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Abstract—The ability to measure performance characteristics
of an application at runtime is essential for monitoring the behav-
ior of the application and the runtime system on the underlying
architecture. Traditional performance measurement tools do not
adequately provide measurements of asynchronous task-based
parallel applications, either in real-time or for postmortem anal-
ysis. We propose that this capability is best performed directly by
the runtime system for ease in use and to minimize conflicts and
overheads potentially caused by traditional measurement tools.

In this paper, we describe and illustrate the use of the
performance monitoring capabilities in the HPX [13] runtime
system. We describe and detail existing performance counters
made available through HPX’s performance counter framework
and demonstrate how they are useful to understanding appli-
cation efficiency and resource usage at runtime. This extensive
framework provides the ability to asynchronously query software
and hardware counters and could potentially be used as the basis
for runtime adaptive resource decisions.

We demonstrate the ease of porting the Inncabs benchmark
suite to the HPX runtime system, the improved performance
of benchmarks that employ fine-grained task parallelism when
ported to HPX, and the capabilities and advantages of using the
in-situ performance monitoring system in HPX to give detailed
insight to the performance and behavior of the benchmarks and
the runtime system.

Index Terms—runtime instrumentation, performance counters;
execution monitoring; HPX; task-based parallelism; many asyn-
chronous tasks

I. INTRODUCTION

In today’s world the landscape of computing is quickly
changing. Clusters continue to grow more complex with
an increasing variety of heterogeneous nodes, networks are
becoming more intricate, and memory hierarchies deeper.
Additionally, applications are growing larger, more complex,
and more integrated with other applications in workflows. It
has beome clear that new techniques and paradigms such as
task-based parallelism and runtime adaptivity will need to
be applied in order for scientists to continue to exploit the

parallelism that the machines of the future will offer. These
techniques, however, heavily depend on readily available, low
overhead, performance metrics that are able to take a view of
the entire system, not only to understand the performance of
our applications, but also to use the information to dynamically
tune codes in their run environment.

Task-based programming models have slowly emerged over
the last three decades from examples such as Charm++ [16]
and OpenMP 3.0 tasks [5] to include many other research
and commercial runtimes. Unfortunately, each model requires
a specific solution to the problem of performance measure-
ment. As we will demonstrate in this paper, current tools are
designed for the much more common case of synchronous
execution and are sometimes unable to provide application
developers the information they need to debug and improve
the codes that are using asynchronous task models. One such
example community that is affected is the committee that is
working on the implementation of task parallel constructs in
the C++11 Standard.

The implementation of task parallel constructs in the C++11
Standard is designed to increase parallel programming produc-
tivity and portability of parallel applications with the potential
of increased performance due to compiler support. To assess
the performance of the Standard implementation, Thoman,
Gschwadtner, and Fahringer introduced the Innsbruck C++11
Async Benchmark Suite (Inncabs [18]), consisting of parallel
benchmarks with varying task granularities and synchroniza-
tion requirements. The performance study using Inncabs illus-
trates the use of the C++11 Standard parallel constructs across
readily available compiler platforms. However, their results
demonstrate that the Standard implementation of the parallel
constructs do not perform well and are not adequate to replace
current third party implementations of task based parallelism.

Most of the widely used open-source parallel performance
measurement tools (such as HPCToolkit [4] or TAU [17])



are based on profiling and/or tracing of application codes
through either instrumentation and/or periodic sampling. These
types of tools are quite useful for post-mortem analysis
and optimization of large scale parallel application codes.
However, these tools currently fail to support the current
implementation of C++ task parallel constructs. For example,
the GCC1 task parallel runtime constructs, executes, and
destroys an Operating System (OS) thread for every task
launched with std::async, resulting in thousands or even
millions of OS threads being created. Neither HPCToolkit nor
TAU are designed to deal with millions of short-lived threads
within a single process space and either introduce unacceptable
amounts of overhead or crash altogether. In addition, because
they are designed for post-mortem analysis they are not easily
extended to implement runtime adaptive mechanisms.

HPX, a general purpose C++ task-based runtime system for
parallel and distributed applications (see Section III), is one
solution that employs improved programming productivity and
portability since its API adheres to the C++11/14 Standards
and is designed to run parallel tasks on current platforms
and increasingly complex platforms of future designs. HPX
employs a unified API for both parallel and distributed appli-
cations thus the ease of programming extends to the distributed
use case. In addition, HPX implements a performance mon-
itoring framework that enables both the runtime system and
the application to monitor intrinsic events at runtime.

