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Abstract

HiPerSAT, a C++ library and tools, processes EEG
data sets with ICA (Independent Component Analysis)
methods. HiPerSAT uses BLAS, LAPACK, MPI
and OpenMP to achieve a high performance solution
that exploits parallel hardware. ICA is a class of meth-
ods for analyzing a large set of data samples and ex-
tracting independent components that explain the ob-
served data. ICA is used in EEG research for data
cleaning and separation of spatiotemporal patterns that
may reflect different underlying neural processes. We
present two ICA implementations (FastICA and Info-
max) that exploit parallelism to provide an EEG com-
ponent decomposition solution of higher performance
and data capacity than current MATLAB-based imple-
mentations. Experimental results and the methodology
used to obtain them are presented. Integrating HiPer-
SAT with EEGLAB [4] is described, as well as future
plans for this research.

1. Introduction

EEG (Electroencephalography)1 measures electrical
potentials on the scalp surface that occur as a result of
dynamic brain function. The procedure involves plac-
ing multiple sensors on the scalp. These sensors have
the ability to measure potential changes with microvolt
sensitivity. Analog-to-digital conversion hardware and
software discretizes the time-varying potential changes
on the scalp into a digital form.

It is well-established [7] that electrochemical events
within the brain can manifest as surface potential

1Most of the techniques described here for EEG apply equally
well to the sibling technique of MEG (Magnetoencephalography),
which measures magnetic rather than electrical fields.

changes on the scalp. There are both clinical and re-
search procedures which use this EEG data to infer
physiological phenomenon, trauma and mental states.
For example, EEG is used in the diagnosis and treat-
ment of epilepsy, as well as to understand the cognitive
basis of language.

Dense-array EEG ([18]) is a technique of using a
fine-grained spherical mesh of sensors on the scalp, face
and neck in order to provide greater resolution of brain
dynamics. Dense-array EEG uses anywhere from 64
to 256 sensors, each of which is sampled many times
per second (250hz is typical) producing a time-based
stream of data that describes the voltage at each sen-
sor. 15 minutes of data from a 128-channel sensor mesh
will be more than 100Mb. Advances in EEG will in-
crease both sensor density and sampling rate, resulting
in even larger data sizes.

One challenge of using scalp-based data is that each
sensor is actually measuring surface potential changes
caused by a superposition of underlying signals from
various sources within the brain, as well as extra-
brain sources. These signals are transmitted to the
scalp via volume conduction through various tissue and
bone structures. Each sensor is actually receiving a
mixture of different signals, and a given signal (e.g.,
from a firing neuron bundle) may be received by sev-
eral or all of the sensors, and at different intensities.
The signal-to-noise ratio is potentially low; sources
of noise include electrical equipment and physiological
phenomenon such as eyeblinks, and heartbeats.

The signal mixtures at each sensor can be sepa-
rated into several independent components. Some of
these will correspond to artifacts such as eyeblinks,
heartbeats and in some cases, the experimental ap-
paratus. Independent Component Analysis (ICA) is
a mathematical technique for extracting components,
where the extracted components describe temporally
independent activities from spatially fixed overlapping
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sources. Sources corresponding to artifacts can then be
removed from the signal mixtures to facilitate further
analysis of the EEG data.

By combining the high-resolution data provided
by dense-array EEG with sophisticated data analy-
sis techniques such as ICA, researchers are develop-
ing ways to ‘see’ into the neurophysiological and cog-
nitive processes within the brain. Research in the
EEG/MEG community is constrained by sequential
execution of algorithms within computational frame-
works (e.g., MATLAB) with memory limitations and
other overheads.

Our work overcomes these limitations by provid-
ing HiPerSAT (High Performance Signal Analysis
Toolkit). HiPerSAT is a C++ library that facili-
tates the separation of EEG data via both the FastICA
and Infomax techniques. In addition, we have a tool,
hipersat, which allows easy access to this function-
ality from a command line. Finally, we have inte-
grated HiPerSAT into the EEGLAB [5] framework, a
MATLAB-based application that is used by neurosci-
entists to analyze and visualize EEG data.

HiPerSAT’s implementation of Infomax and
FastICA provides a significant advantage over the
existing MATLAB-based algorithms in two ways:
execution time and data size. The reduction in
wall-clock time provided by HiPerSAT was one of
the primary motivators for this research. However,
an equally significant feature of HiPerSAT is its
ability to efficiently handle much larger data sets than
MATLAB.

