
A Performance Analysis of SIMD Algorithms for
Monte Carlo Simulations of Nuclear Reactor Cores

David Ozog and Allen D. Malony

Department of Computer and Information Science
University of Oregon
Eugene, Oregon USA

{ozog,malony}@cs.uoregon.edu

Andrew R. Siegel

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois USA
siegel@mcs.anl.gov

Abstract—A primary characteristic of history-based Monte
Carlo neutron transport simulation is the application of
MIMD-style parallelism: the path of each neutron particle
is largely independent of all other particles, so threads of
execution perform independent instructions with respect to
other threads. This conflicts with the growing trend of HPC
vendors exploiting SIMD hardware, which accomplishes better
parallelism and more FLOPS per watt. Event-based neu-
tron transport suits vectorization better than history-based
transport, but it is difficult to implement and complicates
data management and transfer. However, the Intel Xeon Phi
architecture supports the familiar x86 instruction set and
memory model, mitigating difficulties in vectorizing neutron
transport codes.

This paper compares the event-based and history-based
approaches for exploiting SIMD in Monte Carlo neutron trans-
port simulations. For both algorithms, we analyze performance
using the three different execution models provided by the Xeon
Phi (offload, native, and symmetric) within the full-featured
OpenMC framework. A representative micro-benchmark of
the performance bottleneck computation shows about 10x
performance improvement using the event-based method. In
an optimized history-based simulation of a full-physics nuclear
reactor core in OpenMC, the MIC shows a calculation rate
1.6x higher than a modern 16-core CPU, 2.5x higher when
balancing load between the CPU and 1 MIC, and 4x higher
when balancing load between the CPU and 2 MICs. As far as
we are aware, our calculation rate per node on a high fidelity
benchmark (17,098 particles/second) is higher than any other
Monte Carlo neutron transport application. Furthermore, we
attain 95% distributed efficiency when using MPI and up to
512 concurrent MIC devices.

Keywords-Monte Carlo, neutron transport, reactor simula-
tion, performance, SIMD, Intel Xeon Phi coprocessor, MIC

I. INTRODUCTION

Monte Carlo (MC) methods of neutron transport generally

exhibit excellent scalability across distributed computers, but

may achieve an unsatisfactory percentage of local-node peak

performance, especially on new architectures. History-based

methods simulate a large number, say N , of independent par-

ticles, each of which can be mapped to a dedicated processor

core. This is a “pleasingly parallel” algorithm in which each

thread of execution simulates approximately N/p particles,

where p is the total number of processor cores. Because

each group of particles progresses independently of the

others, history-based MC implementations are appropriate

for multi-threaded computers capable of executing different

instructions in parallel (MIMD). However, in new computer

systems such as the Intel Xeon Phi, the use of the same
instruction on multiple items of data (SIMD) is necessary

to obtain good performance. Accomplishing this may require

significant algorithmic changes to the N/p history-based de-

composition, because data must be migrated and reorganized

to fully exploit coprocessor hardware.

The history-based MC algorithm is straightforward to im-

plement on modern computer clusters using hybrid parallel

programming models such as MPI+OpenMP. The perfor-

mance of these simulations in distributed memory systems

is relatively well understood and quite scalable [1]; however,

shared memory scaling can be less intuitive because of

memory contention effects and complications within modern

cache memory subsystems. As computational architectures

foster exascale computing capabilities, it will become more

important to understand and alleviate these effects. Hardware

accelerators provide ever-wider vector units that encourage

the use of the SIMD instructions in shared memory. Some

applications can trivially exploit the powerful capabilities of

these vector-centric architectures (diffusion, finite difference

method, etc.), while others may require a careful redesign of

data structures and algorithms (MC transport), and an unfor-

tunate few may not be suitable candidates for vectorization

at all.

The MC transport loop over particles, as described so far,

is not a good candidate for vectorization because each parti-

cle in the simulation is in some intermittent state depending

on its history. At a particular simulation time, each particle

may be in a code block which applies physics for either

elastic/inelastic scattering, absorption, collision, or migration

in a manner that is imposed by thread-specific random

seeds. SIMD instructions cannot be applied across history-

based particle data structures because different instructions

are required at different times. However, pivotal work by

Troubetzkoy [2], Brown, and Martin [3] reexamined the

history-based algorithm by considering an alternate event-

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.105

733

based simulation, in which particles are banked for eventual

vectorization. With the present-day resurgence of vector

computing on heterogeneous systems, the banking method

has gained appeal [4]–[7]. Nonetheless, we are currently

unaware of any full-physics implementations of the banking

method in MC neutron transport codes, likely due to the

difficulty in transforming history-based data structures and

control flow.

To analyze SIMD opportunities in MC neutron transport,

we target the Intel Xeon Phi platform, which has high

vectorization potential and programming/execution model

flexibility. The execution models (described in detail in

section II-B) have interesting implications and consequences

when comparing banking and history-based algorithms. We

find that the offload execution model is quite compatible

with the banking method, but less so with the history-based

method. On the other hand, the native and symmetric models

are compatible with the history-based method, but less so

with the banking method.

The goals of this paper are to support the above claims,

to quantify our expectations in terms performance, and

to discuss implementation challenges and strategies with

banking and history-based methods. We measure a mature

MC neutron transport application, OpenMC, to determine

how well the Xeon Phi’s different execution models perform.

The results suggest further work to be done, the most

appropriate execution models for satisfying user require-

ments, and important implications for the future of MC

physics applications in the face of ubiquitous accelerator-

based clusters.

