
From MultiTask to MultiCore: Design and

Implementation Using an RTOS

Célio Estevan Morón, Antonio Ideguchi, Marcio Merino Fernandes

Departamento de Computação

Universidade Federal de São Carlos

São Carlos - SP, Brazil

Email: celio@dc.ufscar.br

Allen D. Malony

Depart. of Computer & Inf. Sci.

University of Oregon

Eugene, OR, USA

Email: malony@cs.uoregon.edu

Abstract—Practice has shown that programming a new multi-
core system is a greater challenge than previously thought. The
challenge is to produce the resulting system in a way, which is
as easy as sequential programming. This new trend has changed
the way we think about the whole development process. The
aim of this work is to show that it is possible to develop a
multicore embedded system application using existing tools, while
at the same time, obtaining reuse. This process is carried out
in a cyclic and increasing manner, generating a more refined
version of the application at each iteration. The development
process consists of five phases: Multitask Modelling, Code Gen-
eration, Test/Debugging, Mapping Tasks to Cores and Tuning
the Application. The three initial ones are carried out using the
VisualRTXC tool, whereas the last two use the performance tool
TAU. Using a small application, a Case Study shows how the
proposed development process works and the steps involved in
the implementation of an embedded system.

I. INTRODUCTION

Be it in the form of specialized high-performance systems,

or dedicated embedded systems, multiprocessor machines have

been present among us for decades. The concepts involved

in the programming process of multicore systems are quite

well known in the fields of Operating Systems and Parallel

Programming.

However, so far there seems to be no tool available which

could make the programming process of these systems as

easy as it is for sequential programming. In order to be

able to program multicore systems efficiently, we need joined

knowledge from: (1) Parallel Programming; Mechanisms of

Communication and Synchronization of Process; (2) the Pro-

cessor’s architectural details; and (3) Performance evaluation

tools. To a certain extent, knowledge in these subjects is

already used in parallel programming and real-time systems.

In the real-time field to fulfill the time constraints, while

in parallel programming to try load balance and to avoid

bottlenecks.

Basically, there are two techniques to program multicore

systems: by using Multi-processes or by using Multi-threads.

Multi-processes enables to run multiple processes at the same

time. In single-processor architectures one process is assigned

to the CPU, whereas in multicore architectures one process can

be assigned to each core in order to extract the performance

benefits from parallelism. For embedded applications, the

process is called task, and multitasking is a key technique

that can lead to substantial performance improvements and/or

cost reductions.

Multithreading is a technique that allows users to obtain

performance benefits of general multicore processors. How-

ever, multithreading requires applications to be designed in

such a way that the work can be completed by independent

workers, acting in the same process. The different threads can

be allocated to run in different cores. Threads are sequential

processes that share memory. When the execution modules are

independent, threads can be used efficiently. However, it is not

the way typical embedded systems work. Threads make pro-

grams highly nondeterministic and rely on programming styles

to constrain nondeterminism in order to achieve deterministic

aims [1].

Embedded systems are developed mainly using the multi-

tasking technique. The term embedded system [2] refers to any

computer system built within a device and working as part of

it. Most embedded systems have real-time features associated

to them. Embedded systems using microcontrollers typically

rely on a Real-Time Operating System (RTOS) to provide mul-

titasking capabilities. RTOSs improve performance and enable

more sophisticated programs on less expensive processors.

Developing a multitask system is inherently complex, since

it involves synchronization among tasks and data dependence

analysis. Multitask systems consist of several processes, called

tasks, which depend on each other to execute properly. In

order to create these systems, the developer needs to split

the application modules into a group of tasks, which are able

to run simultaneously. In addition, the application of efficient

methods for communication and synchronization is essential

in order to ensure that the processes interact correctly.

However, most tools used for developing multitask applica-

tions are poorly adapted to support the additional complexity

of these systems. As a result, developing multitask applica-

tions is frequently associated to various challenges, because

the tools used for their construction do not usually follow

adequate software engineering techniques. In many cases, the

only tools available for the developer are basic software-

like compilers and text editors. Developing a system using

multicore processors follows the same multitask approach.

Several stages of the development life cycle are more complex

in multicore systems than in traditional applications, and

2014 13th International Symposium on Parallel and Distributed Computing

978-0-7695-5265-1/14 $31.00 © 2014 IEEE

DOI 10.1109/ISPDC.2014.18

111

therefore the use of adequate tools to provide support for

multicore programming is a real need.