2. Background and Mathematical Foun-
dations

We can formally describe the data output of an EEG
device with n sensors as a time-ordered series of vec-
tors xt, each of which has length n, where xt[j] is the
voltage at sensor j at time t. This is best viewed as a
rectangular data matrix, where each row (also known
as a channel) represents a particular sensor’s voltage
over time, and each column corresponds to a particular
time point. This data matrix is the primary input for
ICA methods.

ICA assumes that the potentials measured in x are
mixtures of one or more underlying fundamental signal
components. The goal of ICA as applied to EEG data
is to explain the observed matrix x of signal mixtures
in terms of two other quantities:

• s - A matrix of time-ordered values corresponding
to posited independent source signal components

• A - A mixing matrix that accounts for how the
independent signal components in s are mixed into
the observed scalp signal mixtures x.

Formally, we wish to solve the Equation 1 for both
A and s, given that we have a measured set of mixtures
x:

x = As (1)

In order to derive A, it is sufficient to derive W, also
known as the unmixing matrix, such that:

A = W−1 (2)
s = Wx (3)

Most ICA algorithms are based upon finding the un-
mixing matrix W, as it is this matrix that allows the
independent components s to be extracted from the set
of signal mixtures x.

ICA makes a few assumptions that restrict the set
of solutions to a small set of possible solutions, ideally
with a single most-likely solution. ICA assumes that
the input data are a mixture of temporally independent
components whose sources are spatially fixed over time.
This means that knowledge of st[i] for a given sample
st provides no information about st[j].

Because a signal mixture is actually a sum of in-
dependent components, we would expect that the pdf
(probability distribution function) of a mixture is more
gaussian than that of a components that contribute to
it (Central Limit Theorem of Statistics).

ICA uses these assumptions as constraints to deter-
mine A and s, given a sufficiently large set of samples
x. Most ICA methods require that the number of sam-
ples exceeds several times the square of the number
of channels. Detailed information on the mathematics
underlying ICA is available in Hyvärinen [1] and Stone
[16].

An illustration of independent component extrac-
tion is shown in Figure 1. The left figure shows a sig-
nal mixture of four independent components (in this
case, distinct synthetic sinusoidal signals). The right
figure shows the resulting independent components as
extracted by FastICA.

Figure 1. EEG Mixture and Components



2.1. Data Whitening

Both of the ICA algorithms that we have chosen to
implement make the assumption that the input data
x has been whitened. Whitening or sphering data is a
process whereby the original mixture data x is multi-
plied by a matrix Sph (the sphering matrix) to produce
a set of whitened data that is uncorrelated with 0 mean
and unity variance.

In Equation 2 above, the unmixing matrix W is ap-
plied to the mixture data x to generate the independent
components. Because the ICA algorithms assume that
x has been whitened, it is necessary to preprocess the
data x by applying the sphering matrix Sph to x. This
produces a set of whitened data x′ = Sphx which is
amenable to the ICA algorithms (Equation 4).

s = Wx (4)
= WS−1

phSphx (5)

= Wgtx′ (6)

where Wgt is known as the weight matrix and x′ is the
whitened data. Because Wgt is an orthogonal matrix,
it acts as an additional constraint on the constrained
optimization problem that is the heart of ICA, thus
speeding convergence to a solution.

2.2. FastICA

One form of ICA is encapsulated in the FastICA
method, first described in Hyvärinen [12] and imple-
mented in MATLAB as the function fastica() [11].
FastICA works by searching for a weight matrix that
maximizes the non-gaussianity of the resulting compo-
nents. Any mixture of non-gaussian random variables
will be more gaussian than the variables themselves
(Central Limit Theorem of Statistics). Therefore, it is
possible to use non-gaussianity as a measure of statis-
tical independence. FastICA uses this fact to build
a weight matrix column-by-column, where each col-
umn maximizes the non-gaussianity of the correspond-
ing component.

Non-gaussianity and therefore, independence, is
maximized indirectly by computing and maximizing a
contrast function. Different contrast functions can be
used, although the use of kurtosis and negentropy have
been shown to provide a good trade-off of speed and
reliable convergence.

