
Automatic Performance Diagnosis of Parallel Computations with Compositional
Models

Li Li and Allen D. Malony

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, Oregon 97403
lili, malony @cs.uoregon.edu

Abstract

Performance tuning involves a diagnostic process to lo-
cate and explain sources of program inefficiency. A per-
formance diagnosis system can leverage knowledge of per-
formance causes and symptoms that come from expertise
with parallel computational models. This paper extends our
model-based performance diagnosis approach to programs
with multiple models. We study two types of model composi-
tions (nesting and restructuring) and demonstrate how the
Hercule performance diagnosis framework can automati-
cally discover and interpret performance problems due to
model nesting in the FLASH application.

1 Introduction

There is a growing interest in automating the process of
parallel performance analysis, from measure generation to
performance diagnosis. Performance diagnosis is a particu-
larly challenging process to automate because it fundamen-
tally is an intelligent system wherein we capture and apply
knowledge about performance problem detection, and ex-
planation about why it exist. Problem discovery and hy-
pothesis testing, as guided by inference-based search, pro-
vides the automated reasoning (explanation) part of diag-
nosis automation, if only we had a sound basis for perfor-
mance knowledge engineering. In our work, we advocate
models of parallel computations as sources of performance
knowledge. Models provide semantically rich descriptions
of structural, control flow, and communication patterns of
a program, enabling better interpretation and understanding
of performance properties. Performance knowledge can be

1-4244-0910-1/07/$20.00 c 2007 IEEE.

systematically engineered based on the model behavior de-
scriptions and bottom-up inference methods used to encode
model-specific expert strategies for problem discovery.

In the previous work [7, 8, 9], we focused on generat-
ing and encoding performance knowledge from singleton
models, including master-worker, pipeline, and divide-and-
conquer models, and building the Hercule performance di-
agnosis framework to support these singleton models. How-
ever, scientific programmers often combine two or more
computational models in parallel applications. Composi-
tional models capture how singleton models are composed
together and interact in a parallel program. Here we report
our work on performance diagnosis of compositional mod-
els. We present an approach for discovering and interpret-
ing performance bugs using both the semantics of individ-
ual models and their composition properties. We extended
our Hercule performance diagnosis framework to support
performance engineering of compositional models and have
tested Hercule on the scientific application FLASH [3] and
the ScaLAPACK algorithm PDLAHQR [4], each represent-
ing different types of model integration. These experiences
demonstrate that our approach can effectively support auto-
matic diagnosis of compositional model performance.

2 Computational Model Composition

A parallel computational model [10, 11], also called
a parallel pattern or programming paradigm, is a recur-
ring parallel solution to a class of problems. master-
worker, pipeline, and geometric decomposition are well-
known models. Models are useful because they abstract
parallel execution details and provide a semantic basis for
parallel program development. In previous work [7, 8],
we investigated how to generate and encode performance
knowledge from single models to support automated perfor-
mance diagnosis. This work resulted in the development of

the Hercule performance diagnosis framework. While the
results using Hercule were generally successful, real-world
applications are more complex, often based on the composi-
tion or synthesis of two or more elementary computational
models. To conduct performance diagnosis of a composi-
tional parallel program we must extend the knowledge en-
gineering and problem inferencing to capture the interplay
of one model with another.

Consider a parallel computational model as a set of indi-
visible computational components, , and a
function, , that specifies the relative con-
trol order (e.g., sequential, choice, concurrent, iteration, and
so on) of component occurrence. We can then regard the
composition of two models, and , as an inte-
gration of the components in some manner. Several compo-
sitional forms are possible. For instance, one model could
simply nest one model hierarchically within another (model
nesting), or the component sets of two models could be re-
structured in a more complex way by a higher-order func-
tion (model restructuring). Our objective is to understand
the compositional properties of model integration in order
to engineer the performance knowledge needed for perfor-
mance diagnosis. Our approach will describe how perfor-
mance effects of individual models change as the compo-
nents merge and how new performance effects arise from
the composite interactions.

