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Abstract. We report our experiences in porting and tuning the Apache
Spark data analytics framework on the Cray XC30 (Edison) and XC40
(Cori) systems, installed at NERSC. We find that design decisions made
in the development of Spark are based on the assumption that Spark
is constrained primarily by network latency, and that disk I/O is com-
paratively cheap. These assumptions are not valid on Edison or Cori,
which feature advanced low-latency networks but have diskless compute
nodes. Lustre metadata access latency is a major bottleneck, severely
constraining scalability. We characterize this problem with benchmarks
run on a system with both Lustre and local disks, and show how to miti-
gate high metadata access latency by using per-node loopback filesystems
for temporary storage. With this technique, we reduce the shuffle time
and improve application scalability from O(100) to O(10, 000) cores on
Cori. For shuffle-intensive machine learning workloads, we show better
performance than clusters with local disks.
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1 Introduction

Apache Spark [14] is a data analytics framework which provides high-level con-
structs for expressing computations over datasets larger than the system physical
memory. The runtime provides elastic parallelism, i.e. resources could grow or
shrink without requiring any change to application code, and provides resilient
execution, which allows automatic recovering from resource failures.

Spark is part of the Berkeley Data Analytics Stack [6], which includes stor-
age, resource management and scheduling infrastructure, such as the Hadoop
Distributed File System (HDFS) [11] and the Hadoop YARN resouce sched-
uler [12]. High-level application-domain libraries are built on top of spark, such
as GraphX for graph analytics [7], Spark SQL for database queries [3], MLLib
for machine learning [10], and Spark Streaming for online data processing [15].

Spark targets directly cloud or commodity clusters compute environments,
which have latency-optimized local disk storage and bandwidth-optimized
network, relatively few cores per node, and possibly little memory per node.
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HPC systems such as the Cray XC series, in contrast, feature diskless compute
nodes with access to a high bandwidth global filesystem, large core counts, large
memory sizes per compute node, and latency-optimized networks designed for
use with HPC tightly coupled applications. The question remains if design deci-
sions made for cloud environments translate well when running Spark on HPC
systems and whether the latter can bring any value to analytics workloads due
to their superior and tightly integrated hardware. In this paper, we present a
comparative performance analysis of Spark running on Cray XC HPC systems
and on a system (Comet) designed for data intensive workloads with large local
SSDs.

We discuss the design of the Spark runtime, showing where file I/O occurs
and what file access patterns are commonly used. On Cori, a Cray XC40 system
installed at NERSC [1], we show that the use of the Lustre filesystem to store
intermediate data can lead to substantial performance degradation as a result
of expensive metadata operations. Initial Spark scalability is limited to O(100)
cores. To reduce I/O impact we extend Shifter, a lightweight container infrastruc-
ture for Cray systems, to mount a per-node loopback filesystem backed by Lustre
files. This reduces the impact of the metadata operations by many orders of mag-
nitude. With loopback, single node Spark performance on Cray XC improves by
6× and it becomes comparable to that of single Comet node with SSDs. Even
more exciting, loopback allows us to scale out to O(10, 000) cores and we observe
orders of magnitude improvements at scale. We use the spark-perf benchmark
suite, consisting of a set of core RDD benchmarks and a set of machine learning
algorithm benchmarks using MLLib. After calibrating and obtaining equivalent
node performance on the Cray and Comet, we can compare the performance
across the two system architectures.

Overall, these results are very encouraging. Simple configuration choices make
HPC systems outperform architecures specifically designed for data analytics
workloads with local SSDs: a global file system that provides a global name space
can provide good performance. This indicates current system HPC designs are
good to execute both scientific and data intensive workloads. The performance
differences between the Cray XC and Comet may provide incentive for the aqui-
sition of HPC systems in the “commercial” domain.

2 Spark Architecture

Spark implements the Map/Reduce model of computation. From the applica-
tion developer’s perspective, Spark programs manipulate resilient distributed
datasets [13] (RDD), which are distributed lists of key-value pairs. The devel-
oper constructs RDDs from input data by reading files or parallelizing existing
Scala or Python lists, and subsequently produces derived RDDs by applying
transformations and actions. Transformations, such as map and filter, declare
the kind of computation that could occur, but does not actually trigger com-
putation; rather, a lineage is constructed, showing how the data represented by
an RDD can be computed, when the data is actually required. Actions actually
retrieve values from an RDD, and trigger the deferred computation to occur.