We show the ease of porting the Inncabs benchmark suite
to the HPX runtime system, the improved performance of
benchmarks that employ fine-grained task parallelism and
the capabilities and advantages of using the performance
monitoring system in HPX to give detailed insight to the
performance and behavior of the benchmarks and the runtime
system.

This paper illustrates the capabilities of the HPX runtime
system to schedule massive numbers of small tasks efficiently
for parallel applications with the ability to monitor intrinsic
software and hardware counters at runtime. The Standard C++
solution based on kernel threads is not sufficient to provide
adequate scalability of parallel applications and third party
runtime libraries are required for such support. Contributions
of the research illustrate:

1) HPX provides improved scalability and performance
over the C++11 thread support library for parallel appli-
cations that schedule massive quantities of fine-grained
asynchronous tasks with the same programmability of
the C++ Standard. We present the ease of porting the
Inncabs parallel benchmark suite to use the HPX runtime
system with significant improvement in scalability and
performance for the benchmarks that employ fine grain
parallelism.

2) The capability and advantage of employing introspec-
tive measurement techniques by the runtime to monitor
events of task-based parallel applications. This enables
the runtime or application to assess performance infor-

1https://gcc.gnu.org

mation at runtime and paves a path for possible imple-
mentation of real time adaptive techniques in addition
to post-processing capabilities.

3) The ability of the HPX runtime system to provide the
same information that external tools can extract from the
application without the overheads, resources, and exper-
tise required to run an external tool. Section II presents
in further detail the challenges of monitoring inherent
events of task-based parallel applications using available
external performance tools to assess performance and
system utilization.

II. C++ PARALLEL ALGORITHM CHALLENGES

It is important to understand how C++ parallel constructs
are distinct from other thread-parallel models, and why it
is so difficult to measure and understand the performance
behavior. Implementation decisions in the runtime library
have a significant effect on the observability of the resulting
application, as we have briefly mentioned in Section I. Take,
for example, the GCC task parallel runtime. This runtime im-
plementation constructs, executes, and destroys an Operating
System (OS) thread for every task created with std::async
task, resulting in thousands or even millions of OS threads
being created. While this implementation is certainly within
the capabilities of the OS kernel, it is somewhat naive and
inefficient and presents a significant challenge to performance
tools that are not explicitly designed to support this type of
execution model implementation.

As described in Section I, widely used open-source paral-
lel performance measurement tools like HPCToolkit [4] and
TAU [17] provide profiling and/or tracing of many different
types of parallel application models. These tools use several
methods to observe application behavior, including source
instrumentation, binary instrumentation, library wrappers, per-
formance tool interfaces, callbacks, and/or periodic sampling
based on interrupts combined with call stack unwinding.
These tools are capable of context-aware measurement with
variable levels of resolution and subsequent overhead. Large
scale parallel codes with concurrency greater than hundreds of
thousands of processes and/or threads have been successfully
measured. However, these tools fail to adequately support
the current implementation of C++ task parallel constructs.
Both TAU and HPCToolkit make design assumptions about
the overall number of OS threads they expect to see in a
given process space. In the case of TAU, the data structures
used to store performance measurements are constructed at
program launch to minimize perturbation of the application
during execution. While the maximum number of threads per
process is a configurable option (default=128), it is fixed at
compilation time. Even when set to a much larger number
(i.e. 64k) TAU causes the benchmark programs to crash. While
HPCToolkit doesn’t set a limit on the number of threads per
process, the introduced overhead becomes unacceptable as
each thread is launched and the file system is accessed, and
in most benchmark cases the program crashes due to system
resource constraints. Table I shows the results of running the



Inncabs benchmarks at full concurrency with either TAU or
HPCToolkit using the test system and protocol described in
Section V.

TABLE I
OVERHEAD AND OBSERVED FAILURES FOR THE INNCABS BENCHMARKS

EXECUTED WITH TAU OR HPCTOOLKIT.