An important class of parallel composition uses a high-
level root (outer) model to describe high-level parallel be-
havior and lower-level child (inner) models to describe par-
allelism within the root model’s components. We call this
type of composition model nesting. Stated more formally,
two models and (
are components of) may compose into a new nested
model as follows:

(1)

where means the component im-
plements the model. Note, not necessarily every compo-
nent in is refined with , and there may be additional
child models used.

Parallel applications based on nested computational
models are common. Iterative, multi-phase applications are
frequently structured as nested models with an outer code
controlling multiple phases each based on a possibly dif-
ferent parallel pattern. The graphical animation described

in [6] implements expensive pipeline stages with master-
worker model. The FLASH [3] code we will study later
nests parallel recursive tree computations in an adaptive
mesh refinement model. Our concern is how to understand
the performance of nested models. Due to the hierarchi-
cal structure of model nesting, analysis this type of applica-
tion usually starts with the root model. When a problematic
component is found in the model (e.g., an expensive phase),
we switch from the root to the component’s model to refine
performance problem search. The search continues until the
finest level of model is reached. Performance overhead cat-
egories of the nested model is the union of the overheads
associated with the participant models. Thus, they should
be organized in a hierarchy conforming to the model nest-
ing structure to support the top-down bug search.

The restructuring type of model composition integrates
components of two or more models according to some
new funtion while maintaining the same relative control
order of each model’s components. Formally two mod-
els and may compose
into a new restructured model as follows:

(2)

where selects a component
or such that the relative control order of compo-

nents and components are maintained.
The general idea is that the components of the contribut-

ing models are being mixed to form a new set, to which a
new model function is applied. could be F, G, or a
new operation, like iteration, nesting, farming, and so on. A
simple example might be the restructuring of two pipeline
models into a single pipeline model with the components
at each pipeline stage merged. More complex examples
are the nonsymmetric QR algorithm (PDLAHQR) [4] in
ScaLAPACK, which combines pipeline and geometric de-
composition models, and the MUMPS sparse direct solver
[5], where parallel tree, master-worker, and geometric de-
composition models are mixed together.

For our purposes, the key difference between model nest-
ing and model restructuring has to do with the notion of
working context. In model restructuring, the working con-
text of a component from a contributing model will be dif-
ferent from its context in the singleton form of that model.
The performance overheads associated with the original
models (see [7, 9]), will change corresponding to context-
specific factors and the new model function . In contrast,
when computational models are nested, the model seman-
tics at each level of hierarchy will be preserved, and the
working context for components of a nested model will be

2

model-local. From a performance diagnosis perspective, the
performance overheads and problem causes can thus be iso-
lated to the models used at different levels of hierarchy.

Diagnosing a parallel program based on model restruc-
turing requires we learn how performance effects of individ-
ual models change as the components are interleaved. New
performance characteristics introduced by model restruc-
ture include delegated delay and composite delay. When
components of a model are intermixed with those of another
model, the performance delay associated with a component
are manifested within another model components’s execu-
tion context. We call the performance delay the delegated
delay. From Equation 2, a delay originally caused by
and manifested in a later component , may now appear
in another component, say occurring before . This
delay is then an example of delegated delay and should be
attributed to its original model.

A delay jointly caused by two or more models is a com-
posite delay. Here, a performance delay associated with an
original model manifests itself as part of delays from other
interleaved models. From Equation 2, a performance de-
lay happening inside , may reflect the cumulative effects
of preceding and components, as its working context
switches from solely (in the singleton model) to mixed
and . To assess composite delays, we need to change orig-
inal performance evaluation rules in response to the model
interaction. In the next section, we will discuss how to
incorporate the compositional performance effects into the
automatic diagnosis framework.