II. BACKGROUND

A. The OpenMC Monte Carlo Application

Our experiments are performed within the OpenMC [8]

neutron transport code, originally developed in 2011 by the

Computational Reactor Physics Group at MIT. OpenMC has

quickly gained traction as a mature neutronics application

for conducting accurate 3D simulations of nuclear reactor

geometries. It is a modern framework written in Fortran

2008 that prioritizes good software engineering practices.

Furthermore, it serves as a valuable testbed for implement-

ing novel physics, parallel algorithms, and for exploring

new high performance parallel architectures. The parallel

programming model typically used is MPI for distributed

memory communication, and OpenMP for shared memory

multi-threading.

OpenMC applies the history method, in which each par-

ticle is independently tracked by a specific thread from its

birth (e.g., a fission event) to its death (e.g., an absorption

event). Throughout their lifetimes, particles undergo a series

of possible interactions that include elastic/inelastic scat-

tering, fission, absorption, and other secondary reactions.

The movement of particles and occurrence of reactions

are dictated by the interplay between a random number

Figure 1. Cross section data for the Uranium-238 isotope

generator (RNG) and experimentally informed neutron cross
section data. For each of the above reactions, there exist

continuous energy cross section values, denoted σr, where

r is a reaction specific subscript.
We now describe three importance concepts in MC neu-

tron transport simulation that are relevant to this work:

1) Neutron Cross Section Data: An example of the

total cross section data for the Uranium-238 isotope is in

Figure 1. When a particle enters a material, all the nuclides

therein contribute to the total macroscopic cross section,

Σt. Algorithm 1 shows the calculation of Σt, done by each

OpenMP thread of execution. The cross section data, which

is interpolated to a fine grid across the energy domain, is

replicated on each compute node and read-only.

Algorithm 1 Calculation of the macroscopic cross section

Input: �xp (location of particle p) and Ep (its energy)
m ← lookup_material(�xp)
u← find_energy_index(Ep)
for all n such that n is a nuclide in m do

Σt ← Σt + atomic_density(n) * σr(n, u)
end for

Reactor simulations typically contain hundreds of nuclides

and several reaction types, and it has been shown that com-

putation of Σt for all particles is the primary bottleneck [1].

Often, the table lookup of σr results in a last-level cache

miss, and is therefore entirely memory bound. Because of

the large amount of time spent doing cross section lookups,

we focus our initial efforts on the vectorization of this

bottleneck (discussed further in section III-A below).

2) Sampling with an RNG: After calculation of the cross

section values, the RNG becomes central to the determi-

nation of particle interactions. To see this, consider the

calculation of distance to the next collision in MC neutron

transport. Given the probability density function as a func-

tion of distance, p(l), we integrate to obtain the cumulative

distribution function for the distance to the next collision, d:∫ d

0

p(l) dl =

∫ d

0

Σte
−Σtl dl = 1− e−Σtd

where Σt is the total macroscopic cross section of the

material. By inversion transform sampling:

d = − ln(1− ξ)

Σt
= − ln ξ

Σt
(1)

734

where ξ is a random number on the interval [0, 1).
Other examples of RNG influence include the determi-

nation of whether or not an absorption reaction occurs and

the value of the scattering angle, μ. An absorption reaction

occurs if

ξσt(E) < σa(E)− σf (E)

where the cross sections σt, σa, and σf correspond to the

total, absorption, and fission cross sections, respectively. The

cosine of scattering angles is determined by

μ = 2ξ − 1

where μ is the cosine of the scattering angle.

3) Thermal effects and unresolved resonances: In order

to attain high accuracy, OpenMC incorporates sophisticated

physics treatments that are inherently difficult to vectorize.

For instance, thermal motion effects occur because target

nuclei have non-zero velocity, and the effects are accounted

for on-the-fly. Thermal binding effects may also occur

because of crystalline properties of the target nuclei. To

account for such properties, OpenMC incorporates S(α, β)
table lookups into the calculation of the cross sections,

and makes subtle changes to outgoing elastic and inelastic

scattering angles and energies. Another complication arises

in the unresolved resonance range (URR), which resides

in the high energy regime where resonances cannot be

resolved experimentally (for example, around 10−2 MeV in

Figure 1). Calculations in this range are not based on discrete

cross section values but rather on probability tables [9].

The S(α, β) and URR routines inherently contain a large

number of conditional expressions, or code branchings. Con-

ditionals complicate implementation of the banking method,

because groups of particles corresponding to each code

branch need to be separated. This is typically done by

replacing the conditionals with appropriate gather/scatter,

compress/decompress, and bit-controlled vector operations.

B. The Xeon Phi: Architecture and Execution Models

The Intel Xeon Phi coprocessor, based on the Intel Many

Integrated Core (MIC) architecture, is a PCIe attached

device specialized for highly parallel computation. The

device specifications and details are thoroughly described

elsewhere [10]. There are 3 primary modes of execution

supported by the MIC. Each mode has different implemen-

tation strategies and performance implications, especially in

the context of Monte Carlo neutron transport calculations.

They are the offload, native, and symmetric modes:

• Offload - The MIC assists the host with designated ker-

nel regions. Offloading computation implicitly incurs

PCIe latency and bandwidth costs (a major issue when

offloading cross section lookups, even with a persistent

energy grid and overlap via asynchronous transfer).

• Native - The MIC executes as an isolated Linux system.

Serial performance is exacerbated by the relatively low

core clock speed of the MIC, and applications are

limited to on-board memory, no larger than 16 GB.

• Symmetric - Computation is shared between the host

and MIC, and coordination occurs via message passing.

Load balancing between host and MIC becomes an

issue for maintaining synchrony (see section III-B3).

This paper analyzes all 3 models within the context

of OpenMC by means of performance measurements, im-

plementation constraints, implications for generality and

extendability, and overall scalability.