Recent works [3], [4], [5], [6], [7], [8] show that under

some conditions message passing could cost less than shared

memory in the multicore domain. Lauer and Needham [9]

showed that message passing and shared-memory are duals,

and the best choice depends on the architecture. It seems that

so far the PC architecture has favored the shared memory

model but it cannot provide for scalability.

The traditional development of embedded systems based on

RTOSs splits the application into tasks that are executed con-

currently. Consequently, by using an RTOS, we take the par-

titioning of the application for granted when we go multicore.

The approach being proposed here is to mix the traditional

RTOS with a communication channel [10] in order to achieve

simplicity and reuse in the development of multicore systems.

By following our model, if an application can be programmed

in the form of multitasks then it is possible to run it also in

a multicore architecture. RTOSs exchange information among

tasks using several kinds of queues. In order to generate the

multicore program we simply exchange the multitask queue

for a multicore channel. In our implementation the parameters

are the same in both cases, needing only to change the

primitive’s name. Figure 1 shows our approach which is based

in the RTOS multitask structure plus communication channels.

Fig. 1. RTOS MultiTask plus Communication Channels.

A relevant contribution of this work is to facilitate the

development of multicore embedded systems using a visual

environment. To fine-tune a parallel application, there is a

need for a tool that reflects its parallel structure. In a mul-

ticore architecture, the programmer has to be aware of the

underlying hardware in order to map it into physical entities.

A performance tool is used to help in the work of fine-tuning

the mapping of tasks into cores.

This paper presents a development method for multicore

systems using a graphical productivity tool for embedded

real-time applications based on multitasking. The paper is

organized as follows: Section 2 presents related work: a

Visual Environment, Debugging and Testing Tools, Perfor-

mance Analysis Tools, the Traditional Development Cycle.

Section 3 provides an overview of the tools used in our

development process: VisualRTXC Implementation Tool and

TAU Performance Tool. Section 4 presents a method for

developing multicore embedded systems. Section 5 presents

a Case Study (Mandelbrot Set). Finally, the conclusion is

discussed in Section 6.

II. RELATED WORK

In this section, we will discuss some of the subjects included

in the work presented in this paper.

A. Visual Environments

A considerable amount of research in the area of visual

environments has been carried out aimed at developing soft-

ware able to reduce the difficulties found in the development

of parallel systems. This effort resulted in the development

of user-friendly tools such as TEV [11], PVMGraph [12],

Millipede [13], TRAPPER [14] and P-GRADE [15]. Although

there are several differences between these environments, they

all focus on making the program development easier, provid-

ing graphical representations to map paradigms or libraries

designed for developing parallel systems.

TEV (Teaching Environment for Virtuoso) is a Visual Envi-

ronment for the Development of Parallel Real-Time programs,

a tool whose aim is to facilitate the generation of source code

of applications developed for the Parallel Kernel Virtuoso.

This Visual Environment provides continuity when develop-

ing projects using the most common development methods

(traditional or object-oriented), by offering support during the

implementation, debugging and testing phases.

Despite the benefits provided by the tools mentioned above,

it is clear that they were not designed to support the devel-

opment of embedded multicore systems. These environments

were rather designed for multitask systems based on work-

stations or workstation clusters. In these architectures, the

processing nodes are distinct machines, interconnected through

a high-speed network and running general-purpose operating

systems.

B. Debugging and Testing Tools

Due to concurrency, multitask and high performance issues,

embedded multicore systems have always presented an addi-

tional difficulty during debugging. This problem is not new;

nowadays not only specialized people from the embedded

or high performance field need to go through this, but also

every programmer building a system. This poses huge new

challenges in the debugging and testing process of multicore

programs. The non-determinism issue makes it very difficult

to reproduce an error. An efficient approach to diminish errors

is to identify the concurrency as early as possible.

In addition to early bug detection and removal techniques,

the final phases of testing (function, system, and stress) are

enhanced by making the tests a lot more likely to exhibit

112

existing bugs in the code. This procedure is carried out by

changing the internal timing of the executions in a way that

is more likely to show abnormal behaviors.

C. Performance Analysis Tools

Performance analysis and evaluation is a very challenging

process in multicore systems. Porting a single thread program

to run in a multicore system is even more difficult. Program

instrumentation and tracing are the most commonly used

techniques to obtain program execution profile for analyzing

the behavior of the program and its performance bottlenecks.