3 Performance Knowledge Engineering
Adaptive to Model Composition

At the core of our automatic performance diagnosis ap-
proach is engineering performance knowledge from com-
putational models. This proceeds in four stages: behav-
ioral modeling performance modeling model-specific
metric definition inference modeling [8]. The model-
specific knowledge is stored into a knowledge base which
interfaces to an inference engine to drive performance diag-
nosis search. Base models may be customized by a parallel
program and introduce new diagnostic requirements as to
problem discovery and inferencing. The user can follow the
engineering principles to extract adapted knowledge step by
step and then join them with the inherited model knowledge.
Model composition is another type of model variation. In
this section, we describe how the knowledge engineering
approach is extended to address performance issues arising
from the model interaction. A user can use the approach
as the guideline to “compose” knowledge about a compo-
sitional model from already available knowledge of partici-
pant models.

Behavioral modeling captures program execution se-
mantics as behavioral models represented by a set of ab-
stract events at varying detail levels, depending on the com-
plexity of the model and diagnosis needs. The purpose of
the abstract events in the diagnosis system is to give contex-
tual informaton for performance modeling, metric defini-
tion, and diagnostic inferencing. An abstract event descrip-
tion essentially includes an expression that takes the form
of . The expression names the compo-
nent (typically, an indivisible computational component
or communication function) and specifies the control order-
ing using event operators. Model composition may inter-
leave components of abstract events from different models.

We describe behavioral characteristics of a composi-
tional model (termed composite events) by integrating al-
ready available abstract events of the participant models
(termed basic events) in a manner that conforms to their
composition style (e.g., nest or restructure). We use the or-
der operators sequential (), choice (), repetition (+ or *),
and occur zero or one time ([]) to specify occurrence (con-
trol) order of the basic events. For instance, model nest-
ing (see Equation 1) requires that a component in the root
model (a basic root event) be replaced by the whole set of
basic events from the child model (in fact, the whole child
model).

Model restructuring brings up a more complicated sce-
nario where two basic events from different models inter-
leave their components together. In this case, we can first
look at the compositional behavior and represent it with an
abstract event expression without considering constituent
components’s semantics in their original models. Then we
discern and sort out the constituent components into their
original models, and annotate the components at the model
switch points to distinguish the model interleaving pattern.

Performance modeling is carried out based on the struc-
tural information in the abstract events. The modeling leads
to the formulation of performance metrics that represent
the performance properties dictated by the model semantics.
We use the metrics to learn and evaluate various aspects of
a model performance.

Performance metrics in a compositional model are not
simply a union of the metrics in participant models. They
may change as to their occurrence locations and evaluation
rules. In restructured models, delegated delay and compos-
ite delay are important to identify in performance models
for composite abstract events. The annotated components at
model switch points provide a clue to where a performance
delays possibly transfer. A performance loss that originally

3

happens in a model now should take into account the inter-
leaving model’s cumulative effects in the evaluation.

Inference modeling captures and represents the perfor-
mance bug search and inferencing process formally. Tar-
geting performance explanation at a high-level abstraction,
we aim to find performance causes (i.e., an interpretation
of a performance anomaly) at the level of parallelization
design, that is, to attribute a performance problem to the
culprit model factor. The inferencing is therefore the map-
ping of low-level performance data to high-level design fac-
tors. The inference process is captured in the form of an
inference tree where the root is the symptom (i.e., a per-
formance anomaly deviating from the expected) to be diag-
nosed, the branch nodes are intermediate observations ob-
tained so far and needing further evidences to explain, and
the leaf nodes are explanations of the root symptom in terms
of high-level performance factors associated with the com-
putational model used.

We generate the inference tree for a compositional model
by merging the inference trees of the participant models.
The tree merge for a nested model is based on its model
hierarchy, where we expand the inference tree of the root
model with relevant tree branches of the child models in the
hierarchy. Recall that each node in an inference tree repre-
sents an intermediate observations that is obtained by evalu-
ating a model-specific metric. If an involving component in
a metric evaluation is refined by a new model, the sub-trees
associated with the metric will be expanded with the new
model’s inference tree. An example of merging inference
trees for model nest is presented in section 5.3.