III. EXPERIMENTAL MEASUREMENTS

Our micro-benchmark experiments utilized resources

from the Joint Laboratory for Systems Evaluation (JLSE)

provided by the Argonne Leadership Computing Facility

and the Mathematics and Computer Science department

at Argonne National Laboratory. Specifically, we used the

Jenny, Ruth, and Lucie compute nodes. The nodes contain

2 CPU sockets, each with an Intel E5-2687W processor (16

total cores, each 2-way hyper-threaded), clocking at 3.40

GHz, and a total of 64 GB of DDR3 RAM. Two Intel Xeon

Phi 7120a coprocessor (MIC) devices connect to the PCIe

2.0 x16 bus. Each MIC device has 61 cores (4-way hyper-

threaded) with a 1.238 GHz clock and 16 GB of RAM.

The micro-benchmarks in section III-A compare the

single-node performance of the banking and history-

based methods, whereas section III-B measures distributed-

memory scaling performance of MPI+OpenMP in the full-

featured OpenMC application. We conducted these exper-

iments on the Stampede system at the Texas Advanced

Computing Center (TACC). Each host CPU has 2 Xeon E5-

2680 processors (8 cores total with 2-way hyperthreading),

each with a 2.6 GHz clock and 32 GB of DDR3 RAM. 1,024

nodes contain 1 PCIe-attached SE10P MIC coprocessors

(with 61 cores each running at 1.1 GHz), and 384 hosts have

2 MICs each (please note this in Figure 6). The interconnect

is an FDR Mellanox InfiniBand network. Unless otherwise

specified, all MIC experiments were run with 244 total

OpenMP threads in native/symmetric mode and 240 threads

in offload mode (leaving 1 core dedicated to data transfer).

All applications are compiled with the Intel compiler version

14.0.1 with -O3 optimizations.

The input geometry to the OpenMC application is the

Hoogenboom-Martin benchmark [11] which provides a

common model for performance analysis of Monte Carlo

simulations of full-core reactors. The model consists of

a pressurized water reactor core with 241 identical fuel

assemblies (each 21.42 x 21.42 cm). Each assembly consists

of a 17 by 17 lattice of fuel pins including 24 control rod

guide tubes and an instrumentation tube. A thin cladding

composed of natural zirconium surrounds each fuel pin. In

the original Hoogenboom model, 34 different nuclides make

up the nuclear fuel: a mixture of actinides, minor actinides,

and key fission products. Throughout our experiments, we

735

label the 34-nuclide model as “H.M. Small”. A similar

model, labelled “H.M. Large”, consists of a more accurate

representation of fuel containing 320 different nuclides.

In section III-A below, we consider two micro-

benchmarks that quantify the potential benefits of the bank-

ing method when vectorizing across particles in offload

mode. In section III-B, we show performance results for

a full-featured history-based implementation of OpenMC in

native mode, then discuss the load balancing strategies for

distributed scaling in symmetric mode.

A. OpenMC Micro-benchmarks

The feasibility of banking a large number of particles to

be offloaded to the Xeon Phi is evaluated by considering

two micro-benchmarks:

1) Cross Section Lookups: OpenMC is fully initialized,

and particles are banked just before a cross section

lookup is required. Then, after banking N particles,

we measure the time to compute all N cross sections.

2) Sampling Collision Distances: After computing all N
cross sections from micro-benchmark #1, we measure

the time to compute all N distances to the next

collision event (as in Equation (1)).

In benchmark #1, we show that vectorization of the

cross section loop over nuclides is possible and compare

calculation rates of the MIC with the host CPU. In micro-

benchmark #2, we present optimizations in random number

generation and the use of vector intrinsic functions to im-

prove performance. We then consider the overhead involved

with banking particles, and postulate about the performance

of offloading in a complete implementation.

1) Cross Section Lookups in Offload Mode: In this micro-

benchmark, we modified OpenMC to bank a particle into

shared memory just before a cross section lookup would

normally take place. Once a sufficient number of particles

are in the global bank, a loop over all particles accomplishes

the lookups at once. This drastically changes the control flow

of the current implementation of OpenMC, and dismantles

most of its functionality. However, since the lookup function

is the bottleneck region of OpenMC, measuring this mod-

ified version and treating it as a micro-benchmark is quite

informative.

Algorithm 2 shows the overall procedure for this micro-

benchmark. We made a series of optimizations (not shown)

to improve the performance of the lookups on the MIC.

The most important was the transformation of arrays of

Fortran derived types into single isolated arrays. This is a

common optimization (“array of structs to struct of arrays”,

or AoS to SoA) that is particularly important on the MIC,

and examples of its implementation and analysis are dis-

cussed in many sources [10], [12]. Other relatively minor

optimizations include data alignment to 64-byte boundaries

and the manual tuning of prefetch distances.

Algorithm 2 Banked Cross Section Lookup

1: Initialize OpenMC (geometry, energy grid, nuclides, etc)

2: #omp parallel for
3: for i← 0 to total particles do
4: initialize particle(i);
5: bank particle(i);
6: end for
7: synchronize bank();

8: #omp parallel for
9: for i← 0 to banked particles do

10: Locate Ep on Unionized Grid;

11: #pragma simd
12: for n← 0 to num nuclides do
13: Calculate macroscopic cross section;

14: end for
15: end for

Figure 2 shows the number of lookups per second on the

MIC for two different implementations: one with banking

of particles and one without. Both take the H.M. Large

benchmark as the input problem and apply the unionized

energy grid algorithm [13], which reduces the number of

grid searches by creating a point-wise union of the reaction

cross section values across all nuclides. Using the instru-

mentation API of the TAU parallel performance system [14]

to establish static timers, the average lookups per second

were gathered for both the banking method and the original

history-based method. For the banking method, the timer

starts in the main thread at entry to the loop across the

particle bank and stops at the loop’s exit. For the history-

based method, TAU collects the average overall time spent in

the calculate_xs() routine, which calculates the total

macroscopic cross section for a single particle in a particular

material at some moment of the simulation.