Baseline TAU HPCToolkit
Benchmark time tasks time time overhead
alignment 971 4950 SegV 112,795 11516.37%
fft 48,423 2.04E+06 SegV timeout
fib Abort n/a SegV n/a
floorplan 5,788 169708 SegV SegV
health 589,415 1.75E+07 Abort Abort
intersim 827 1.70E+06 Abort SegV
nqueens Abort n/a n/a n/a
pyramids 2,148 112,344 SegV 275,088 12706.70%
qap SegV n/a n/a n/a
round 155 512 SegV 5,588 3505.16%
sort 7,240 328,000 SegV Abort
sparselu 786 11,099 SegV 99,123 12511.07%
strassen 4,782 137,256 SegV Abort
uts Abort n/a n/a n/a

In addition, because they are designed for post-mortem
analysis these tools are not easily extended to implement
runtime adaptive mechanisms. In both cases, post-processing
of the performance data (usually done at program exit) is
required before an accurate performance profile containing the
full system state (across nodes and/or threads) is possible.
In contrast, the APEX [11], [10] library has been designed
for the HPX runtime to provide performance introspection
and runtime adaptation using the available HPX performance
counter framework. A longer discussion of APEX is beyond
the scope of this paper, but a discussion of its current state
and future potential is briefly provided in Section VII.

III. HPX – A GENERAL PURPOSE
PARALLEL C++ RUNTIME SYSTEM

HPX is a general purpose C++ runtime system for parallel
and distributed applications of any scale. It has been described
in detail in other publications [8], [9], [13], [14]. We will
highlight its main characteristics in this section [15].

HPX represents an innovative mixture of a global system-
wide address space (AGAS - Active Global Address Space),
fine grain parallelism, and lightweight synchronization com-
bined with implicit, work queue based, message driven compu-
tation, full semantic equivalence of local and remote execution,
and explicit support for hardware accelerators through perco-
lation. It aims to resolve the problems related to scalability,
resiliency, power efficiency, and runtime adaptive resource
management that will be of growing importance as HPC
architectures evolve from petascale to exascale. HPX departs
from today’s prevalent bulk-synchronous parallel program-
ming models with the goal of mitigating traditional limita-
tions, such as implicit and explicit (global and local) barriers,
coarse grain parallelism, and lack of easily achievable overlap
between computation and communication.

By modelling the API after the interfaces defined by the
C++ Standards, programmers are enabled to write fully asyn-
chronous code using hundreds of millions of threads. This
ease of programming extends to both parallel and distributed
applications. In addition, the implementation adheres to the
programming guidelines and code quality requirements de-
fined by the Boost collection of C++ libraries [1]. HPX is the
first open source runtime system implementing the concepts
of the ParalleX execution model [12], [19] on conventional
systems.

Although HPX is designed to efficiently provide low level
system services, various higher-level frameworks have been
developed to assist programmers. Within HPX, a comprehen-
sive set of parallel algorithms, executors, and distributed data
structures have been developed–all of which are fully con-
forming to current C++ standardization documents or ongoing
standardization work. These constructs allow developers to
simply express and direct parallelism in a scalable way. HPX
also provides a uniform, flexible, and extensible performance
counter framework, described in Section IV.

External to HPX, libraries have been developed which
provide additional functionality and extend the HPX paradigm
beyond CPU computing, notably APEX [11], [10]. APEX,
an introspection and adaptivity library, takes advantage of
the HPX performance counter framework to gather arbitrary
knowledge about the system and uses the information to make
runtime-adaptive decisions based on user defined policies.

IV. THE HPX PERFORMANCE COUNTER FRAMEWORK

Performance Counters in HPX are used to provide infor-
mation as to how well the runtime system or an application
is performing. The counter data can help determine system
bottlenecks and fine-tune system and application performance.
The HPX runtime system, its networking, and other layers
provide counter data that an application can consume to
provide users with information of how well the application is
performing. The exposed performance counters are not limited
to hardware counters (as for instance provided by PAPI [6]),
but can cover any numeric information interesting to the user
of the application.

Applications can also use counter data to determine how
much system resources to consume. For example, an appli-
cation that transfers data over the network could consume
counter data from a network switch to determine how much
data to transfer without competing for network bandwidth with
other network traffic. The application could use the counter
data to adjust its transfer rate as the bandwidth usage from
other network traffic increases or decreases.

Performance Counters are HPX components which expose
a predefined interface. HPX exposes special API functions
that allow one to create, manage, read the counter data,
and release instances of Performance Counters. Performance
Counter instances are accessed by name, and these names have
a predefined structure. The advantage of this is that any Per-
formance Counter can be accessed remotely (from a different
locality) or locally (from the same locality). Moreover, since



all counters expose their data using the same API, any code
consuming counter data can be utilized to access arbitrary
system information with minimal effort.