For constructing an inference tree of model restructuring,
we pick one model tree as the host to expand with inference
processes of a second model. The host tree is usually the
one of highest complexity among the involving models. We
add in the inference tree of the second model node by node
– we look for the node’s correct location in the host and
build its connections with the host tree nodes according to
the interaction pattern of the two models. Starting from the
root node, if there is a node in the host that represents the
same semantics (i.e., performance metric type), we remove
the node from the second tree and set its equivalent node in
the host as parent of its sub-trees. Otherwise, we remove the
node and its sub-trees from the second tree and merge them
under the node’s parent in the host. In this case, we also
need to check if the node or its children represents a per-
formance metric that is transfered from the host due to the
model interaction (i.e., delegated performance metric), or
vice versa. We draw a line pointing from the deputy model
node to the delegator model node. Similarly at a node rep-
resenting a composite metric, relevant nodes from the both

Hercule

Parallel
models

inference engine

problems explanations

diagnosis results

m
ea

su
re

m
en

t

 s
ys

te
m

da
ta

Parallel
program

information
implementation
algorithm /

sp
ec

if
ic

at
io

ns
ex

pe
ri

m
en

t
pe

rf
or

m
an

ce knowledge
model

inference rules

knowledge baseevent

metric
evaluator

recognizer

Figure 1. Hercule diagnosis framework

models will connect to the node to reflect the cumulative
performance effect. The merge continues until the second
tree is empty.

4 Hercule Automatic Performance Diagnosis
Framework

Hercule is a prototype automatic performance diagno-
sis system that implements the model-based diagnosis ap-
proach. The Hercule framework, shown in figure 1, op-
erates as an expert system within a parallel performance
measurement and analysis toolkit, in this case, the TAU
[2] performance system. Hercule includes a knowledge
base composed of an abstract event library, performance
metrics set, and performance factors for individual paral-
lel models. The event recognizer in Hercule fits event
instances into abstract event descriptions as performance
data stream flows through it. It then feeds the event in-
stances into Hercule’s performance metric evaluator, where
performance attributes associated with the event instances
are synthesized and calculated into metrics according to
model-specific metric evaluation rules from the knowledge
database.

Perhaps the most interesting part of Hercule is its cause
inferencing system. We encode inference trees with produc-
tion rules. A production rule consists of one or more perfor-
mance assertions and performance evidences that must be
satisfied to prove the assertions. Hercule makes use of syn-
tax defined in the CLIPS [1] expert system building tool to
describe production rules, and the CLIPS inference engine
for operation. The inference engine provided in CLIPS is
particularly helpful in performance diagnosis because it can
repeatedly fire rules with original and derived performance
information until no new facts can be produced, thereby re-
alizing automatic performance experiment generation and

4

causal reasoning.

Hercule’s singleton model analysis facilities can also
support the compositional diagnosis if provided with the
performance knowledge specific to the model composition.
Given two models whose performance knowledge has been
stored in the knowledge base, the user needs to generate
and input the extra knowledge imposed by their interac-
tion pattern to diagnose a specific algorithm, which includes
the combined abstract event descriptions, composite metric
evaluation rules, performance factors specific to the model
interaction, and interfacing inference steps that link two
inference trees together in accordance with their interac-
tion pattern. The guidelines to generate the compositional
knowledge from the already available base model knowl-
edge have been provided in section 3. The knowledge engi-
neering approach, in contrast to building everything from
the scratch, can effectively reduce the users’ burden en-
forced by the diagnostic process.

5 Experience with FLASH

FLASH [3] is an astrophysical hydrodynamics code
developed at the center for Astrophysical Thermonuclear
Flashes at the University of Chicago. FLASH is intended
for parallel simulations that solve the compressible Euler
equations on an block-structured adaptive mesh. Adaptive
Mesh Refinement (AMR) is handled using the PARAMESH
library, which employs a tree structure of logically Carte-
sian blocks to cover the computational domain. Each block
in the domain is refined by halving the block along each
dimension and generating a set of new sub-blocks, each of
which has a resolution twice that of the parent block. When
a block is de-refined, sibling blocks are removed. Each
block is represented by a node in the tree structure. The
node stores information about its parent block, child blocks,
and neighboring blocks. Load balancing is accomplished by
redistributing blocks using a Morton space-filling curve, af-
ter all refinements and de-refinements are completed. So a
block may be placed on a different processor from it parent
or siblings.