In order to accomplish vectorization across the particle

bank, we vectorized the inner loop over nuclides within a

material (line 12 of Algorithm 2), as opposed to the outer

loop over banked particles (line 9). Although it is possible

to force vectorization across the outer loop with a #pragma

Figure 2. Cross section lookup rates for banking (MIC) and history (CPU)
methods in micro-benchmark #1 on a JLSE compute node (H.M. Large).

736

Algorithm 3 (Naive) - Sample distance to next collision

Input: Array X with N cross section values

Output: Array D with N distances to next collision

for i← 0 to iters do
#pragma omp parallel for
for j ← 0 to N do
float r = rand_r()/RAND_MAX;
D[j] = -log(r) / X[j];

end for
end for

simd directive, this results in relatively worse performance

(likely because the bounds of the inner loop vary with the

different materials). This is an important observation because

it implies that the same vectorization can be accomplished

in a history-based implementation. It was also necessary to

remove the blocks that handle S(α, β) and URR calculations

to achieve vectorization. For fairness of comparison, the

same blocks of code were removed from the original version

of the host CPU code. With the MIC version, we see a

speedup on the order of 10x using the banking method.

While this is promising, future work must incorporate the

S(α, β) and URR calculations to attain the best simulation

accuracy. This will require more careful hand-coding to

handle the high amount of conditional branching in the code.

2) Sampling Distances and Tracking: The second micro-

benchmark examines a ubiquitous method in MC transport:

sampling the distance to the next collision as a particle

travels through a particular (homogeneous) material. In fact,

this is the next step in OpenMC after a cross section lookup.

The goal of this micro-benchmark is to calculate the distance

dj , as determined by Equation (1), for every banked particle

(j = 1 . . . N). By vectorizing the calculation of sampled

distances across a banked collection of particles, we can

better understand performance of the banking method in a

full-featured implementation.

As in the previous section, we measure the time spent

looping through all N particles in the bank. In this case,

however, the loop is repeated a number of times (104 in

our experiments) to mimic the generation loop and to get

more consistent measurements. Algorithm 3 shows a naive

OpenMP implementation in which each thread is assigned

some number of particles in the bank. Since no scheduling

directive is present, load balancing is deferred to Intel’s

OpenMP runtime. A random number is chosen for each

particle using a C standard library call to the reentrant

rand_r() function.

Algorithm 4 is an optimized version of Algorithm 3. There

are two primary differences; the first being the use of Intel’s

Math Kernel Library (MKL) to generate random numbers

using the Vector Statistical Library (VSL) interface. Lines

5-8 show that an array of size N (107 in our experiments)

is initialized with uniformly random floats on the interval

Algorithm 4 (Optimized) - Sample distance to collision

Input: Array X with N cross section values
Output: Array D with N distances to next collision

1: float R[nstreams][N/nstreams];
2: VSLStreamStatePtr strm[nstreams];
3: for i← 0 to nstreams do vslNewStream(&strm[i]) end for
4: for i← 0 to iters do
5: #omp parallel for
6: for k ← 0 to nstreams do
7: vsRngUniform(strm[k], N, R[k], 0.0, 1.0);
8: end for
9: #omp parallel for schedule(guided)

10: for (j = 0; j < N ; j+=16) do
11: __m512 v1, v2, v3, v4, v5, v6;
12: v1 = _mm512_load_ps(R+ j);
13: v2 = _mm512_load_ps(X + j);
14: v3 = _mm512_log_ps(v1);
15: v4 = _mm512_div_ps(v3, v2);
16: v5 = _mm512_set1_ps(-1.0);
17: v6 = _mm512_mul_ps(v4, v5);
18: _mm512_store_ps(& D[j], v6);
19: end for
20: end for

[0, 1] via the VSL random number generator API. This API

is highly optimized because it uses vectorized mathematical

functions. VSL also allows for parallel random number

generation with multiple threads using “skip ahead” or “leap

frog” streams. This enables threads to initialize different

sections of the output array, R. Our experiments use the

VSL_BRNG_MT2203 random number generator set.

The second optimization involves the use of vector in-

trinsic functions to perform the SIMD operations manually.

Since Equation (1) is a very simple mathematical operation,

it is easy to utilize the appropriate vector intrinsic func-

tions for 512-bit wide instructions across the loop. These

correspond to lines 12-18 where each _m512 is a vector

register consisting of 16 floating point elements, each 4 bytes

long. Since this kernel is a memory bound computation (the

X , D, and R arrays are typically too large to fit entirely

into L2 cache), optimal prefetch distances are required to

get the best performance. The #pragma noprefetch
prohibits the compiler from guessing prefetch distances, and

_mm_prefetch() calls specify exact distances that were

carefully tuned for this MIC and kernel combination (not

shown in Algorithm 4 for brevity). The _mm_malloc()
function is used to allocate dynamic memory with 64-byte

boundary alignment (also not shown for brevity).

Table I compares the execution times of three different

implementations: the naive approach from Algorithm 3, an

optimized version (#1) with VSL random number generation

(no vector intrinsics), and the full optimization (#2) from

Algorithm 4. The results show that initialization of random

numbers can drastically inhibit performance when not using

vector-optimized methods, especially on the MIC. Also, the

use of vector intrinsics can further improve performance,

even for relatively simple computational loops.