Counter data may be accessed in real time during the
runtime of an application. In HPX this capability is the basis
for building higher-level runtime-adaptive mechanisms which
may change system or application parameters with the goal
of improving performance, energy consumption, or parallel
efficiency, etc.

As a convenience, all HPX applications provide command
line options related to performance counters, such as the
ability to list available counter types, or periodically query
specific counters to be printed to the screen or save them in
a file. While the command line interface is easier to use, it
is less flexible and does not allow an application to adjust its
behavior at runtime. The command line interface provides a
convenience abstraction for querying and logging performance
counter data for a user specified set of performance counters.

V. EXPERIMENTAL METHODOLOGY

To demonstrate the capabilities of both the HPX runtime
and the HPX performance counters, we ran strong scaling
experiments for the Standard C++11 and HPX versions of the
Inncabs benchmarks by increasing the number of cores used
while keeping the total workload constant for each benchmark.
This section describes the benchmarks, system configuration,
performance counter measurements, and the methods used in
running the experiments.

A. Benchmarks

For this work, we ported to HPX the Inncabs bench-
mark suite, introduced in [18] as a suite of benchmarks
using the C++11 Standard constructs for thread paral-
lelism. The benchmarks were previously ported to C++11 by
Thoman, Gschwadtner, and Fahringer to assess the perfor-
mance achieved by using the Standard C++ thread mechanisms
for parallel applications without the support of third party
libraries. The benchmarks have a variety of task granularity
workloads and synchronization demands. Table V in the
Results section shows the structures and synchronization of
the benchmarks and includes the average task duration as
measured using an HPX performance counter.

Since HPX’s API is modeled after the C++ Standard, replac-
ing the Standard task parallel structures with HPX equivalents
for the Inncabs parallel benchmarks is very simple. In most
cases this just involves changing the function’s namespace
(see Table II). As defined in the C++ Standard, the template
function std::async:

. . . runs the function f asynchronously ‘as if on
a new thread’ (potentially in a separate thread
which may be part of a thread pool) and returns a
std::future that will eventually hold the result
of that function call. 2

2http://en.cppreference.com/w/cpp/thread/async

The std::thread class is a convenience wrapper around
an OS thread of execution, and the std::mutex class is:

. . . a synchronization primitive that can be used to
protect shared data from being simultaneously ac-
cessed by multiple threads. 3

Sources and detailed descriptions of the Inncabs benchmarks
are available in [2] as are the HPX ported versions [3].

In Section VI, we show that HPX significantly improves the
performance of the benchmarks with sufficient concurrency
due to the smaller overheads of the fine-grained lightweight
user level HPX threads when compared to the use of pthreads
by the Standard versions. For the applications where the tasks
are coarse-grained, the overheads are not as significant, so the
HPX versions either only slightly outperform or perform close
to the Standard C++ versions.

TABLE II
TRANSLATION OF SYNTAX TO HPX

STD C++11 HPX

std::async −−− > hpx::async
std::future −−− > hpx::future
std::thread −−− > hpx::thread
std::mutex −−− > hpx::lcos::local::mutex

B. Configurations

Our experiments are performed on an IntelTM node on
the Hermione cluster at the Center for Computation and
Technology, Louisiana State University, running the Debian
GNU/Linux kernel version 3.8.13. The node is an Ivy Bridge
dual socket system with specifications shown in Table III. We
ran experiments with hyper-threading activated and compared
results for running one thread per core to running two threads
per core resulting in small change in performance. We deacti-
vated hyper-threading and for brevity and clarity present only
results with hyper-threading disabled.

TABLE III
PLATFORM SPECIFICATIONS

Node Ivy Bridge (IB)

Processors 2 Intel Xeon E5-2670 v2
Clock Frequency 2.5 GHz (3.3 turbo)
Microarchitecture Ivy Bridge (IB)
Hardware Threading 2-way (deactivated)
Cores 20
Cache/Core 32 KB L1(D,I)

256 KB L2
Shared Cache 35 MB
RAM 128 GB

We built the software using GNU C++ version 4.9.1,
GNU libstdc++ version 20140908, and HPX version 0.9.11
(8417f14) [14]. We also ran tests using the clang compiler
with results that were not significantly different from those
compiled with GNU so are not presented in this paper.