AMR dictates a set of basic operations, including guard-
cell filling, refining and de-refining grids, prolongation of
the solution to newly created leaf blocks, and so on. In the
FLASH implementation, implied in the operations is the
communications required by the grid block tree structure
with the blocks being distributed to different processors and
the maintenance of the tree structure with mesh refinement
and de-refinement. We therefore view the FLASH code as
a combination of two parallel computational models, AMR
and Parallel Recursive Tree (PRT).

AMR model consists of a set of basic mesh grid oper-
ations and data operations. The mesh grid operations in-
clude:

AMR Refinement – refine a mesh grid
AMR Derefinement – coarsen a mesh grid
AMR LoadBalance – even out workload among pro-
cessors after a refinement or derefinement

The data operations corresponding to the mesh rebuilding
include:

AMR Guardcell – update guard cells at the boundary
of each grid block with data from the neighbors
AMR Prolongation – prolong the solution to newly
created leaf blocks after refinement
AMR Restriction – restrict the solution up the block
tree after derefinement
AMR DataRedistribution – data redistribution result-
ing from mesh redistribution when balancing workload

All the AMR operations in the Flash code are closely
related to its grid block tree, which determines the commu-
nication needs and data movements. The parallel recursive
tree model consists of a set of generic operations that in-
clude:

PRT comm to parent – communicate the processor on
which the parent block is located.
PRT comm to child – communicate to the processor
where the child block is located.
PRT comm to sibling – communicate to the processor
where the sibling block is located.
PRT build tree – initialize tree structure, or migrate
part of the tree to another processor and rebuild the
connection.

In Flash code, every AMR operation recalls the set of
PRT operations to perform its function. The work mech-
anism of the , for instance, is first to
generate a list of children of the grid blocks to be refine,
then to connect the new children blocks with off-processor
neighbors designated by the parent blocks. The links be-
tween the new children and the parent neighbors are built
through PRT operations. In other words, the computation
of every component in the AMR model is reduced into PRT
operations, while the semantic integrity of the two models
are preserved. So the model composition in the FLASH
code falls into the category of model nesting. The nest
forms a two-level model hierarchy where AMR is the root
model that dictates the parallelism of the overall solution,
and PRT form the second-level model that addresses paral-
lelization and implementation of the AMR operations.

5

+

Figure 2. Merge inference trees for FLASH. The top two trees represent AMR and PRT performance
inference, and they combine into the FLASH inference tree on the bottom according to the model
nest in the FLASH code. Added PRT subtrees are highlighted in the FLASH tree and marked with
indices in their original PRT tree. Some subtrees are abbreviated for conciseness.

As a nested model, we intend to explain the performance
of the FLASH code in terms of its model hierarchy. The
performance modeling starts with the root AMR model,
then fills the lower-level PRT model into the root frame-
work to refine performance overhead categories.1 Perfor-
mance overhead types of the nested model composition is
effectively the union of the overheads associated with the
individual participant models. To reflect the model hier-
archy structure, however, we refine a performance over-
head further into a number of context-aware types that in-
dicate different occurrence circumstances within the model
heirarchy. Guardcell filling, for instance, is one of the main
sources of program inefficiency in AMR model. Using PRT
for data communication, the guardcell filling overhead can
be further broken down in terms of PRT overhead classes
(i.e., communication cost with the parent, child, and neigh-
bors nodes in the grid block tree). Performance metrics,

1For this work, we created new singleton models for AMR and PRT.

derived from the overheads, are also organized according
to model hierarchy, to support the top-down performance
problem search. In this way, we allow for capturing per-
formance bugs at different model levels and provide a con-
text for performance explanation in terms of the inter-level
model integration.