The performance of the application is heavily influenced by

the thread interaction. As the level of parallelism increases,

resource locks occur more frequently, possibly requiring ad-

ditional application redesign. Usually, the correct design of

communication and synchronization protocols is a critical

phase in order to achieve high multi-threaded performance.

Finally, performance is influenced even when there is no

communication, i.e., processes running in parallel can affect

each other’s performance, for example by accessing the cache.

A number of performance tools were developed for High

Performance Computing (HPC) and can be used with multi-

core systems. Some of those tools include TAU [16], HPC-

Toolkit [17], and Paraver [18]. In the non-HPC arena, Intel’s

VTune [19] is probably the best performance tool for multi-

threaded programs, where its critical path analysis is a partic-

ularly useful feature.

Trace-based analysis and visualization can help performance

investigation of multi-threaded programs running on multicore

systems [20]. The problem with the traditional approaches,

such as profiling, is that data aggregation makes it impossi-

ble to understand precisely those communication issues that

currently become so important. However, a serious issue with

timeline data is its lack of scalability, making it difficult to

manipulate and visualize it, and in this way for the user to

easily grasp where to focus the investigation of performance

bottlenecks. The growing number of cores and threads created

by the applications makes it even more difficult to visualize

all the threads and/or cores at the same time.

D. Traditional Development Cycle

Traditionally, the development process of embedded/real-

time applications has been aided by a set of tools. This

development process is iterative and is completed when the

application requirements are met. The four steps involved in

this process can be summarized as:

• Analysis: for determining how to divide the application

into tasks or threads;

• Design: for deciding how to implement the tasks/threads;

• Implementation: for implementing the source code;

• Debug: for finding and fixing task/thread-related bugs in

the code (Data race, Thread stall and Deadlock);

In this proposal, the development cycle for the design of

multicore systems can be carried out using a graphical tool

to define all parallel activities in the application (i.e., all

process management, communication, synchronization, and so

on). Graphical support can make the debugging and testing

of parallel applications easier if the programmer can create

the graphical representation of the application during the

development phase. There are several advantages in using this

approach: (1) people who are familiar only with sequential

programming can easily use the proposed method to develop

multicore applications in order to exploit the available com-

putational power in an efficient manner; (2) the debugging

phase of the software development process can be simplified

by the use of the graphical tool instead of ordinary textual

source level; (3) debugging large parallel programs is much

more difficult than sequential ones, but using a graphical tool

allows the user to divide it into different layers; (4) when the

user needs to detect an error related to the parallel part of

the program, this can be better visualized using a graphical

environment.

For multicore systems, it is necessary to have an additional

step in the cycle of development; that is, the tune of the

application. For this, a performance tool is necessary in order

to carry out the optimization of task performance.

In particular, the last step is very important for the overall

performance of the resulting system. It is important to know

how much of the application is running in parallel; is the

work evenly distributed between tasks? What is the impact of

synchronization between tasks on execution time? Is memory

being used effectively and shared between tasks and processor

cores? And so on.

III. TOOLS USED IN THE DEVELOPMENT PROCESS

Our development method is based on two tools: Visual-

RTXC and TAU. A short explanation of them follows below.

A. VisualRTXC Implementation Tool

VisualRTXC is a tool that generates code to be exe-

cuted by the real-time kernel RTXC from Quadros Sys-

tems Inc. (www.quadros.com). Both, the visual environ-

ment and the RTXC simulator can be downloaded from

http://www.quadrosbrasil.com.br/html/en/RTXCsim.php.

Developing embedded systems is frequently associated to

various challenges, mainly because the tools used for their

construction do not usually use modern software engineering

techniques. Because many problems, mainly in the area of

real-time systems, are inherently concurrent, using better tools

to provide support for multitask programming is a real need.

A large amount of research in the area of visual envi-

ronments has been carried out aimed at developing software

able to reduce the difficulties found in developing parallel

systems. By using these tools, it is possible to specify the

parallelism of the program at a high level of abstraction and

from which the source code can be automatically generated. In

the case of embedded systems, the aim of using development

tools was to maximize the performance of the hardware rather

than to improve the user’s productivity. As a consequence

of this approach, there are many difficulties concerning the

development of this kind of system due to the limitations

imposed by these tools. In most of these cases, the user is

113

provided just with a text editor and a compiler. However, it is

evident that an embedded system that is organized simply as

a set of text files cannot be easily understood nor managed.