2.3. Infomax

One of the earliest ICA algorithms was described by
Bell and Sejnowski [3] as an information-maximization

or infomax algorithm. Infomax derives a weight ma-
trix Wgt that maximizes the statistical independence
of the components by using an algorithm which mini-
mizes the redundancy amongst outputs of a neural net.
This is done by estimating the data’s higher-order mo-
ments and ensuring that the resulting components are
maximally independent and non-gaussian.

3. Related Work

Tucker [18] at the University of Oregon has pi-
oneered and advocated the use of dense-array EEG
measurements. Makeig at SCCN (Swartz Center for
Computational Neuroscience) [7] has led the field in
the use of ICA for discovering underlying components
and for removing artifacts from such data. Makeig’s
group has developed the EEGLAB toolkit [5] that of-
fers EEG analysis and visualization, including data
analysis based on various ICA algorithms. In particu-
lar, the runica() function within EEGLAB is an im-
proved implementation of the infomax algorithm as de-
scribed by Bell and Sejnowski [3]. It is this MATLAB
version of the algorithm that was used as a standard
of correctness when implementing HiPerSAT’s parallel
C++ version.

ICA and the techniques known as factor analy-
sis and principal component analysis (PCA) are both
forms of blind source separation, which is the prob-
lem of determining the component sources in a set
of mixtures, without having prior knowledge of how
these sources are mixed. These algorithms solve essen-
tially the same problem, but make different assump-
tions about the underlying data. ICA is different from
PCA in that it minimizes the correlation of higher-
order statistical moments. The blind source separation
problem is also known as the Cocktail Party Problem
[10] because of the way that a human brain can pick out
the distinct conversations occurring simultaneously at
a hypothetical cocktail party with multiple concurrent
conversations.

4. Architecture of HiPerSAT

HiPerSAT is a C++ library framework that imple-
ments a variety of EEG analysis methods, including
FastICA and Infomax. The design is based on a com-
mon set of utility code for I/O, data structures, and
mathematical and statistical computations. In addi-
tion, it supports flexible parallelism models that can
be reused depending on the analysis algorithm require-
ments.

Much of the matrix, vector, and linear algebra func-
tionality needed by HiPerSAT is provided by two well-



known linear algebra libraries, BLAS (Basic Linear Al-
gebra Subprograms) [6] and LAPACK (Linear Alge-
bra PACKage) [2]. Modern platforms provide high-
performance, C-accessible, threadsafe implementations
of both LAPACK and BLAS.

HiPerSAT solves large problems using FastICA or
Infomax running in sequential mode without requir-
ing any parallel capabilities. However, the implemen-
tations achieve greater performance (see Section 10
below) when they are run in a parallel-capable en-
vironment. The current HiPerSAT implemention of
FastICA relies upon MPI (running multiple processes)
for its parallelism, whereas HiPerSAT’s Infomax imple-
mentation uses OpenMP (single-process, shared mem-
ory, multiple processors).

There are several implementations of MPI available,
including Intel’s MPI, and the open-source MPICH [8]
and LAM-MPI [9] [15]. The HiPerSAT performance
results for FastICA we report here are based upon
MPICH. OpenMP [14] is compiler-dependent and we
make use of different OpenMP-compatible compilers
in our work, including IBM’s xlC and Intel’s icc.

5. Overview of HiPerSAT Usage

The tasks of HiPerSAT are:

1. Obtain input data, in the form of a matrix x.
2. Whiten data by computing sphering matrix Sph

such that Sphx = x′, where the rows in x′ are
uncorrelated with each other.

3. Search for a weight matrix W such that will un-
mix the whitened signal mixtures x′ into a set of
independent source signals s.

4. Output the independent components and the com-
puted weight, sphering, mixing matrices.

The HiPerSAT library is a set of C++ classes used to
perform these steps. The hipersat program uses these
classes in a utility accessible via a command line. Pa-
rameters to this command include the input and out-
put files as well as various parameters such as algorithm
(FastICA or Infomax), learning rate and convergence
tolerance.

The hipersat program will initiate the sequential
or parallel execution and then invoke the Whitening,
FastICA, and Infomax methods in the correct order,
based upon the command parameters.

6. Integration into EEGLab

EEGLAB is a widely-used neuroscience applica-
tion providing visualization, filtering, and analysis of

EEG data in a powerful, GUI-based environment [5].
EEGLAB can perform several ICA methods upon EEG
data. By default, EEGLAB will execute a MATLAB-
based version of Infomax called runica().