737

Naive Optimized-1 Optimized-2

Implementation time(s) time(s) time(s)

CPU - 32 threads 412 40.6 36.6∗
MIC - 122 threads 8,243 21.0 18.9

Table I
AVERAGE TIMES FOR THE SAMPLING DISTANCE MICRO-BENCHMARK

WITH iters = 104 AND N = 107 ON A JLSE NODE.

3) Offload Overhead Considerations: The measurements

from the two micro-benchmarks above only include the time

spent in the loop over banked particles. However, we also

need to consider the overhead time spent banking particles

and shipping the associated data between device and host.

This section compares time measurements with respect to

the banking of the particles, the transferring of data over the

PCIe bus, and the computing of cross sections.

Using a combination of Intel offload reports (by setting the

OFFLOAD_REPORT environment variable to 3) and TAU

timers, we gathered the information in Table II. The time

to bank particles on the host is considerably lower than on

the MIC because it is a write-intensive memory operation

that is not vectorized. The transfer time to the MIC is the

most expensive operation, which stresses the importance of

overlapping computation with asynchronous data transfer.

The time to transfer the relatively large energy grid is

considerably higher (approximately 1 second for every 5

GB), but that cost is only paid during initialization, and is

amortized with large numbers of batches and/or generations

per batch.

H.M. Small H.M. Large

Operation time(s) time(s)

banking (host) 4 ms 4 ms
banking (MIC) 21 ms 34 ms

transfer time (PCIe) 460 ms 2,210 ms
bank size transferred 496 MB 2.84 GB

energy grid size transferred 1.31 GB 8.37 GB
compute bank cross sections (MIC) 17 ms 101 ms

Table II
AVERAGE TIME AND SIZES (PER ITERATION) FOR BANKING PARTICLES

AND OFFLOADING TO THE MIC WITH 105 PARTICLES

Figure 3 shows the asymptotic behavior of the ratio of

offload time to generation time as the number of particles

is increased. For each group, the average generation time

(the time to simulate all particle histories) of an iteration

is normalized to 1.0, and all other times are reported as a

ratio of that value. As the number of particles increases,

the relative cost of each operation shows a different trend:

offloading bank data over the PCIe bus decreases, calculating

cross sections on the host increases, and calculating cross

∗Using the corresponding 256-bit AVX vector intrinsics

Figure 3. Time comparison between banking particles on the CPU and
offloading to the MIC (H.M. Small). Yellow corresponds to the history
method on the CPU, and blue/red to the banking method on the MIC. All
times are normalized with respect to the host generation time (green).

sections on the MIC decreases. This behavior suggests that

it is indeed possible to gain performance by offloading cross

section lookups to the MIC, despite the banking overheads,

if simulating sufficiently many particles - above 10,000.

B. Full-Physics, History-Based Transport on the MIC

The performance improvements presented in the previous

section are promising, but leave something to be desired. In

order to accomplish vectorization more easily, we removed

S(α, β) and URR physics calculations from the micro-

benchmarks. Furthermore, restructuring OpenMC to bank

particles before lookups drastically changes the overall con-

trol flow, and will require a substantial development effort

to accomplish a complete implementation. The impressive

speedups and asymptotic trends of offload overhead are

encouraging and suggest a full Xeon Phi implementation

with banking may be worthwhile. However, one significant

advantage of programming on the Xeon Phi is that little

porting effort is required to run entire applications on the

coprocessor. This section explores what performance we can

expect with all physics in OpenMC included and without any

banking. We consider two different execution models: native

mode and symmetric mode, as described in section II-B.

Figure 4 shows an excerpt of a TAU comparison profile

between an OpenMC execution on the MIC in native mode

and on the host CPU. The application was largely unchanged

to run on the MIC. The primary optimization was a switch

from a manual sum reduction across global tallies to an

OpenMP based sum reduction. Also, some OpenMP critical

sections were replaced with relatively lightweight atomic

sections, and alignment of key data structures was forced to

lie on 64-byte boundaries. All these changes also improved

the performance on the host CPU, and Figure 4 includes all

optimizations on both architectures.

The top three routines in Figure 4 all contribute to the

cross section lookups, where calculate_xs() is the

738

Figure 4. A TAU Profile comparison between the host CPU execution and
the MIC (in native mode) after optimizations on a JLSE node. The input
was an H.M. Large benchmark with 107 particles.

parent function. The main feature to notice is the MIC

performance is better than the original on these bottleneck

functions. Furthermore, the total simulation time on the host

was 96 minutes whereas the total time on the MIC was 65

minutes (for a 1.5x speedup).

1) Native Mode on a Single Compute Node: An impor-

tant metric for evaluating the performance of an OpenMC

execution is the number of simulated neutrons per second,

or the calculation rate. We desire a high rate because

many particles per batch are required to obtain meaningful

statistics, and many batches are needed to assure source

convergence. Figure 5 compares the calculation rate between

the host CPU and the MIC using the H.M. Large model

and several different numbers of particles. All simulations

use the unionized energy grid algorithm [13]. The top half

of Figure 5 shows the calculation rate for inactive batches,

which do not contribute to tallies. The bottom half shows

active batches, in which tallies are accumulated. We run

inactive batches because the fission source distribution and

eigenvalue do not converge immediately, so there is little

reason to tally initially. In general, the performance differs

between inactive and active batches, but in the default H.M.

benchmark, there is little distinction.