The final stages of the life cycle of these systems are usually

quite complex and lack adequate tools.

VisualRTXC is a graphical tool designed to help develop,

document and visualize embedded applications. It can be

thought of as a layer above the services offered by real-

time kernels, acting mainly over basic structures used by

these kernels such as tasks, semaphores, resources, timers and

others.

Unlike the traditional approach, where the program imple-

mentation is carried out on the source code, VisualRTXC

offers a higher abstraction layer, where it is possible to

graphically represent most of the embedded application char-

acteristics.

The graphical representation is based on the use of graphs,

a widely used concept for the development of programs to

describe process structures, data dependency, performance

visualization, and so on. In VisualRTXC, graphs are used

to describe the application sketch, while the processes’ low-

level details are defined through a combination of textual and

graphical notations.

By providing separate notations to describe the application

structure and the tasks’ algorithm details, VisualRTXC allows

the software engineer to divide the embedded program into

three abstraction levels, each of them suitable for a specific

stage of the implementation process.

• Application level: it is the highest level of the embed-

ded application and helps during the initial development

phase, offering a general view of the program struc-

ture. The basic structures provided by the kernel (tasks

and other microkernel objects) are described graphically,

while the functionality of the tasks (source code) is

omitted. Tasks are seen as ”black boxes” and only the

exchange of messages among them is shown.

• Task level: graphically describes the source code of the

tasks, emphasizing the flow control and the exchange of

messages among them. A separate diagram is produced

for each task created at the application level. Loops,

conditional structures and operations for sending and

receiving messages are represented through icons defined

by the tool. A special symbol is defined to graphically

denote the textual blocks, which are portions of code

without graphical representation.

• Textual code level: the lowest level of the application,

where the programmer can define fragments of code

associated to the symbols that represent the textual blocks

at the task level. In these fragments, portions of source

code, not directly related to the communication and syn-

chronization of tasks (variables, functions, attributions)

are inserted in the traditional manner, using a text editor

provided by the tool.

As VisualRTXC allows the user to divide the application

into several layers, it is possible to run each layer code on a

specific core.

B. TAU Performance Tool

The TAU parallel performance system is the product of

fourteen years of development to create a robust, flexible,

portable, and integrated framework and toolset for perfor-

mance instrumentation, measurement, analysis, and visualiza-

tion of large-scale parallel computer systems and applications.

The success of the TAU project represents the combined efforts

of researchers at the University of Oregon and colleagues at the

Research Centre Juelich and Los Alamos National Laboratory.

The TAU (Tuning and Analysis Utilities) can be downloaded

from http://www.cs.uoregon.edu/research/tau.

TAU provides an API that allows programmers to manu-

ally annotate the source code of the program. Source level

instrumentation can be placed at any point in the program and

it allows a direct association between language and program-

level semantics and performance measurements. Using cross-

language bindings, TAU provides its API in C++, C, Fortran,

Java, and Python languages.

The performance tool TAU is very helpful at least in three

situations: 1- Optimization of the generated source code; 2-

Analysis of bottlenecks during execution; 3-Trade-off between

performance and source code modifications.

The integration of TAU in the development process has

made it possible to adjust the resulting source code to the

best possible performance for the working architecture.

IV. DEVELOPING MULTICORE EMBEDDED

SYSTEMS

Our development method starts implementing the applica-

tions in the form of a multitask system and guaranteeing

that after the tuning phase it will also execute correctly in

a multicore architecture.

We are proposing a development process that can be carried

out in a cyclic way generating more refined versions of the

application at each iteration. Within each cycle, the tasks

are categorized into five phases: Multitask Modeling, Code

Generation, Test/Debugging, Mapping Tasks to Cores and

Tuning the Application. The software engineer may use any

analysis and design method in conjunction with the proposed

development process, including object-oriented methods such

as UML, or even other approaches.

VisualRTXC [21] and TAU [16] can help systems program-

ming by providing an intuitive user interface and high-level

design objects that are tightly coupled to the underlying kernel

architecture. This development process allows the developer to

rapidly move between design concepts and generated C code.