3http://en.cppreference.com/w/cpp/thread/mutex



For best performance, the HPX benchmarks are configured
using tcmalloc for memory allocation. Comparisons were
made for the Standard benchmarks using system malloc and
tcmalloc. The Standard versions perform best using the system
memory allocator except for the Alignment benchmark. The
original Alignment benchmark allocates large arrays on the
stack, and execution fails for the default HPX stack size
(8kBytes), so the benchmark was modified to allocate the
arrays on the heap for both versions. We build all the Standard
benchmarks with the system allocator with the exception of
Alignment which performs best using tcmalloc.

The original Inncabs benchmarks can be run with any of
three launch policies (async, deferred, or optional) as
specified by the user at runtime. HPX options includes these
launch policies and a new policy, fork, added in version
0.9.11. The fork launch policy is equivalent to async except
that it enforces continuation stealing instead of the (default)
child stealing. This can result in performance improvements
for strict fork/join use cases, where the future returned from
async is guaranteed to be queried from the current thread. We
compared performance of all launch policies for both Standard
and HPX versions of the benchmarks and found the async
policy provides the best performance, so we only present the
results using the async policy.

C. Performance Counter Measurements

To demonstrate the usefulness of the performance monitor-
ing system, we select both runtime and hardware performance
counters to measure. The software counters used in this
research measure the task execution times, overheads, and
efficiency of the thread scheduler in order to monitor perfor-
mance of the runtime’s thread scheduling system and execution
performance of the tasks on the underlying hardware. The
hardware counters we use demonstrate the ability to measure
hardware events that are available to ascertain information that
can be used for decision making such as throttling the number
of cores used to save energy. Although for this paper we run
benchmarks that are designed for parallelism on one node,
HPX performance counters can also be utilized for distributed
applications to make decisions for events such as when to
migrate data.

The HPX performance monitoring framework provides the
flexibility to inspect events over any interval of the application.
The Inncabs applications are written such that the computation
samples are taken inside the application. We measure the
performance counters just for the computation of each sample
by using the HPX evaluate and reset API calls. HPX
also includes the ability to monitor for predefined timed
intervals and to measure events for each individual OS thread.
For this paper we use the total of the OS thread counts.

There are more than 50 types of performance counters avail-
able in HPX, many of which have more than 25 subtypes 4.
The counters are grouped into four groups representing the
main subsystems of HPX: AGAS counters, Parcel counters,

4http://stellar-group.github.io/hpx/docs/html/hpx/manual.html

Thread Manager counters, and general counters. There are
also mechanisms for aggregating the counters or deriving
ratios from combinations of counters. From this large group
of counters, we are only using just a few to demonstrate their
general functionality. The metrics used in this paper with the
associated performance counters are:

Task Duration: is the value of the /thread/time/average
counter which measures the average time spent in the execu-
tion of an HPX thread, also referred to as an HPX task. Task
duration for runs using one core give us a measure of task
granularity and are reported in Table V. When the number of
cores is increased we observe an increase in task duration that
indicates the execution is delayed due to contention for shared
resources as illustrated in prior work [7].

Task Overhead: is the value of the /thread/time/average-
overhead counter which measures the average scheduling cost
to execute an HPX thread. We observed task overheads on the
order of 50-100% of the task grain size for the very fine-
grained applications.

Task Time: measures the cumulative execution time
of HPX tasks during the selected interval using the
/thread/time/cumulative counter. We divide Task Time by the
number of cores and present task time per core to show the
relation to the execution time of the application.

Scheduling Overhead: is the measurement of time spent in
scheduling all HPX tasks using the /thread/time/cumulative-
overhead counter. Scheduling overheads can be a major cost
for the fine-grained applications because the cost of scheduling
the tasks is large in comparison to the task execution time.

Bandwidth: is estimated for the Ivy Bridge node by sum-
ming the counts of the off-core memory requests for all data
reads, demand code reads, and demand reads for ownership.
The count is then multiplied by the cache line size of 64 bytes
and divided by the execution time. The counters are accessed
in HPX as:

• papi/OFFCORE_REQUESTS:ALL_DATA_RD
• papi/OFFCORE_REQUESTS:DEMAND_CODE_RD
• papi/OFFCORE_REQUESTS:DEMAND_RFO

Measuring hardware counters (such as the off-core requests)
through the HPX interface to PAPI gives the application
information about the behavior on the particular system. Using
native PAPI counters for the Ivy Bridge node, we compute the
bandwidth of memory transfers for the Ivy Bridge node.