We have extended EEGLAB’s ICA calling interface
to enable the convenient execution of HiPerSAT’s Info-
max and FastICA versions. If the user selects either
nic-fastica or nic-infomax as the type of algorithm,
then the EEG data will be exported to a disk file and
the hipersat tool will be invoked. After hipersat
completes, the resulting independent components and
other output data are imported back into EEGLAB for
subsequent display and analysis.

7. FastICA Execution

HiPerSAT implements two different algorithms,
FastICA and Infomax, each using their own paral-
lelism mechanism, MPI and OpenMP, respectively.
The phases of execution are:

1. start processes on head and remote nodes
2. load parameters and replicate to workers
3. load data and distribute amongst workers
4. optionally whiten the data
5. compute weights using FastICA algorithm
6. output components, weights, sphering matrix

7.1. Process Creation

HiPerSAT’s FastICA/MPI implementation assumes
that there are one or more separate processes that
run and communicate via MPI. The MPI execution
model that we use in FastICA assumes that there is
one machine or node (the head node) where the user
will initiate execution of a FastICA run of HiPerSAT.
The user initiates execution with the MPI-provided
mpiexec command, which ensures that the hipersat
command will be executed on the head node and on a
set of specified additional worker nodes, separate ma-
chines where HiPerSAT is installed. After mpiexec has
created processes on the head node and any worker
nodes, execution of the hipersat main program will
begin in each process.

7.2. Parameter Input and Distribution

Because only the head node is able to read the input
parameter file (no shared filesystem is assumed), the
relevant parameters must be distributed to all of the
worker MPI processes so that the head node and work-
ers have a common set of operating parameters. This
is performed before the actual data file(s) are loaded



and processed. The head node uses the MPI function
MPI_BCast() to transmit a copy of the parameter file
to the workers. After this point, the head node and
workers have a common set of operating parameters.

7.3. Data Input and Distribution

As above, the input EEG data file must be dis-
tributed to the workers from the head node. In the
FastICA algorithm, if we have m samples in the input
data set, and there are p total MPI processes, then each
worker will get m/p samples from the original data file.
If the number of samples is not evenly divisible by the
number of MPI processes p, then the remainder of the
samples will be given to a subset of the processes (i.e.,
some processes will have m/p+1 samples). The subset
of samples allocated to a worker is called a partition.

This phase of FastICA processing ensures that the
entire input file is loaded into an effectively distributed
memory, which in this case spans multiple processes.
No single process has the entire EEG data in its mem-
ory; instead, the set is partitioned amongst the head
node and workers. Many of the subsequent stages
in the algorithm are performed in parallel, with each
hipersat process executing independently with peri-
odic data exchange between the processes.

7.4. Data Whitening

The whitening of the input data is parallelized in
the HiPerSAT FastICA algorithm. Here, each worker
computes the covariance of its partition in parallel,
and then combines the resulting matrix with a call to
MPI_Reduce, which sums the various per-worker covari-
ance matrices. The time for data whitening is neglible
compared to the time required for either FastICA or
Infomax; we do not report on the whitening time in
this document.

7.5. FastICA

Each worker process will contain a whitened ver-
sion of its partition. At this point, the FastICA al-
gorithm properly begins with workers executing the
method searchForWeights(). This method is respon-
sible for computing a weight matrix W that prop-
erly separates the whitened mixtures into independent
components. The method searchForWeights() is de-
scribed in detail in a HiPerSAT technical report [13];
due to space considerations, we will summarize the per-
formance complexity of the algorithm.

This method will compute Wgt one row at a time,
with each row w corresponding to the weight vector

that extracts one particular component from x′. Let n
be the number of input signal mixtures and the number
of desired independent components; Wgt is therefore
a n × n matrix and w is a vector of length n. The
function computeWeight() performs this computation
of a single component, and will be called n times.

computeWeight() performs a number of iterative
calls to improveWeight(), which takes an existing
weight vector and the entire data matrix and computes
a better weight vector. This iterative process (based
upon Newton’s method) of weight vector improvement
continues until a user-specifed number of iterations has
passed, or a fixed-point has been met within some user-
specified tolerance.