Scaling Spark on Lustre 651

During map tasks, all data dependencies are intra-partition. During reduce
tasks, inter-partition dependencies can occur, and it is only during reduce tasks
that inter-node communication occurs. This occurs through a shuffle. During
a shuffle, the ShuffleManager sorts data within each partition by key, and the
key-value pairs within each partition are written to per-partition shuffle data
files on disk. Each executor then submits requests for blocks, which are either
local or remote. Each node then requests blocks, both locally and from other
executors. When a block is requested which is owned by a remote executor, the
local BlockManager makes a remote request to the owning BlockManager, which
maintains a queue of requests which are serviced once the shuffle data is written
to the corresponding shuffle file.

3 Disk I/O Patterns in Spark

Disk I/O can occur in almost every stage of a Spark application. During the
construction of input stages, disk I/O occurs to read the input data. In a tra-
ditional Spark installation, the input data would be stored in an HDFS overlay
built on top of local disks, while on the Cray XC input data is stored directly
on the Lustre filesystem available to all compute nodes. Output data is similarly
stored either in HDFS or in Lustre, depending on the installation. When data is
stored outside of HDFS, there is one file per partition, so as a minimum, there
must be at least as many file opens and file reads as there are partitions. Addi-
tionally, each file is accompanied by a checksum file used for verifying integrity,
and an index file indicating file names and offsets for specific blocks. Simple file
readers such as the text file reader perform two file opens per partition: one
for the checksum file and one for the partition data file. More complex file for-
mat readers perform more file operations; for example, the Parquet compressed
columnar storage format performs four file opens per partition: first the check-
sum is opened, the partition data file is opened and the checksum computed,
and both closed. Each partition data file is then opened, the footer is read, and
then the file is closed. Finally, the file is opened again, the remainder of the file
is read before closing the file again.

During every phase, BlockManager I/O can occur. If a block is requested
while being stored on disk, the corresponding temporary file is opened and the
data read and stored in memory, potentially triggering an eviction. When an
eviction occurs, the corresponding temporary file is created, if necessary, and
is written to. If sufficient memory is available that problem data fits in RAM,
BlockManager disk I/O does not occur.

During shuffles, files are created storing sorted shuffle data. As originally
designed, each shuffle map task would write an intermediate file for each shuffle
reduce task, resulting in O(tasks2) files being written. The very large number
of files produced tended to degrade performance by overwhelming the inode
cache [5], so this was replaced with a single file per shuffle reduce task. However,
as tasks are not supposed to affect the global state of the runtime except through
the BlockManager, every map task writing to a per-reduce-task file opens the
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file, writes to it, and closes it. Similarly, every shuffle reduce task opens the file,
reads from it, and closes it. Thus, although the total number of files has been
reduced to O(tasks), the number of metadata operations remains O(tasks2).
Shuffle intermediate files are always written regardless of the amount of memory
available.

4 Spark Performance on Lustre

Previous work on porting Spark to the Cray platform [9] running under Cluster
Compatibility Mode revealed that performance of TeraSort and PageRank was
up to four times worse on a 43 nodes of a Cray XC system compared to an
experimental 43-node Cray Aries-based system with local SSDs, even though
the experimental system had fewer cores than the Cray XC (1,032 vs 1,376). To
mitigate this problem, the authors redirected shuffle intermediate files to an in-
memory filesystem, but noted that this limited the size of problem that could be
solved, and that the entire Spark job fails if the in-memory filesystem becomes
full. Multiple shuffle storage directories can be specified, one using the in-memory
filesystem and one using the Lustre scratch filesystem, but the Spark runtime
then uses them in a round-robin manner, so performance is still degraded.

On Cori we compare directly Lustre with in-memory execution performance.
On Comet we compare Lustre with SSD storage. To illustrate the main differ-
ences we use the GroupBy benchmark which is a worst-case shuffle. GroupBy
generates key-value pairs with a limited number of keys across many partitions,
and then groups all values associated with a particular key into one partition.
This requires all-to-all communication, and thus maximizes the number of shuffle
file operations required, as described in Sect. 3, above.

Figure 1 shows the results on Cori. On a single node (32 cores), when shuffle
intermediate files are stored on Lustre, time to job completion is 6 times longer

Fig. 1. GroupBy benchmark performance (worst-case shuffle) on NERSC Cori, with
shuffle intermediate files stored on Lustre or RAMdisk. Number of partitions in each
case is 4 × cores.
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than when shuffle intermediate files are stored on an in-memory filesystem. The
performance degradation increases as nodes are added: at 80 nodes, performance
is 61 times worse on Lustre than the in-memory filesystem. Runs larger than 80
nodes using Lustre fail.