The overhead caused by collecting these counters is usually
very small (within variability noise), but sometimes are up to
10% with very fine granularity tasks when run on one or two
cores. When PAPI counters are queried this overhead can go
up to 16% with very fine granularity.

D. Experiments

Based on the wide range of available possibilities, we
performed a large number of experiments to determine the best
configuration for the build and run policies that provide the
best comparisons of the benchmarks. A synopsis is provided
in Table IV.



TABLE IV
SOFTWARE BUILD AND RUN SPECIFICATIONS

Specification STD C++11 HPX

Compiler gcc gcc
Memory Allocation system tcmalloc

(Alignment-tcmalloc)
Launch Policy async async

We present the experiments that give a fair comparison
between Standard C++ and HPX and are most relevant to the
goals of this research, to illustrate the capabilities of the HPX
runtime system for scheduling asynchronous tasks on parallel
systems with the benefit of measuring intrinsic performance
events.

To assess performance of the benchmarks, we use strong
scaling by increasing the number of cores while keeping a
fixed workload. The one exception to this is the Floorplan
benchmark. The std::async implementation provides a
single task queue from which all threads are scheduled. In
comparison, the HPX implementation provides a local task
queue for each OS thread in the thread pool. Because of
this subtle difference, the two implementations executed the
tasks in a different logical ordering, causing the std::async
implementation to prune the search much earlier and converge
on the solution much sooner. In fact, the HPX implementation
ordering executed over two orders of magnitude greater results
to arrive at the same solution. In that case, a fixed limit on
the number of total tasks executed was enforced to ensure a
fair comparison of the runtimes. The input sets used in the
original Inncabs paper are used, with the exception of QAP,
which exceeded memory limits. QAP only runs successfully
using the smallest input set included with the original sources.

Execution time for each sample of each benchmark is
measured. To maximize locality, we pin threads to cores
such that the sockets are filled first. For the Standard version
we use the command taskset and specify the proper cpu
order to ensure proper affinity – which is tricky since logical
core designations vary from system to system. HPX utilizes
HWLOC and provides flexible thread affinity support through
the --hpx:bind command line option. We verified that both
versions were properly using thread affinity by monitoring test
runs using the htop utility.

We took 20 samples for each experiment and present
data from the medians of the samples for the execu-
tion times and the counters. To measure the counter data,
we evaluate and reset the counters for each sample us-
ing the HPX hpx::evaluate_active_counters and
hpx::reset_active_counters API functions.

VI. RESULTS

We ran experiments using the fourteen benchmarks from the
Inncabs benchmark suite to illustrate the capability of perfor-
mance monitoring measurements on a variety of benchmarks.
Table V is an expansion of the table in [18] which shows
the structure of the benchmarks. We add the measurement of

Task Duration (task grain size) and classify the granularity
according to our measurements of the HPX Task Duration
performance counter when the benchmark is run on one
core. Included are the scaling behaviors of both the Standard
C++11 and HPX versions measured in our experiments. Even
though the benchmarks have a variety of structures and syn-
chronization, the most prominent factor on scaling behavior
and overall performance for these task parallel benchmarks
is task granularity. In several cases, the performance of the
benchmarks are similar to each other so we present a cross
section of results that represent each kind. First we present
the execution times to compare the two runtime libraries and
then the performance metrics.

The coarse-grained benchmarks, Alignment, SparseLU, and
Round, exhibit good scaling behavior for both libraries. Fig. 1
shows the execution times for Alignment, and is a good
representation of all three benchmarks. These benchmarks are
all coarse-grained with task grain size ranging from ∼1ms to
∼10ms. Scheduling overheads for coarse-grained tasks are a
small percentage of the task, and contention of resources are
small compared to execution time which gives the application
the ability to scale well for both libraries.
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Fig. 1. Execution time of Alignment (HPX vs C++11 Standard) typifies the
good scaling behavior of the coarse-grained benchmarks. The HPX results are
slightly better than the results from running the Standard C++ benchmarks.
This can be explained by HPX’s reduced scheduling and context switching
overhead.

Pyramids, Fig. 2, has a moderate grain size of ∼250µs and is
the only application that executes faster for the Standard C++
version than HPX when run on more than one core. Although
the Standard version runs faster until 14 cores, it has a speedup
factor of 8 for 20 cores, while for HPX there is a speedup of
13, and the minimum execution times are equivalent.