This means that the bulk of the performance cost
is in the improveWeight() method. The mathemati-
cal basis for this method is derived in Hyvärinen [12].
Essentially, there is a fixed point convergence relation
(Equations 7,8) that uses a gradient method to maxi-
mize the non-gaussianity of the product w′x, which is
the projected independent component extracted by w′.

w′ = E{xg(wTx)} − E{g′(wTx)}w (7)
w′ = w′/‖w′‖ (8)

Because the expectation of these random variables
is unknown a priori, the algorithm relies upon sam-
pling the available data to get an estimate of the above
expectations. This will require traversal of the data
samples, and is one of the reasons why the algorithm
takes longer as more samples are added. Because of the
properties of whitened data and non-gaussian compo-
nents, the generalized Equation 7 can be simplified into
the actual formula that is used to compute new weights
within the FastICA algorithm. This eliminates several
matrix-matrix multiplies and matrix inversions, reduc-
ing some of these to rank-one updates (a much simpler
matrix operation).

The function g() is known as the contrast function
and it and its derivative g′() are used to evaluate the
gaussianity of a signal component as generated by
w′x. HiPerSAT supports three different contrast func-
tions: cubic, tanh, and gaussian. The cubic contrast
function is used to measure the kurtosis of the sepa-
rated components, the tanh contrast function measures
the negentropy of the components, and the gaussian
function measures the gaussianity of the components.

The HiPerSAT implementation contains a version of
improveWeight() for each of these contrast functions.
Each version of improveWeight() shares the same ba-
sic loop structure, with subtle differences in how the
contrast function and its derivative are used for each
element in the loop.



7.6. Result Gathering and Output

After FastICA successfully converges on a weight
matrix that satisfies the convergence criteria speci-
fied by the problem, HiPerSAT will export to disk
the weight, sphering, mixing and unmixing matrices.
HiPerSAT can optionally export the separated com-
ponents as an EEG file. Because each worker has a
separate partition of the input data, exporting the sep-
arated components is performed by the head node by
gathering each worker’s partition of separated compo-
nent data and writing it to disk.

8. Infomax Execution

The Infomax implementation within HiPerSAT re-
lies upon OpenMP for its parallelism. One of the po-
tential advantages of an OpenMP approach is the abil-
ity for each separate thread to share the input EEG
data, as well as to share data structures (e.g., the cur-
rent weight matrix).

The phases of Infomax execution are:

1. start process

2. load parameters

3. load data

4. optionally whiten the data

5. create one or more worker threads

6. compute weights using Infomax algorithm

7. output components, weights, sphering matrix

8.1. Parameter and Data Input

The parallel workers of HiPerSAT/Infomax are im-
plemented as threads within a single process, with each
thread having access to the same shared data in mem-
ory, so there is no need to partition and distribute the
parameters and data amongst the workers. Similarly,
the exporting of the components does not require that
the partitions are gathered prior to exporting. This
makes reading in the parameters and input data a triv-
ial operation.

8.2. Data Whitening

Data whitening in Infomax is identical to the stan-
dalone (non-parallel) version of data whitening used in
FastICA. The whitening process is not yet parallelized
in Infomax, but may be in future versions.

8.3. Infomax

In the Infomax algorithm, a single process contains
the entire loaded and whitened EEG input data set. At
this point, the Infomax algorithm properly begins with
searchForWeights(), which is detailed in the HiPer-
SAT technical report [13].

After initializing the per-process data structures,
searchForWeights() splits into several concurrent
threads. These threads will iteratively call the method
TrainNN(), which will adjust a provisional weight ma-
trix to produce a better one. This iteration will con-
tinue until the stabilizes upon a solution within a given
tolerance. It is this TrainNN() function which is mea-
sured when the Infomax iteration cost is reported in
the graphs and tables below.

The TrainNN() function works by partitioning the
input data into disjoint rectangular blocks consisting of
the n channels for a small (approximately 35) number
of samples. The order of the blocks is randomized to
ensure that any temporal bias in the data is avoided.

As a block is processed, each OpenMP thread will
operate on a fraction of the columns within a block.
For example, if the block has 36 columns and there are
4 threads, then thread 1 gets columns 1, 5, 9, . . ., thread
2 might get columns 2, 6, 10, . . . and so on. When pro-
cessing a block x, Infomax computes a new matrix u
which is the same size as x. This u matrix contains
the projected components Wx. The matrix multipli-
cations within this parallel for loop will occur in par-
allel, affording a p-way speedup for this section of code
if there are p processors available for OpenMP threads.

