Since much
commonality exists in the profile entities being represented,
this is a valid approach, but it requires the adoption of a
common format. ParaProf’s DSS addresses this issue in a
different manner. DSS consists of two parts. One, DSS
can be configured with profile input modules to read pro-
files from different sources. The existing translators pro-
vides a good starting point to implement these modules.
An input module can also support interfaces for commu-
nication with profiles stored in files, managed by per-
formance databases, or streaming continuously across a
network. Two, once the profile is input, DSS converts the
profile data to a more efficient internal representation.

The DMS provides an abstract representation of per-
formance data to external components. Its supports many
advanced capabilities required in a modern performance
analysis system, such as derived metrics for relating per-
formance data, cross experiment analysis for analyzing
data from disparate experiments, and data reduction for
elimination of redundant data, thus allowing large data
sources to be tolerated efficiently. The importance of
sophisticated data management and its support for expos-
ing data relationships is an increasingly important area of
research in performance analysis. The DMS design pro-
vides a great degree of flexibility for developing new
techniques that can be incorporated to extend its function.
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Fig. 6 ParaProf Architecture.

The VS components is responsible for graphical profile
displays. It is based on the Java2D platform, enabling us
to take advantage of a very portable development envi-
ronment that continues to increase in performance and
reliability. Analysis of performance data requires repre-
sentations from a very fine granularity, perhaps of a sin-
gle event on a single node, to displays of the performance
characteristics of the entire application. ParaProf’s cur-
rent set of displays range from purely textual based to fully
graphical. Significant effort has been put into making the
displays highly interactive and fast to draw. In addition, it
is relatively easy to extend the display types to better show
data relations.

Lastly, in the ES, we have provided a well-defined means
by which these components can communicate various
state changes, and requests to other components in ParaP-
rof. Many of the display types are hyper-link enabled,
allowing selections to be reflected across currently open
windows. Support for runtime performance analysis and
application steering, coupled with maintaining connectiv-
ity with remote data repositories has required us to focus
more attention on the ES, and to treat it as a wholly sepa-
rate component system.

To get a sense of the type of analysis displays ParaProf
supports, Figure 7 shows the S3D flat profile (stacked view)
on sixteen processes. Different events are color coded.

Clicking on one event, INT_RTE, ParaProf will display
that event’s performance in a separate window, as shown
in Figure 8 for INT_RTE’s exclusive time. When call-
path profile data is available, ParaProf can reconstruct the
event calling graph and display performance statistics in a
callgraph display, as seen in Figure 9. Here the size of the
node is determined by its inclusive time and the color is
mapped to exclusive time, red being the most.

6.2 Performance Database Framework

Empirical performance evaluation of parallel and distrib-
uted systems or applications often generates significant
amounts of performance data and analysis results from
multiple experiments and trials as performance is investi-
gated and problems diagnosed. However, the management
of performance data from multiple experiments can be
logistically difficult, impeding the effective analysis and
understanding of performance outcomes. The Performance
Data Management Framework (PerfDMF) (Huck et al.
2005) provides a common foundation for parsing, storing,
querying, and analyzing performance data from multiple
experiments, application versions, profiling tools and/or
platforms. The PerfDMF design architecture is presented
below. We describe the main components and their inter-
operation.
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Fig. 9 ParaProf view of S3D callgraph.

PerfDMF consists of four main components: profile
input/output, profile database, database query and analy-
sis API, and profile analysis toolkit. Figure 10 shows a
representation of these four components, and their rela-
tionships. PerfDMF is designed to parse parallel profile
data from multiple sources. This is done through the use
of embedded translators, built with PerfDMF’s data utili-
ties and targeting a common, extensible parallel profile
representation. Currently supported profile formats include
gprof (Graham, Kessler, and McKusick 1982) TAU profiles
(University of Oregon a), dynaprof (Mucci), mpiP (Vetter
and Chambreau), HPMtoolkit (IBM) (DeRose 2001), and
Perfsuite (psrun) (Ahn et al.). (Support for SvPablo (DeRose
and Reed 1998) is being added.) The profile data is parsed
into a common data format. The format specifies profile

data by node, context, thread, metric and event. Profile
data is organized such that for each combination of these
items, an aggregate measurement is recorded. The simi-
larities in the profile performance data gathered by differ-
ent tools allowed a common organization to be used.
Export of profile data is also supported in a common XML
representation. In the future, we may also offer exporters
to a subset of the formats above.

The profile database component is the center of Per-
fDMF’s persistent data storage. It builds on robust SQL
relational database engines, some of which are freely dis-
tributed. The currently supported Relational Database Man-
agement Systems (DBMS) are PostgreSQL (PostgreSQL),
MySQL (MySQL), Oracle (Oracle Corporation) and DB2
(IBM). The database component must be able to handle
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both large-scale performance profiles, consisting of many
events and threads of execution, as well as many profiles
from multiple performance experiments. Our tests with
large profile data (101 events on 16K processors) showed
the framework adequately handled the mass of data.