Strassen, Sort, and NQueens classify as fine-grained bench-
marks with task grain sizes of ∼100µs, ∼50µs and ∼25µs
respectively. For each of these benchmarks, HPX shows the
ability to scale well, while the Standard version either does
not run (NQueens and some Strassen experiments) or only
scales up to 10 cores like Sort. The behavior of the execution
time of the fine-grained benchmarks are typified by that in
Figures 3 and 4, although the baseline version of NQueens
fails due to contention on resources for the rate pthreads are
being scheduled.



TABLE V
BENCHMARK CLASSIFICATION AND GRANULARITY

Benchmark Synchronization Task Duration Granularity Scaling Behavior
(average µs) Standard C++ HPX

Loop Like

Alignment none 2748 coarse to 20 to 20 cores
Health none 1.02 very fine fail to 10
Sparselu none 980 coarse to 20 to 20

Recursive Balanced

FFT none 1.03 variable/very fine to 6 to 6
Fib none 1.37 very fine fail to 10
Pyramids none 246 moderate to 20 to 20
Sort none 52.1 variable/fine to 10 to 16
Strassen none 107 fine (some fail) to 8 to 20

Recursive Unbalanced

Floorplan atomic pruning 4.60 very fine to 10 to 10
NQueens none 28.1 fine fail to 20
QAP atomic pruning 1.00 very fine to 6 to 4
UTS none 1.37 very fine fail to 10

Co-dependent
intersim mult. mutex/task 3.46 very fine no scaling to 10
round 2 mutex/task 9671 coarse to 20 to 20

Note: ’to x’ means scaling (execution time improves) only occurs only up to x cores
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Fig. 2. Execution time of Pyramids (HPX vs C++11 Standard), Pyramids
has a moderate grain size of ∼250µs and is the only benchmark that executes
faster than HPX, in the low core counts. Execution times for 20 cores are
equivalent.
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Fig. 3. Execution time of Strassen (HPX vs C++11 Standard), Strassen has
∼100µs grain size, scales well for HPX but does not run for some experiments
for the Standard version. The efficiency of HPX’s scheduling and context
switching is even more pronounced with the fine-grain applications.
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Fig. 4. Execution time of Sort (HPX vs C++11 Standard), has ∼50µs
grain size, illustrates typical scaling behavior of fine-grained benchmarks.
The efficiency of HPX’s scheduling and context switching is even more
pronounced with the fine-grain applications.

The remainder of the benchmarks are all classified as very
fine-grained since they have task sizes less than ∼5µs. For
HPX, we observe measurements of the task overhead perfor-
mance counter from 0.5µs to 1µs for these benchmarks which
means that scheduling overheads are a significant portion
of the execution time. The Standard versions of NQueens,
Health, Fib and UTS all fail due to contention on resources.
For these we observe 80,000 to 97,000 pthreads launched by
std::async just before failure. The available memory in the
system is not sufficient to manage these quantities of pthreads.
The very-fine grained benchmarks that do manage to complete,
FFT, Intersim and Floorplan, scale poorly or not at all and
have execution times much greater than the HPX versions.
Figures 5, 6, and 7 illustrate these behaviors.

Figures 8 -12 illustrate the capability to use the performance
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Fig. 5. Execution time of FFT (HPX vs C++11 Standard), with grain size
∼1µs is very fine-grained and shows limited scaling for HPX and much greater
execution times for C++11 Standard. Scheduling and context switching costs
of HPX are a larger percentage of the task size.
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Fig. 6. Execution time of UTS (HPX vs C++11 Standard), with grain size
∼1µs is very fine-grained and exihibits some scaling for HPX until it reaches
the socket boundary at 10 cores. The Standard version runs out of resources
and fails due to the large number of pthreads scheduled.
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Fig. 7. Execution time of Intersim (HPX vs C++11 Standard), with grain size
∼3µs is very fine-grained and shows limited scaling for HPX and degredation
for C++11 Standard. Scheduling and context switching costs of HPX are a
larger percentage of the task size.

monitoring system to measure overheads and determine factors
affecting the performance of the application. The metrics and
associated counters are described in section V-C. We show
the execution time of the benchmark (exec time) and what
the execution time with ideal scaling (ideal scaling) would be
for comparison, the task time per core with its associated ideal
time, and the scheduling overheads (sched overhd) per core.
When the scheduling overheads are low, Figures 8, 10, and 9,
as is the case for the fine- to coarse-grained benchmarks, the
overall execution time of the benchmark is composed almost
totally of the time spent in actual execution of the tasks. For
Strassen the overheads are slightly larger than Alignment and
this shows that the execution time does not scale as close
to the ideal time. When running on 20 cores the speedup
reaches a factor of 11 for Strassen, 13 for Pyramids and 17
for Alignment (compared to 1 core).