An activation function is applied to the block u, re-
sulting in a new matrix such that y ⇐ activation(
u ). This activation function is used to to determine
how the current weight matrix candidate w should be
modified to make the projected components more in-
dependent. After all blocks have been processed, the
weight matrix is updated and TrainNN() repeats the
process until a suitable convergence is achieved.

8.4. Result Output

Writing out the separated components is currently
implemented in the HiPerSAT version of Infomax is
straightforward, since there is a single process contain-
ing the data matrix and the discovered weight matrix.
The current implementation creates a temporary ma-
trix to contain the sorted independent components. An
improvement planned for HiPerSAT Infomax is to com-
pute the separated components on the fly as they are
output. This would reduce the memory requirements



during the output phase by 50% and would likely im-
prove performance during this phase.

9. Experimental Methodology

We verified the validity and efficiency implementa-
tions of these algorithms with a series of tests. The va-
lidity tests ensured that we gave the correct answers, as
defined by the EEGLAB implementations of these algo-
rithms. We have validated that the results are virtually
identical for a variety of both real and synthetic data
sets. We have compared the results of the EEGLAB
versions of Infomax and FastICA with the correspond-
ing HiPerSAT results and they match.

To evaluate efficiency, we performed timed tests on
a variety of hardware/software configurations, with a
variety of data set sizes. The tested platforms are listed
in Table 1.

Table 1. Tested HiPerSAT Platforms
Name Processor(s) Parallelism

Mac G4 PowerPC G4 sequential only

Neuronic Xeon (2xCPU) 16xMPI/4xOpenMP

P655 (IBM) 8x1.5Ghz POWER4 8xOpenMP/8xMPI

P690 (IBM) 16x1.3Ghz POWER4 16xOpenMP/16xMPI

The primary data sets used were from a psychology
study in which subjects were given various stimuli and
asked to perform a reading task. The role of ICA in
this study is to isolate and remove artifacts such as
eyeblinks.

The basic metric of the input data size is its dimen-
sion, in terms of number of channels and number of
samples. The expectation is that the problem com-
plexity is proportional to the square of the number of
channels and linearly proportional to the number of
samples. The number of channels used in these ex-
periments varied from 64 to 256, whereas the number
of samples ranged from 100,000 to 10,000,000. As a
point of reference, a complete ICA decomposition us-
ing the standard MATLAB implementations ranges in
wall clock time from 1 hour to several days depending
upon the dimension of the data set and the execution
platform.

The two ICA algorithms (FastICA and Infomax)
are both based upon an iterative method that achieves
convergence. The number of iterations varies depend-
ing upon the content of the data, not its dimension.
Therefore, different data sets of the same size could
take vastly different amounts of time to converge to a
solution. This makes the use of overall wall clock time
a less useful metric for comparing performance between
different algorithms and data sets.

In order to address the above deficiency, we use
a per-iteration time cost metric that is invariant be-
tween different data of a given size. This per-iteration
cost, Citer, is used in the experimental results described
here. This permits more experiments to be run, be-
cause the program is not run until convergence, allow-
ing us to explore a broader evaluation space.

For FastICA, the iteration time measured corre-
sponds to improveWeight() described in Section 7.5.
The iteration time measured for Infomax corresponds
to the time spent in trainNN() described in Sec-
tion 8.3. In both cases, Citer is computed as Citer =
totalT imeiter/numberOfIters, where totalT imeiter is
the measured time spent in the iterated functions.

In both FastICA and Infomax, we used the paral-
lel performance analysis software TAU [17]. The TAU
software allowed us to instrument the HiPerSAT source
code to facilitate the gathering of fine-grained perfor-
mance information for both MPI and OpenMP.

10. Experimental Results

Testing HiPerSAT proved to be challenging because
of the potential for an overwhelming set of combina-
tions of data file size, hardware (see Table 1), algo-
rithm (Infomax vs. FastICA), parallel processing type
(OpenMP vs. MPI vs. standalone), and processing
parameters (learning rate, convergence threshold, etc).
For the purposes of this paper, we will focus on those
results most salient to the issue of performance gains
possible via parallelism. We have restricted our anal-
ysis here to a standard number of samples (111,000
samples) in order to eliminate variability due to the
number of samples.