To facilitate performance analysis development, the
PerfDMF architecture includes a well-documented data
management API to abstract query and analysis operations
into a more programmatic, non-SQL, form. This layer is
intended to complement the SQL interface, which is directly
accessible by analysis tools, with dynamic data manage-
ment and higher-level query functions. It is anticipated that
many analysis programs will utilize this API for imple-
mentation. Access to the SQL interface is provided using
the Java Database Connectivity (JDBC) API. Because all
supported databases are accessed through a common inter-
face, the tool programmer does not need to worry about
vendor-specific SQL syntax. We have developed several
tools that make use of the API, including ParaProf. Figure 11
shows PerfDMF being used by ParaProf to load the S3D
profile dataset.

The last component, the profile analysis toolkit, is an
extensible suite of common base analysis routines that
can be reused across performance analysis programs. The
intention also is to provide a common programming envi-
ronment in which performance analysis developers can

contribute toolkit modules and packages. Analysis rou-
tines are a useful abstraction for developing profile anal-
ysis applications.

6.3 Tracing

We made an early decision in the TAU system to leverage
existing trace analysis and visualization tools. However,
TAU implements it own trace measurement facility and
produces trace files in TAU’s own format. As a result,
trace converters are supplied with the system to translate
TAU traces to formats used by the tools. The primary tool
we support in TAU is Vampir (Intel Corporation; currently
marketed as the Intel(R) Trace Analyzer 4.0). TAU provides
a tau2vtf program to convert TAU traces to VTF3 for-
mat. In addition, TAU offers tau2epilog, tau2slog?2,
and tauonvert programs to convert to EPILOG (Mohr
and Wolf 2003), SLOG2 (Wu et al. 2000), and Paraver
(European Center for Parallelism of Barcelona (CEPBA))
formats, respectively. For convenience, the TAU tracing
systems also allows traces files to be output directly in
VTF3 and EPILOG formats.

Figure 12 shows three Vampir displays of the S3D exe-
cution. The timeline view identifies a performance com-
munications bottleneck as the result of the imbalanced
execution of the INT_RTE routine. The communications
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matrix view highlights the pattern and load distribution
of process communication in the S3D benchmark. The
expanded callgraph display points out the interesting var-
iations in the performance of the DTM iterations. TAU
also can utilize the latest generation of the Vampir tool,
VNG, and we have demonstrated the ability to analyze
and visualize traces with VNG online during execution.
By applying the EPILOG converter, TAU is able to
gain use of the Expert (Wolf et al. 2004) performance
analysis tool. Expert is trace-based in its analysis and

looks for performance problems that arise in the exe-
cution. The Expert tool provides a GUI showing prob-
lem classes, code locations where a particular problem
occurs, and computing resources (e.g. threads) associ-
ated with the problem and location. In this manner,
Expert consolidates the performance information in a
trace into a more statistics oriented display. Expert uses
the CUBE visualizer (Song et al. 2004) for presenting
the results. Figure 13 shows a view from Expert using
CUBE for S3D.
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TAU also provides a tool, vtf2profile, that will
read a VTF3 trace and generated a parallel profile in
TAU format. The tool can take parameters identifying
where to start and stop the profile generation in time,
allowing parallel profiles to be generated for specific
regions of the traces. The profile output can then be read
by ParaProf.

7 Conclusion

Complex parallel systems and software pose challenging
performance evaluation problems that require robust
methodologies and tools. However, in rapidly evolving
parallel computing environments, performance technology
can ill-afford to stand still. Performance technology devel-
opment always operates under a set of constraints as well
as under a set of expectations. While performance evalu-
ation of a system is directly affected by what constraints
the system imposes on performance instrumentation and
measurement capabilities, the desire for performance prob-
lem solving tools that are common and portable, now and
into the future, suggests that performance tools hardened
and customized for a particular system platform will be
short-lived, with limited utility. Similarly, performance
tools designed for constrained parallel execution models
will likely have little use in more general parallel and dis-
tributed computing paradigms. Unless performance tech-
nology evolves with system technology, a chasm will
remain between the users expectations and the capabili-
ties that performance tools provide.

The TAU performance system addresses performance
technology problems at three levels: instrumentation, meas-
urement, and analysis. The TAU framework supports the
configuration and integration of these layers to target spe-
cific performance problem solving needs. However, effec-
tive exploration of performance will necessarily require
prudent selection from the range of alternative methods
TAU provides to assemble meaningful performance exper-
iments that sheds light on the relevant performance prop-
erties. To this end, the TAU performance system offers
support to the performance analysis in various ways, includ-
ing powerful selective and multi-level instrumentation,
profile and trace measurement modalities, interactive per-
formance analysis analysis, and performance data man-
agement.

Portability, robustness, and extensibility are the hall-
marks of the TAU parallel performance system. TAU is
available on all HPC platforms and supports all major
parallel programming methodologies. It is in use in scien-
tific research groups, HPC centers, and industrial labora-
tories around the world. The entire TAU software is
available in the public domain and is actively being main-
tained and updated by the Performance Research Lab at
the University of Oregon.
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