The above measurements show that the MIC consistently

simulates neutrons at a rate 1.5 to 2 times faster than the

CPU, and the highest rates occur with at least 105 particles

per node. We define the ratio of calculation rates as

α =
CPU calculation rate

MIC calculation rate
(2)

From the data in Figure 5, we see that α is consistent when

simulating at least 104 particles: αi = 0.61±0.02 for inactive

batches and αa = 0.62± 0.01 for active batches. In general,

α differs between active and inactive batches, particularly if

user-defined tallies are collected throughout phase space. In

our experiments, however, only the default global tallies are

considered (total collisions, absorptions, and track-lengths),

and are relatively less expensive.

Figure 5. Calculation rate (neutrons per second) in OpenMC for inactive
batches (top) and active batches (bottom) on a JLSE compute node (with
the H.M. Large benchmark).

The node runs out of main memory on both the CPU

and the 16 GB MIC when simulating between 107 and 108

particles. On the 8 GB MIC, between 106 and 107 particles

can be simulated. While this is a serious restriction, the issue

can be ameliorated by distributing the computation to more

compute nodes, which is the subject of the next section.

2) Symmetric Mode with MPI + OpenMP: When using

MPI, symmetric mode is easily applied by building two

different binaries - one for the host CPU and one for the MIC

device - then executing them simultaneously with mpirun
or mpiexec. Although it is possible to run 1 or more

MPI processes per core on the MIC, most applications find

the best performance using a relatively small number of

processes and an appropriate number of threads [15] (for

example, 2 processes and 122 threads or 4 processes and 61

threads, etc.). After our optimizations, OpenMC attains the

best performance when running a single MPI process per

MIC device with 244 threads.

With little extra effort, OpenMC can be run in symmetric

mode by using the host and native binaries from the previous

section. However, OpenMC assigns work to MPI processes

statically: the total number of particles is split into p groups,

where p is the number of MPI processes. The results from

Figure 5 establish that the MIC and CPU have quite different

calculation rates, so load imbalance naturally occurs when

running the application in this manner.

The “Original” column in Table III shows that the perfor-

mance when running the CPU + MIC combination is 16%

less than the ideal calculation rate (10,691 neutrons/second).

The CPU + 2 MIC combination is 32% less than ideal rate

(17,332 neutrons/second). The next section tackles this load

balancing issue.

3) Load Balancing Symmetric Mode: A simple way to

address the problem above is by imposing a static load

balancing scheme [12]. If there are ntotal particles, the goal

is to determine the best number of particles to assign to each

739

Original Load Balanced

Implementation rate rate

CPU 4,050 N/A
MIC 6,641 N/A

CPU + MIC 8,988 10,068
CPU + 2 MICs 11,860 17,098

Table III
AVERAGE CALCULATION RATES (NEUTRONS PER SECOND) FOR H.M.

LARGE (ACTIVE BATCHES WITH 105 PARTICLES) ON A JLSE NODE. IN

THE LOAD BALANCED COLUMN, α = 0.62.

MIC, nmic, and the best number of particles to assign to

each CPU, ncpu. At any given scale, there are pmic processes

running on MIC devices and pcpu processes running on host

CPUs where

pmicnmic + pcpuncpu = ntotal.

Solving this equation for both nmic and ncpu and using the

fact that ncpu/nmic = α gives

nmic =
ntotal

pmic + pcpuα
and ncpu =

ntotalα

pmic + pcpuα
. (3)

This α is essentially the same quantity from Relation (2). For

our H.M. Large experiment with 107 particles, choosing α =
0.62 estimates that nmic = 6,172,840 and ncpu = 3,827,160

for a single-node execution. Using these quantities, the

performance is only about 6% less than the ideal calculation

rate, as shown in the “Load Balanced” column in Table III.

The strong scaling plot in Figure 6 shows OpenMC

performance when using the simple static load balancing

method above. In this experiment, we simulated the H.M.

Large model with 107 total particles at several different

scales. Because JLSE only has 3 nodes with MICs, we

switch to the Stampede cluster at TACC. The Stampede

cluster has 1,024 nodes with 1 MIC per node and 384 nodes

with 2 MICs per node. This is why the 1-MIC curve in

Figure 6 scales to 210 nodes, but the 2-MIC curve does not.

Figure 6 shows near perfect distributed strong scaling. For

example, at 128 nodes (17,664 total cores), the simulation

time is 95% of the expected ideal based on the 4 node

measurement (which is the smallest allotment that will fit

107 particles, due to the relatively limited amount of MIC

memory). The extra 5% can easily be accounted for by

considering the extra communication required at 128 nodes,

which is not included in our simple ideal estimate.

The tailing of the 1-MIC curve at 1,024 nodes is ex-

pected based on the measurements in Figure 5. Because

α = 0.42 on Stampede (with 106 particles), Equation (3)

predicts 6,643 particles assigned to the MIC and 3,122 to

the CPU. With such a low number of particles, however,

our calculation rate has decreased and α has changed. The

effect is not seen in the “CPU only” curve because we

are still safely simulating about 104 particles per node.

Figure 6. Strong scaling of the H.M. Large simulation with N = 107 on
the TACC Stampede Cluster.

At this point, the simple fix is to increase the number of

particles per node (to weak scale the application). A weak

scaling plot (for which nmic and ncpu are held constant

while increasing scale) is shown in Figure 7. Weak scaling

exhibits greater than 94% efficiency at all scales up to 128

compute nodes on Stampede. We expect that weak scaling

will maintain high efficiency at much larger scales, at least

until the performance of MPI reduction begins to decline∗.

Figure 7. Weak scaling of the H.M. Large simulation with N = 106 per
node on the TACC Stampede Cluster.