Because the FastICA/MPI and Infomax/OpenMP
algorithms use different parallelization approaches, we
treat these sets of measurements as incommensurate
and describe each separately. In the graphs that de-
scribe Speedup, the speedup associated with n proces-
sors is the ratio of the cost-per-iteration for n pro-
cessors to the cost-per-iteration for 1 processor. Ta-
ble 2 summarizes the results displayed in these graphs.
The speedup shown is maximum speedup obtained on
69 × 111,000 data.

The performance graphs demonstrate the speedup
of the per-iteration cost for a given dataset when dif-
ferent numbers of processors are applied to the prob-
lem. Each curve corresponds to a different number
of channels (the number of samples is fixed at 111,000
samples). The speedup for an n-processor computation
is computed by dividing the per-iteration cost by the
per-iteration cost for a single processor. The diagonal
line represents linear speedup.



Table 2. Sequential Cost and Speedup
Hardware/Algorithm Citer (sec) Speedup

G4 MATLAB FastICA 1.21 n/a

G4 FastICA 0.3089 n/a

Neuronic MATLAB FastICA 0.1974 n/a

Neuronic FastICA 0.1319 14.6296

P655 FastICA 0.5449 7.9768

P690 FastICA 0.6286 15.9566

G4 MATLAB Infomax 11.21 n/a

G4 Infomax 4.36 n/a

Neuronic MATLAB Infomax 5.22 n/a

Neuronic Infomax 1.0892 1

P655 Infomax 3.4366 3.26

P690 Infomax 3.9838 3.2519

11. Expected vs. Observed Results

The FastICA algorithm equally partitions the sam-
ples among the available processors. An examination
of the FastICA algorithm reveals only two significant
points where synchronization and data exchange will
occur between the various worker and head processes.
Once for every desired component, where the initial
weight vector for that component is exchanged; and
once for every iteration of weight improvement, where
the workers sum their weight estimates. All of the other
work is executed in parallel by the workers, operating
upon their own partition of the data. The ratio of com-
putation to communication time is high for FastICA,
resulting in a high level of parallel performance. The
FastICA performance graphs show near-linear speedup
for the different platforms.

In contrast, the performance of the parallel Info-
max algorithm is more constrained. Our analysis of the
parallel Infomax algorithm shows several points where
parallelism is occurring, during neural network training
and the first part of updating the weights. We should
see performance scaling for these sections. Unfortu-
nately, the performance scaling curves indicate much
poorer performance than FastICA. One reason is that
the amount of parallel work available in OpenMP par-
allel regions is not large in relation to the sequential
computation.

One possible reason is that the algorithm suffers
caching effects due to the composition of blocks from
random selection of samples. These blocks are then
separately processed by OpenMP threads, but refer-
ence memory locations across the dataset. We see in
the performance curves that 64-channel speedup im-
proves better generally than 128- and 256-channel ex-
periments, especially on the IBM p655. This is unex-
pected, but after analysis is explained by the fact that
more of the data set can be contained in the Level 3
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Figure 2. FastICA: Iteration cost vs # of procs

cache memory. For 64 channels and 110,000 samples,
we suspect that the entire dataset fits in the 32 Mbyte
Level 3 cache on the IBM p655 machine. As the num-
ber of samples increase, we should see better speedups
for larger numbers of channels.

12. Future Directions for HiPerSAT

The HiPerSAT library and tools currently provide
ICA decomposition via the FastICA and Infomax al-
gorithms. We plan to enhance HiPerSAT by increas-
ing the performance of the existing algorithms, as well
as by implementing additional ICA methods that have
shown promise in EEG analysis. In addition, we are
building grid-based interfaces to permit the remote ini-
tiation and monitoring of HiPerSAT tasks.

12.1. Performance

Both FastICA and Infomax are very processor-
intensive, especially with large data sets. Our early re-
sults are promising and show the potential of exploiting
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Figure 3. Infomax: Iteration cost vs # of procs

parallelism for these tasks. However, there are several
potential performance enhancements worth investigat-
ing.

Although FastICA scales linearly with the number of
processors, we can further improve overall performance
by reading and writing the EEG data in parallel. This
can be done directly during the FastICA execution by
using MPI’s asynchronous sends and receives to paral-
lelize data distribution.