In addition, it provides visual abstraction and design help for

each of the typical phases of the development life cycle.

Representing applications using graphs is another advantage

offered by a tool such as VisualRTXC, since this approach

is familiar to most designers and makes it easier to use the

services provided by commercial kernels. As a result, the

productivity of the development team is highly increased and

as a consequence, better results can be obtained in less time

at lower costs.

114

The possibility of quick experimentation makes the pro-

posed development process quite adequate to create prototypes

of the multicore embedded application during the initial stages

of development. By creating prototypes, problems existing in

the design can be detected and fixed early, minimizing the

consequences of them.

In addition, the division of the graphical representation into

layers allows the application to be structured as a hierarchy of

subsystems. This modular approach makes our method ideal

for developing large multicore embedded applications, where

it is impossible to represent the whole system within a single

diagram.

The combination between the proposed model-driven pro-

cess development and the tools VisualRTXC and TAU also

makes it easier to integrate different tools into a single pro-

gramming environment, allowing the same graphical notation

to be used by the environment tools throughout the different

development stages.

A. Phase 1 - Multitask Modeling

Beginning with the application requirements, the software

engineer models the application using VisualRTXC and the

techniques available on the embedded domain. The modeling

step is carried out at two levels. First, at the system level,

where the software engineer represents the executing modules

(tasks, RTXC threads and exceptions) and their kernel primi-

tives, as well as all communications and synchronizations. The

second level refers to modeling the executing modules, and is

carried out after the first level of modeling has been made

explicit.

The two levels of modeling are carried out using Visu-

alRTXC, a tool that has a user-friendly graphical interface,

having dockable windows and displaying multiple documents

at the same time, with each document being shown within its

own window.

Using the Integrated Development Environment provided

by VisualRTXC, the software engineer develops a graphical

model to represent the embedded application. This graph-

ical model can be complemented with textual descriptions

(segments of source code created by the software engineer).

From this information, VisualRTXC automatically generates

the source code of the application, which can be easily built

and run.

B. Phase 2 - Code Generation

As modeling is carried out at the system level and at the

executing modules, the source code associated is generated

automatically. The model drives the process to generate the

code of the application.

This application model-driven architecture is refined to

complement the generated code with the C commands that

are not related with the kernel primitives.

The next step complements the code that was automatically

generated. During this phase, VisualRTXC helps to add new

elements on the modeling at the executing modules level.

VisualRTXC provides the following features to facilitate the

implementation step: view synchronization, export/import in-

terface, multi-developer environment and reverse engineering

support.

C. Phase 3 - Test and Debugging

A significant limitation for developing embedded systems

is the lack of adequate programming tools, mainly those

needed to support the final steps of the life cycle. The

proposed development process, whose main aim is to facil-

itate the implementation, debugging and testing of multicore

embedded applications, integrates the three basic components

(behavioral, structural and functional), into a single graphical

representation, facilitating, therefore, the understanding of the

system as a whole.

The testing and debugging processes of the system dur-

ing development is made easier by the comprehensive view

provided by the modeling at the system and at the executing

modules levels. Our experience has shown that debugging time

is considerably reduced by applying the development process

proposed here.

A major problem found in developing embedded systems

is the inherent difficulty to produce rapid prototypes of the

application. In addition, it is not uncommon for the devel-

opment of these kinds of systems to be behind schedule.

By linking Design, Implementation and Debugging in the

proposed development process, the user is able to produce

a rapid prototype that considerably shortens the development

process.

Following this development process, the software engineer

can run the produced prototype on a single-processor architec-

ture and return to the initial step until the behavior meets the

requirements, making the necessary adjustments throughout

the steps. This process is repeated until all the requirements

are fulfilled. At the end of this process we have obtained from

the TAU tool a set of performance diagrams (obtained using

a single processor) which provide an initial estimate of the

computational power demanded for each task and function.

D. Phase 4 - Mapping Tasks into Cores

At this stage, the application has already been split into

tasks and run in one core on the x86 architecture host. There is

also a performance diagram including information that allows

mapping tasks into cores. Usually, this mapping is carried out

with load balancing in mind, but could also be used to ensure

the fulfillment of the real-time constraints for specific tasks.

At this point, one executable is generated for each core

containing the set of assigned tasks. Moreover, the RTOS

queue is exchanged for some kind of communication channel

(usually pipes) at every inter-core communication.