IV. RELATED WORK

A. SIMD in MC Transport

Related proof-of-concept work explores the possibility of

porting MC neutron transport methods to SIMD architec-

tures, in particular on GPUs [4]–[6]. Similar to the cross

section lookup micro-benchmark above, gathering particles

for vectorization purposes takes quite some effort to fully

implement, and often synthetic data is used, or stripped

down codes are presented [6]. While some work has been

done on the Xeon Phi coprocessor [7], we are not aware of

any thorough analysis of the alternative execution models,

especially of the native and symmetric modes. As we have

seen, the primary advantage of these modes of execution

∗ We are confident that the weak scaling curve will remain flat out to
210 nodes and will be conducting experiments on Stampede to validate this
claim.

740

Figure 8. Execution time for RSBench implementations on Stampede

is that full-physics implementations can be analyzed on the

Xeon Phi with relatively little development effort; and in the

case of OpenMC, performance is considerably better than on

the host.

B. Multipole Expansion of Cross Section Data

A particularly exciting area of related research is in

the multipole expansion of cross section data [16], [17].

The primary motivation for this work is to incorporate the

temperature dependence of nuclear cross section data into

MC simulation. Applying temperature dependence with the

standard table lookup approach requires an astoundingly

large amount of data that is impractical to replicate. Instead

of doing table lookups, the multipole expansion method

calculates a summation over poles (i.e. singularities), each

with a different Faddeeva function evaluation [17]. Not

only does this enable temperature dependence at remarkably

low memory cost, but it potentially turns a memory-bound

problem into a compute-bound problem. This could be

beneficial for OpenMC because it is bottlenecked by the

cross section lookups.

In order to study the performance behavior of multipole

expansion, a proxy application called RSBench was devel-

oped by Tramm and Siegel [18]. On a host CPU Xeon

processor, previous work found that RSBench can achieve

twice the FLOP rate as the classical lookup approach. Initial

comparison with experiments on the MIC are encouraging

after assuring vectorization and fixing the number of poles

per window. Figure 8 compares the execution time of

the original code with a vectorized version on Stampede.

Future work will involve exploring the viability of whether

multipole expansion data can be prepared to have a constant

number of poles per window.

V. FUTURE WORK

The primary component missing from our banking-based

implementation is the inclusion of the S(α, β) and URR

routines. Accomplishing this will require care to assure that

the loop over nuclides remains vectorized. In the above

implementations, we favor automatic vectorization by the

compiler, but the use of vector intrinsics are a viable option

to assure the best possible performance. However, there

are drawbacks: Fortran vector intrinsics currently do not

exist, requiring the extra hurdle of linking with C/C++ and

possibly switching back and forth from row to column-

major memory layouts. Also, the use of intrinsics potentially

obfuscates the meaning of the code, which detracts from

OpenMC’s pleasantly high readability.

Our history-based implementation of OpenMC in na-

tive/symmetric mode can be further optimized. For instance,

the AoS to SoA transformation improved the performance

of micro-benchmark #1, but this optimization has not yet

been fully incorporated into OpenMC. Full conversion will

require a more extensive development effort and verification

for correctness than with the micro-benchmark. Furthermore,

if vectorization of the S(α, β) and URR routines can be

accomplished, then SoA will surely improve performance.

In symmetric mode, the calculation rate varies little be-

tween batches (especially when separating inactive from

active), so the value of αi and αa can be estimated accurately

from only a single inactive and active batch, respectively.

This implies that α can be determined at runtime by setting it

to 1/p on the first batch, and using the measured calculation

rates to determine an appropriate α for subsequent batches.

Some modification of OpenMC’s internal data structures

are required to adapt at runtime, and we are currently

implementing this feature.

OpenMC’s on-node performance and off-node scalability

in symmetric mode are promising, especially in light of

the future directions of Xeon Phi architectures. Intel has

announced Knights Landing [19], in which there will no

longer be a required PCIe connection between host and co-

processor. Up to 72 cores can be attached directly to the host

CPU socket, and out-of-order execution will be supported,

resulting in a possible automatic ∼3x single thread speedup

over Knights Corner for most applications. Since on-package

memory will be up to 16 GB, similar to our experiments

above, and out-of-order execution surely plays a crucial role

in the cross section lookup calculations, we may potentially

observe far better performance on Knights Landing systems

in symmetric mode.

Finally, an interesting future direction is analyzing en-

ergy expenditures in MC neutron transport. Host-attached

devices, such as MIC and GPU devices, show excellent

performance per watt. Power measurement and management

tools, such as the Running Average Power Limit (RAPL)

interface, micsmc, and PAPI’s micpower component pro-

vide a means for comparison of host and device energy

performance. Future work will include these energy mea-

surements and incorporate those into an analysis of the trade-

off between time to solution and energy expenditure.

VI. CONCLUSION

We have discussed two techniques for doing vector pro-

cessing on the Intel Xeon Phi in the context of the OpenMC

741

neutron transport application. The first approach is to bank

large collections of particles, then apply vectorized loops

across each collection. This is congruent with the Xeon

Phi’s offloading execution model, in which data must be

transferred to and from devices for maximum performance.

The second approach is to vectorize loops within the history-

based code for each individual particle. This was prototyped

in native mode, then scaled out with MPI + OpenMP in

symmetric mode∗.
This paper highlights the important trade-off between

particle banking and history-based methods in MC neu-

tron transport applications. The performance gained when

banking particles for vectorization is potentially very high:

our micro-benchmarks show between 2x and 10x speedups.