To construct the FLASH inference tree, we essentiallly
extend the AMR inference tree with PRT inference steps.
Figure 2 shows the merging process. We can see from
the figure that some AMR subtrees are extended with PRT
branches, which means that a performance problem found
relating to the subtree roots can be further tracked down to
the PRT operations used. in AMR guard-
cell filling, for instance, involves communications to parent,
child, and/or sibling in the grid tree. Its performance counts
on these PRT operations along with the factors in the orig-
inal AMR model. So when there is a performance problem

6

MPI_Allreduce MPI_Ssend MPI_Barrier MPI_Waitall MPI_Alltoall

Figure 3. Paraprof view of performance pro-
files in the FLASH run.

with , we should incorporate the relevant
PRT inference steps to find the causes.

We experimented with the Sedov explosion simulation
in the FLASH v3.02, and ran the simulation on a IBM
pSeries 690 SMP cluster with eight processors. Figure 3
shows performance profiles of a simulation run, where ma-
jor program functions on each processor are presented in
order of decreasing mean exclusive execution time. From
the profiles we can see that MPI communications, in-
cluding MPI Ssend(), MPI Allreduce(), MPI Barrier(), and
MPI Waitall(), dominate the runtime. But the profiles pro-
vide little insight into the performance of the AMR opera-
tions or the supporting data communications with PRT.

With the performance knowledge captured for FLASH
in the Hercule framework, we attempted to discover per-
formance problems automatically. Hercule first conducts
an experiment to find the first performance symptom, ex-
pensive communication cost. The output listing is shown
below.

__
Begin diagnosing AMR program
... ...
Level 1 experiment -- collect performance profiles with
respect to computation and communication.
__
do experiment 1... ...

Communication accounts for 80.70% of run time.
Communication cost of the run degrades performance.
__

Hercule then looks at the performance of the the top level
model, AMR.

__
Level 2 experiment -- collect performance profiles with
respect to AMR refine, derefine, guardcell-fill, prolong,
and workload-balance.
__

2The FLASH software used in this work was developed by the DOE-
supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes
at the University of Chicago.

do experiment 2... ...

Processes spent
4.35% of communication time in checking refinement,
2.22% in refinement,
13.83% in checking derefinement (coarsening),
1.43% in derefinement (coarsening),
49.44% in guardcell filling,
3.44% in prolongating data,
9.43% in dealing with work balancing,
__

Hercule then picks the most expensive AMR operation,
guardcell-filling, to look at its performance in details, espe-
cially the performance of the second level model PRT that
implements guardcell-fillings.
__
Level 3 experiment for diagnosing grid guardcell-filling
related problems -- collect performance event trace with
respect to restriction, intra-level and inter-level
communication associated with the grid block tree.
__
do experiment 3... ...

Among the guardcell-filling communication, 53.01% is spent
restricting the solution up the block tree, 8.27% is spent
in building tree connections required by guardcell-filling
(updating the neighbor list in terms of morton order),
and 38.71% in transferring guardcell data among grid blocks.
__
The restriction communication time consists of 94.77%
in transferring physical data among grid blocks, and 5.23%
in building tree connections.

Among the restriction communication, 92.26% is
spent in collective communications.

Looking at the performance of data transfer in restrictions
from the PRT perspective,
remote fetch parent data comprises 0.0%,
remote fetch sibling comprises 0.0%,
and remote fetch child comprises 100%.
Improving block contiguity at the inter-level of the PRT
will reduce restriction data communication.
__
Among the guardcell-filling communication, 65.78% is
spent in collective communications.