The next step is concerned with loading all the executables

to run on the cores and proceeding with the tuning of the

application.

E. Phase 5 - Tuning the Application

To truly understand the interaction among multiple tasks

running on different cores simultaneously, one must be able

115

to examine how the application interacts with the whole

system. The primary benefit of using a performance tool

is two-fold: understanding how an application is actually

performing; and, identifying bottlenecks in the development

process. Performance analysis can be used to ensure that real-

time specifications are met.

Instrumentation identifies every execution of a particular

function. Therefore, this phase is aimed at verifying whether

the mapping, carried out based on a single core execution, was

successful or not when running in a multicore architecture. If

necessary, returning to Phase 4 and repeating the mapping

process in order to achieve the system’s goal.

V. CASE STUDY: MANDELBROT SET

Code that generates the Mandelbrot set is a favorite target

for evaluating performance in embedded systems. Embedded

systems usually require a high amount of image processing

to perform and the Mandelbrot set can be adjusted to demand

the computer power necessary for evaluation. Additionally, the

Mandelbrot set is familiar to most users and the code required

to generate the images is quite simple. The Mandelbrot Set

is a set of complex numbers that show interesting behavior

when run through a simple formula. When this formula is

applied iteratively (with the result from one calculation used

as the input for the next one), numbers within the Mandelbrot

set will not reach further than a certain distance, regardless

of how many times the formula is applied. Numbers not in

the Set will exceed that magic distance, after some number of

iterations.

A. Multitask Modeling

Starting with the application requirements, the software

engineer models the application using VisualRTXC. The mod-

eling step is carried out at two levels: the system level and the

executing modules.

The development environment is organized into four distinct

areas: Workspace Window, Layer Diagram, Code Diagrams

and Output Window. Figure 2 shows the Layer Diagram and

the Code Diagram for the Mandelbrot Set application. It can

be easily seen in the Layer Diagram that the MASTER task

will generate blocks of XBLOCK by YBLOCK dots and place

it in the COMPQ queue. WORKER1 and WORKER2 that will

run on the same core (multitask version) will take the blocks

in the COMPQ queue to work on. They will call CAL PIXEL

to calculate the dots to be plotted and place them on the COLQ

queue. Finally, the task PLOTTER will obtain the calculated

dots from COLQ queue and plot them.

B. Code Generation

The code was instrumented with commands from the per-

formance tool TAU. The output of TAU can be seen in

Figure 3. It shows the mean time for each executing module.

The call are inclusive which means that main() will call

MASTER, PLOTTER, WORKER1 and WORKER2. In the

same way, WORKER1 and WORKER2 will call CAL PIXEL.

As the points to be calculated is divided between WORKER1

Fig. 2. Code Diagram and the Layer Diagram.

and WORKER2, from Figure 3 it is possible to conclude

that the execution of WORKER2 is having precedence upon

WORKER1 (CAL PIXEL time of WORKER2 is approxi-

mately half of the time of WORKER1). It is also possible to

see that MASTER is being delayed because queue COMPQ is

full (MASTER-WriteQueue). The same happens to PLOTTER

which is able to get the point from queue COLQ at a faster

rate than WORKER1 and WORKER2 can process it.

Fig. 3. TAU ParaProf Multitask.

The generated code was executed using the Real-Time

Kernel RTXC running on top of Ubuntu 11.04 in a Processador

Intel(R) Core(TM) i7-2600 CPU @3.40GHz 3.40 GHz, 16GB

RAM Memory. The result was a file with the Mandelbrot Set

and profiles that generated the graph shown in Figure 3.

C. Mapping Tasks to Cores

So far Phase 1, Phase 2 and Phase 3 have been carried

out. The application was modeled in concurrent tasks, and

the corresponding code generated, tested and debugged. Fur-

thermore, the execution time of the tasks is in a graphical

representation. At this point we move from the host based

on x86 architecture to the target architecture. We tested the

method with two targets: 8 core on x86 architecture and 2

116

Fig. 4. - Layer Diagrams for Core 1 and for Core 2.

cores on a Arm architecture. Based on the performance graph,

we chose to place the tasks MASTER and WORKER1 in

core 1; tasks WORKER2 and PLOTTER in core2 on the Arm

architecture. From the multitask version of the Mandelbrot Set,

one executable was generated for each core. Figure 4 shows

the two sub-projects generated for the dual core PandaBoard

target. Figure 5 shows how easy is to move from multitask

to multicore. All inter-core communication is replaced by a

communication based on the Linux pipe.