Results on Comet are shown in Fig. 2. On one node, shuffle performance is
11 times slower on Lustre than on the SSD; however, the performance penalty
does not become worse as we add nodes. Because Comet compute nodes feature
local SSDs, there is less contention for the Lustre metadata server, as other jobs
running on the system tend to make use of the SSD for intermediate file storage.

Figure 3 shows the performance of the spark-perf benchmarks [2] on SDSC
Comet. The scheduling-throughput benchmark runs a series of empty tasks with-
out any disk I/O; its performance is unaffected by the choice of shuffle data
directory. The scala-agg-by-key, scala-agg-by-key-int and scala-agg-by-key-naive
benchmarks perform aggregation by key: they generate key-value pairs and then
apply functions to all values associated with the same key throughout the RDD;
this requires a shuffle to move data between partitions. The version using float-
ing point values (scala-agg-by-key) and the integer version (scala-agg-by-key-int)
are designed to shuffle the same number of bytes of data, so that the number
of values in the integer version is larger than for the floating point version,
increasing the number of shuffle intermediate file writes. The scala-agg-by-key-
naive benchmark first performs a groupByKey, grouping all values for each key
into one partition, before performing partition-local reductions, so that shuffles
move a larger volume of data than for the non-naive versions, giving larger shuf-
fle writes. The three scala-agg-by-key benchmarks have degraded performance

Fig. 2. GroupBy benchmark performance (worst-case shuffle) on SDSC Comet, with
shuffle intermediate files stored on Lustre or local SSD. Number of partitions in each
case is 4 × cores.
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Fig. 3. Slowdown of spark-perf Spark Core benchmarks on Comet with shuffle inter-
mediate data stored on the Lustre filesystem instead of local SSDs.

when intermediate data is stored on Lustre, which continue to degrade as more
nodes are added; at 16 nodes, performance for scala-agg-by-key-naive is 12 times
worse than on SSD. The remaining benchmarks involve little or no shuffling and
so are unaffected by shuffle directory placement.

As described in Sect. 3, shuffle intermediate files are opened once for each
read or write. When shuffle intermediate files are stored on Lustre, this causes
heavy metadata server load which slows the overall process of reading or writing.
Figure 4 shows the slowdown that results from opening a file, reading it, closing
it, and repeating this process, as compared to opening a file once and performing
multiple reads. For read sizes under one megabyte, Lustre filesystems show a
penalty increasing with decreasing read size.

Spark-perf also provides a set of machine learning benchmarks implemented
using MLLib [10]. Figure 5 shows the slowdown of using Lustre storage instead of
SSD for these benchmarks. Iterative algorithms – those which perform the same
stages multiple times, and therefore have multiple rounds of shuffling – show
the worst slowdown. The lda (Latent Dirichlet allocation), pic (power itera-
tion clustering), summary statistics, spearman (Spearman rank correlation) and
prefix-span (Prefix Span sequential pattern mining) benchmarks all show sub-
santial slowdown when shuffle files are stored on Lustre rather than local SSDs.
These are all iterative with the exception of the summary statistics benchmark,
which has smaller block sizes than the other benchmarks.

These results demonstrate that shuffle performance is a major cause of perfor-
mance degradation when local disk is not available or not used for shuffle-heavy
applications.
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Fig. 4. Slowdown from performing open-per-read rather than single-open many-reads
for reads of different sizes on various filesystems on Edison, Cori, Comet, and a work-
station with local disk. The penalty is highest for the Lustre filesystems.

Fig. 5. Slowdown of spark-perf MLLib benchmarks on Comet with shuffle intermediate
data stored on the Lustre filesystem instead of local SSDs.

5 Localizing Metadata Operations with Shifter

To improve the file IO performance, ideally we need to avoid propagating meta-
data operations to the Lustre filesystem because these files are used solely by
individual compute nodes. On Cray XC systems, we do not have access to local
disk, and using in-memory filesystems limits the problem sizes. We have previ-
ously described a file-pooling technique [4] which maintains a pool of open file
handles during shuffling to avoid repeated opens of the same file. However, this
requires modifications to the Spark runtime, and affects only operations coming
from the Spark runtime. Other sources of redundant opens, such as high-level
libraries and third-party file format readers, are not addressed. Furthermore,
each file must be opened at least once, still placing load on the Lustre metadata
server, even though the files are only needed on one node.
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Fig. 6. GroupBy benchmark performance (worst-case shuffle) on NERSC Cori, with
shuffle intermediate files stored on Lustre, RAMdisk, or per-node loopback filesystems
backed by Lustre files. Number of partitions in each case is 4 × cores.