However, a full banking-based implementation is difficult

to achieve, and complications arise when transforming data

structures to be vector compatible, overlapping computation

with asynchronous data transfers, determining which code

regions to vectorize/offload, etc. The history-based method

is far more straightforward to implement, and potential for

effective vectorization exists, especially when there is a large

number of nuclides per material. The MIC is able to execute

a full-physics, full-core reactor simulation of the H.M. Large

benchmark about 1.6 times faster than the host, and 4 times

faster when balancing load between the CPU and 2 MICs.

As far as we are aware, our per-node calculation rate on the

H.M. Large benchmark (17,098 particles/sec) is higher than

any other MC neutron transport application. Furthermore,

we achieve 95% of the ideal simulation time at scales up to

39,424 cores using 512 MICs and CPUs in parallel.

ACKNOWLEDGMENTS

D. Ozog is supported by the Department of Energy

Computational Science Graduate Fellowship (DOE CSGF)

program under contract DE-FG02-97ER25308. This re-

search used resources of the Argonne Leadership Computing

Facility and Laboratory Computing Resource Center at

Argonne National Laboratory, which is supported by the

Office of Science of the U.S. Department of Energy under

contract DE-AC02-06CH11357. The authors acknowledge

the Texas Advanced Computing Center (TACC) at The

University of Texas at Austin for providing HPC resources

that have contributed to the research results reported within

this paper. URL: http://www.tacc.utexas.edu. The research

at the University of Oregon was supported by grants from

the U.S. Department of Energy, Office of Science, under

contracts DE-FG02-07ER25826, DE-SC0001777, and DE-

FG02-09ER25873.

REFERENCES

[1] A. Siegel, K. Smith, P. Romano, B. Forget, and K. Felker,
“Multi-core Performance Studies of a Monte Carlo Neutron

∗The source code is freely available online:
https://github.com/davidozog/openmc/tree/mic-mpi-load-balanced

Transport Code,” International Journal of High Performance
Computing Applications, vol. 28, no. 1, pp. 87–96, Feb. 2014.

[2] E. Troubetzkoy, H. Steinberg, and M. Kalos, “Monte Carlo
Radiation Penetration Calculations on a Parallel Computer,”
Trans. Am. Nucl. Soc., vol. 17, p. 260, 1973.

[3] F. B. Brown and W. R. Martin, “Monte Carlo Methods for
Radiation Transport Analysis on Vector Computers,” Progress
in Nuclear Energy, vol. 14, no. 3, pp. 269 – 299, 1984.

[4] Liu, Du, Ji, Xu, and Brown, “A comparative study of
history-based versus vectorized Monte Carlo methods in the
GPU/CUDA environment for a simple neutron eigenvalue
problem,” SNA + MC 2013, p. 04206, 2014.

[5] Bergmann, Ryan M. and Vujić, Jasmina L., “Optimization of
Monte Carlo Algorithms and Ray Tracing on GPUs,” SNA +
MC 2013, p. 04212, 2014.

[6] F. A. van Heerden, “A Coarse Grained Particle Transport
Solver Designed Specifically for GPUs,” Transport Theory
and Statistical Physics, vol. 41, pp. 80–100, 2012.

[7] Liu, Tianyu, George Xu, X, and Carothers, Christopher D.,
“Comparison of Two Accelerators for Monte Carlo Radiation
Transport Calculations, NVIDIA Tesla M2090 GPU and Intel
Xeon Phi 5110p Coprocessor: A Case Study for X-ray CT
Imaging Dose Calculation,” SNA + MC 2013, p. 04205, 2014.

[8] P. K. Romano and B. Forget, “The OpenMC Monte Carlo
particle transport code,” Annals of Nuclear Energy, vol. 51,
no. 0, pp. 274 – 281, 2013.

[9] L. B. Levitt, “The probability table method for treating
unresolved neutron resonances in Monte Carlo calculations,”
Nucl. Sci. Eng, vol. 49, pp. 450–457, 1972.

[10] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High
Performance Programming. Morgan-Kaufmann, 2013.

[11] J. Hoogenboom, W. Martin, and B. Petrovic, “Monte Carlo
performance benchmark for detailed power density calcula-
tion in a full size reactor core,” Nuclear Energy Agency, 2009.

[12] A. Vladimirov and V. Karpusenko, Parallel Programming and
Optimization with Intel Xeon Phi Coprocessors. Colfax
International, 2013.

[13] J. Leppänen, “Two practical methods for unionized energy
grid construction in continuous-energy Monte Carlo neutron
transport calculation,” Annals of Nuclear Energy, vol. 36,
no. 7, pp. 878–885, 2009.

[14] S. Shende and A. Malony, “The TAU parallel performance
system,” International Journal of High Performance Com-
puting Applications, vol. 20, no. 2, pp. 287–311, May 2006.

[15] K. Antypas, “Preparing Your Application for Advanced
Manycore Architectures,” presented at the DOE CSGF HPC
Advanced Topics Workshop, Washington, D.C. (2014).

[16] R. Hwang, “A Rigorous Pole Representation of Multilevel
Cross Sections and Its Practical Applications,” Nuclear Sci-
ence and Engineering, vol. 96(3), pp. 192–209, 1987.

[17] B. Forget, S. Xu, and K. Smith, “Direct Doppler broadening in
Monte Carlo simulations using the multipole representation,”
Annals of Nuclear Energy, vol. 64, pp. 78 – 85, 2014.

[18] J. R. Tramm and A. R. Siegel, “Performance Analysis of
a Reduced Data Movement Algorithm for Neutron Cross
Section Data in Monte Carlo Simulations,” 2014.

[19] R. Hazra, “Accelerating Insights... In the Technical Comput-
ing Transformation,” presented at the International Supercom-
puting Conference, Leipzig, Germany (2014).

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National

Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under

Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf,

a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

742