Looking at the performance of guardcell data transfer from
the PRT perspective,
remote fetch parent data comprises 3.42%,
remote fetch sibling comprises 85.93%,
and remote fetch child comprises 10.64%.
Improving block contiguity at the intra-level of the PRT
will reduce guardcell data communication.
__

In FLASH, the AMR Guarcell algorithm first restricts
the data at ”leaf” blocks up to the parent block, then all
blocks that are leaf blocks or are parents of leaf blocks
exchange guardcell data with any neighbor blocks they
might have at the same refinement level. Hercule explains
guardcell-filling performance from two dimensions here. It
informs performance of each functional category, including
AMR Restriction, building tree connection, and guardcell
data transportation. It also breaks down communications
into collective (including MPI Allreduce, MPI Barrier, and
MPI Alltoall) and point-to-point (P2P) groups (including
MPI Ssend, MPI Irecv, and MPI Waitall). The P2Ps are
used mostly in the tree-related data transfer. From fig-
ure 3 we already know that these operations dominate

7

the runtime. Hercule discriminates the performance of
these two types of communication in AMR Guardcell and
AMR Restriction, and interprets the P2P performance as re-
flected in the PRT compute. The users can thereby obtain
an extensive insight into the FLASH performance from the
perspective of the parallel models they coded with.

It is important to note is that Hercule automated all as-
pects of the diganosis process, including experiment con-
struction, performance analysis, and searching cause infer-
encing.

6 Conclusions

Models of parallel computation are useful for discover-
ing and explaining performance problems of parallel ap-
plications. For programs based on singleton models, we
have shown that capturing knowledge of model behaviors,
performance properties, and inference rules proves effec-
tive for diagnosis automation [8]. However, the approach
will be limited in practice if we do not allow for more
complex applications that combine multiple computational
methods. In this paper, we extend the model-based diagno-
sis methodology to support compositional models that inte-
grate singleton computational patterns. Model nesting and
model restructuring are two general compositional forms
for which we discuss systematic steps to generate the per-
formance knowledge necessary for automatic diagnosis of
compositional programs. Our approach addresses the per-
formance implications of model integration so that perfor-
mance losses due to model interaction can be detected and
interpreted. We implemented compositional performance
diagnosis in Hercule framework and tested it with two sci-
entific applications, FLASH and PDLAHQR. The FLASH
results reported here suggest that automatic diagnosis of
compositional model performance is viable and effective.

While we provide salient guidelines to derive per-
formance knowledge from already available base model
knowledge, thereby significantly reducing the complexity
of knowledge engineering, the process is still manual and
prone to error. As more singleton and compositional mod-
els are developed, the practice will improve in quality and
more reuse will be possible. An interesting area for future
work is to consider automatic techniques to transform and
merge existing singleton performance knowledge into per-
formance knowledge according to compositional rules.

References

[1] CLIPS: A Tool for Building Expert Systems, http:
//www.ghg.net/clips/CLIPS.html

[2] TAU Tuning and Analysis Utilities, http:
//www.cs.uoregon.edu/research/
paracomp/tau/tautools/

[3] ASC/Alliances Center for Astrophysical Thermonu-
clear Flashes: http://flash.uchicago.edu

[4] G. Henry, D. Watkins, and J. Dongarra, A Parallel Im-
plementation of the Nonsymmetric QR Algorithm for
Distributed Memory Architectures, SIAM Journal on
Scientific Computing, Vol. 24 , 1: 284 - 311, 2002

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J. L’Excellent.
A fully asynchronous multifrontal solver using dis-
tributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23:15–41, 2001.

[6] S. MacDonald, D. Szafron and J. Schaeffer, Rethinking
the Pipeline as Object-Oriented States with Transfor-
mations, HIPS 2004

[7] Li Li and Allen D. Malony, Model-based Performance
Diagnosis of Master-worker Parallel Computations, in
the proceedings of Europar 2006.

[8] Li Li, Allen D. Malony, Knowledge Engineering for
Automatic Parallel Performance Diagnosis, to appear
in Concurrency and Computation: Practice and Experi-
ence.

[9] Li Li, Allen D. Malony and Kevin Huck, Model-Based
Relative Performance Diagnosis of Wavefront Parallel
Computations, HPCC 2006.

[10] B. Massingill and T. Mattson and B. Sanders, Some
Algorithm Structure and Support Patterns for Parallel
Application Programs, the 9th Pattern Languages of
Programs Workshop, 2002

[11] F. Rabhi and S. Gorlatch, Patterns and Skeletons for
Parallel and Distributed Computing, Springer-Verlag,
2003

8