Clearly, the Infomax algorithm has room for perfor-
mance improvement. Our scaling results show a best-
case speedup of 3 running on 8 processors, and poorer
performance overall. Although OpenMP performance
is highly dependent on the platform and compiler, we
need to further investigate ways to increase the portion
of the algorithm that can operate in parallel. This in-
cludes minor changes such as adjusting the block size
used during the training of a weight vector, and major
changes such as allowing each worker thread to work on
its own block in parallel, merging the learned weights
after each step. The mathematical legitimacy of these
optimizations must be analyzed.

We have come up with a more memory-efficient way
to sort and export the independent components from
Infomax in a windowed fashion which does not require
duplication of the data before output.

Finally, we want to consider alternative parallelism
approaches, including the design of an MPI-based
Infomax, an OpenMP-based FastICA, and a hybrid
MPI/OpenMP version of both algorithms, assuming
these versions offer opportunities for improved perfor-
mance.

12.2. New ICA Features and Algorithms

The versions of FastICA and Infomax currently im-
plemented in HiPerSAT lack some features that are
present in the EEGLAB-based versions of these algo-
rithms (runica and fastica). We plan on implement-
ing these optional features within HiPerSAT. They in-
clude:

• Performing PCA (Principal Component Analysis)
reduction during preprocessing

• Random restarts to address a lack of convergence
in FastICA.

• symmetric-mode FastICA instead of deflationary-
mode

• extended-mode Infomax to detect subgaussian
components.

There are a variety of other ICA algorithms that
have been implemented in MATLAB. These algorithms
differ in their assumptions about the data, the way
they measure independence, and whether they account
for temporal ordering of the data. They include SOBI
(Second-Order Blind Identification), JADE (Joint Ap-
proximate Diagonalization of Eigen matrices), and ER-
ICA (Equivariant Robust ICA). We will be examin-
ing these algorithms to determine their utility in the
neuroimaging domain and their suitability for high-
performance implementation.

12.3. Grid Execution

HiPerSAT’s highest performance requires that it ex-
ecutes on on a parallel system. However, a researcher
may use EEGLAB on their laptop or workstation to do
much of their interactive analysis. We have extended
the EEGLAB integration to allow remote execution of
HiPerSAT tasks on computational servers. We are also
building a grid-enabled interface to make HiPerSAT
accessible as a grid service. One important advantage
that will come from this will be the ability to use HiPer-
SAT on multiple EEG data sets concurrently.



13. Conclusions

We described the ICA class of techniques and par-
allel implementations of two ICA algorithms, FastICA
and Infomax. We showed that for the large data sets
typically found in dense-array EEG research, the per-
formance improvement provided by HiPerSAT was sig-
nificant compared to the sequential implementations
in EEGLAB. The speedup for FastICA was impressive
while only modest for Infomax. The ability to handle
dataset sizes larger than the MATLAB-based versions
is very important for the EEG neuroimaging commu-
nity at large.

The FastICA algorithm was shown to scale quite
nicely, with near-linear speedup as additional proces-
sors are added. However, the Infomax algorithm scaled
sublinearly. This lack of parallelism and speedup in
HiPerSAT Infomax is a consequence of the current im-
plementation and warrants further research.

Although FastICA is faster and parallelizes better
than Infomax, it has been shown that it can fail to
converge on a solution. This appears to be especially
problematic for larger numbers of channels (e.g., more
than 127). Restarting the algorithm with new random
weight vectors can reduce, but not eliminate, this con-
vergence problem.

The choice of Infomax versus FastICA is also one
of perceived correctness and quality of results. Neuro-
scientists will select among the various decomposition
algorithms for reasons other than performance. In-
deed, one active area of neuroscience research is the
comparison of different ICA algorithms as applied to
EEG. Different algorithms are appropriate for different
assumptions about the EEG data and the underlying
signals.

We are collaborating with neuroscience researchers
at the University of Pittsburgh in the application of
HiPerSAT in cognitive language processing studies fo-
cusing on word learning and reading assessment. The
EEGLAB-based ICA implementation was insufficient
for this work because of the large datasets involved.
HiPerSAT has also been successfully used for artifact
detection and cleaning in this and other neuroscience
work. In general, we see the HiPerSAT library and
tools as a complement to MATLAB-based ICA imple-
mentations, providing the EEG/MEG community with
a higher performing, parallel solution.
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