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20

Ti
m

e 
(s

ec
)

Cores

alignment_exec_time
ideal_scaling

task_time / core
task_time_ideal

sched_overhd / core
(task_time+overhd)/core

Fig. 8. Alignment Overheads, coarse-grained task size, has very small
scheduling overhead and the task time is close to ideal so has good scaling
behavior, speed up of 17 for 20 cores.
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Fig. 9. Pyramids Overheads, moderate-grained task size, has slightly larger
scheduling overheads than Alignment and the task time is larger than ideal.
Speedup for 20 cores is 13.

The scheduling overheads have a larger effect on the overall
execution time for applications that have smaller granularity.
This is further demonstrated with the measurements from
the very fine-grained benchmarks, Figures 11 and 12. The
combination of smaller task size and larger number of tasks
executed per second also puts pressure on system resources
which causes a larger time in the actual execution of the
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Fig. 10. Strassen Overheads, fine-grained task size, has small scheduling
overheads but the gap between the ideal and actual task time is larger than
for Pyramids, and the resulting speedup is 11 for 20 cores.

task. The effects are unique to each benchmark and underlying
architecture. For UTS, Fig. 12, the scheduling overhead is not
as large as the increase in execution time caused by contention,
while the opposite is true for FFT, Fig. 11. Increasing the
number of cores that the benchmark is executed on also
increases resource contention as seen by the growth of the
gap between task execution time and its ideal. The jump in
execution time from 10 cores to 12 cores is caused by crossing
the socket boundary and thus the NUMA domains of the
system. These metrics could be used to tune the grain size
in parallel applications where that is feasible.
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Fig. 11. FFT Overheads, very fine-grained, has scheduling overheads equiv-
alent to the task time and both increase significantly beyond the socket
boundary. This results in poor scaling and limits scaling to one socket.

Hardware counters can also be useful to monitor perfor-
mance bottlenecks of the underlying system. One example
would be the bandwidth measurement shown in Figures 13
- 16 as described in Sec. V-C. Bandwidth increases with the
number of cores used until the socket boundary is passed
for the very-fine grained benchmarks and the execution time
makes a corresponding leap, while it continues to grow linearly
for the benchmarks that scale well.

VII. CONCLUSION

We demonstrate the capabilities of the performance mon-
itoring framework in the HPX runtime system to measure
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Fig. 12. UTS Overheads, very fine-grained, scheduling overheads are approx-
imately 50% of the task time, after 4 cores task time is larger than ideal and
increases after the socket boundary, resulting in poor scaling and increased
execution time past the socket boundary.
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Fig. 13. Alignment OFFCORE Bandwidth, coarse-grained tasks.

intrinsic events that give detailed insight to the behavior of
the application and the runtime system. The use of perfor-
mance measurements give the ability to understand application
efficiency and resource usage at runtime. We show the ease
of porting the Inncabs parallel benchmark suite to HPX and
the ensuing performance improvement of the benchmarks
with fine-grained parallel tasks. We demonstrate that current
external tools are not capable of supporting C++ task parallel
constructs and do not support the runtime performance moni-
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Fig. 14. Pyramids OFFCORE Bandwidth, moderate-grained tasks.
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Fig. 15. Strassen OFFCORE Bandwidth, fine-grained tasks.
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Fig. 16. FFT OFFCORE Bandwidth, very-fine grained tasks

toring that would be necessary for adaptive runtime decisions.
The capabilities of the HPX runtime system presented it this
paper pave a path towards runtime adaptivity.

As mentioned, the APEX library extends HPX function-
ality [10]. APEX includes a Policy Engine that executes
performance analysis functions to enforce policy rules. By
including guided search and auto-tuning libraries in the anal-
ysis functions, APEX has already demonstrated an emerging
capability for runtime adaptation in HPX applications using
the performance counter framework presented in this paper.
In the future, we plan to use the information gained by this
research with the capabilities of the APEX policy engine
to provide additional runtime tuning for better performance,
energy efficiency and application stability.
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