Fig. 7. Slowdown of spark-perf Spark Core benchmarks on Cori with shuffle intermedi-
ate data stored on the Lustre filesystem instead of Lustre-backed loopback filesystems.

To keep metadata operations local, we have previously experimented with
mounting a per-node loopback filesystem, each backed by a file stored on Lustre.
This enables storage larger than available through an in-memory filesystem while
still keeping file opens of intermediate files local; only a single open operation per
node must be sent to the Lustre metadata server, to open the backing file. This
approach was not feasible, however, for ordinary use, as mounting a loopback
filesystem requires root privileges.

Shifter [8] is a lightweight container infrastructure for the Cray environment
that provides Docker-like functionality. With Shifter, the user can, when schedul-
ing an interactive or batch job, specify a Docker image, which will be made
available on each of the compute nodes. In order to do this, Shifter provides a
mechanism for mounting the image, stored on Lustre, as a read-only loopback
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Fig. 8. Slowdown of spark-perf MLLib benchmarks on Cori with shuffle intermediate
data stored on the Lustre filesystem instead of Lustre-backed loopback filesystems.

Fig. 9. Weak scaling for the MLLib benchmarks most sensitive to shuffle performance
on Cori with per-node loopback filesystems and on Comet with local SSDs.

filesystem on each compute node within the job. Motivated by our work, Shifter
was recently extended to optionally allow a per-compute-node image to be
mounted as a read-write loopback filesystem.
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Using mounted files eliminates the penalty for per-read opens, as shown in
Fig. 4. When we run the GroupBy benchmark on Cori with data stored in a per-
node loopback filesystem, we vastly improve scaling behavior, and performance
at 10,240 cores is only 1.6× slower than in-memory filesystem, as shown in
Fig. 6. Unlike with the in-memory filesystem, we can select the size of the per-
node filesystem to be larger than the available memory, preventing job failure
with large shuffles.

We have run the spark-perf benchmarks used in Sect. 4 to compare perfor-
mance between Lustre and Lustre-backed loopback file systems. Results for the
Spark Core benchmarks are shown in Fig. 7. Using per-node loopback filesystems
improves performance at larger core counts for the scala-agg-by-key and scala-
agg-by-key-int benchmarks, particularly for the latter which performs a larger
number of opens. Results for the MLLib benchmarks are shown in Fig. 8. The
lda, pic, spearman, chi-sq-feature and prefix-span benchmarks show substantial
improvement from the use of per-node loopback filesystems. Furthermore, they
exhibit better scaling behavior on Cori than on Comet with local disk. Figure 9
shows weak-scaling performance with those benchmarks on Cori and Comet.
Cori nodes provide more cores (32) than Comet nodes (24), although Comet
nodes run at a higher clock speed (2.5 GHz) than Cori nodes (2.3 GHz).

6 Conclusion

We have evaluated Apache Spark on Cray XC systems using a series of run-
time microbenchmarks and machine learning algorithm benchmarks. As com-
pute nodes on these systems are not configured with local disks, files created
by the Spark runtime must be created either in an in-memory filesystem, lim-
iting the size of data which can be shuffled, or created on the global scratch
filesystem, which we have found to severely degrade performance, particularly
as more nodes are used. On other systems, such as SDSC Comet, compute nodes
have been equipped with local SSD storage for the purpose of storing temporary
data during computation, which provides up to 11× faster performance than
using a Lustre filesystem for shuffle-intensive workloads. We have identified that
the cause of the performance degradation is not read or write bandwidth but
rather file metadata latency, and have used the Shifter container infrastructure
installed on the Edison and Cori systems to mount per-node loopback filesys-
tems backed by the Lustre scratch filesystem. This allows for increased perfor-
mance and scalability, offering performance comparable to the use of local disks
for shuffle-intensive workloads, without constraining the maximum problem size
as with the in-memory filesystem. This technique is a promising approach for
deploying Apache Spark on Cray XC systems.
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