Fig. 5. RTXC queue versus Linux pipes.

D. Tuning

This phase verifies whether the mapping of tasks based

on the multitask execution times provides the aimed results.

Figure 6 shows the performance graph of the tasks running on

the 8 cores implementation. It can be seen that the execution

time on the 8 cores is fairly balanced.

Fig. 6. TAU ParaProf MultiCore 8 Cores-x86.

Both executions, on Arm and x86 archictetures, were pro-

cessed for a Mandelbrot image of 1280 x 1280 points.

TABLE I
TOTAL EXECUTION TIME ON ARM ARCHITECTURE

Mandelbrot Set RTXC Multitask RTXC Dual Core

ARM 1176.56s 442.48s

The Arm architecture execution was obtained using a

PandaBoard based on the processor OMAP4430, a Dual-core

ARM R© Cortex-A9 MPCore with Symmetric Multiprocessing

(SMP) at 1 GHz each.

TABLE II
TOTAL EXECUTION TIME ON X86 ARCHITECTURE

Mandelbrot Set RTXC

Multitask 2 Cores 4 Cores 8 Cores

X86 118.76s 53.14s 26.52s 20.37s

The 8 cores x86 architecture execution was obtained on a

Intel(R) Core(TM) i7-2600 CPU @3.40GHz , 16GB RAM

Memory.

Table I shows the total execution time for the 2 cores ARM

architecture. Table 2 shows the total execution time for up to

8 cores on the x86 architecture. From Table II was generated

the graph on Figure 7 showing the speed-up for the x86

architecture.

117

Fig. 7. Speedup for 8 cores.

VI. CONCLUSIONS

The exclusive use of general purpose tools, such as com-

pilers and text editors, is not adequate for managing the

complexity of most multicore embedded systems. Providing a

development process with the help of a programming environ-

ment with facilities aimed at the development of these systems,

represents a significant step towards reducing the drawbacks

that make implementation one of the biggest bottlenecks

during the design of these kinds of systems.

We have shown that with two existing tools, it is possible

to develop multicore systems efficiently. The approach for the

process of development is carried out by a combination of a

graphical tool with a performance tool. By using a graphical

tool it is possible to better understand the communication and

synchronization of tasks, while the performance tool can tune

the system. Our model starts by programming the application

using the multitask concepts and then moving it automatically

to run as a multicore application.

The advantage of using message in inter-core communica-

tion was shown. Shared memory creates shared state spaces

and this make programming a difficult task since it is necessary

to maintain the consistence while keeping control of the shared

state on time. By using message, the problem is avoided

because there are no longer inter core states, and therefore

the states are local in relation to the cores.

By using a combination of RTOS multitask plus com-

munication channels, we can easily move from multitask to

multicore. Following our model, any application that can be

modeled in any kind of RTOS tasks, can be implemented in

multicore.

The possibility of quick experimentation makes the pro-

posed development process quite adequate to create prototypes

of multicore embedded application during the initial stages

of development. By creating prototypes, problems existing in

the design can be detected and fixed early, minimizing their

consequences.

ACKNOWLEDGMENT

We would like to thank the Brazilian Agency CNPq (Con-

selho Nacional de Desenvolvimento Cientifico e Tecnológico)

for the financial support, under grant no. 478084/2012-9.

REFERENCES

[1] E. Lee, “The problem with threads,” Computer, vol. 39, pp. 33–42, May
2006.

[2] A. S. Berger, Embedded Systems Design: An Introduction to Processes,

Tools, and Techniques. CMP Books, Taylor & Francis, 2002.
[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new os
architecture for scalable multicore systems,” in Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09,
(New York, NY, USA), pp. 29–44, ACM, 2009.

[4] A. Baumann, S. Peter, A. Schüpbach, A. Singhania, T. Roscoe,
P. Barham, and R. Isaacs, “Your computer is already a distributed system.
Why isn’t your OS?,” in Proceedings of the 12th Conference on Hot

Topics in Operating Systems, HotOS’09, (Berkeley, CA, USA), pp. 12–
12, USENIX Association, 2009.

[5] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs, “Embracing diversity in the barrelfish manycore operating
system,” in In Proceedings of the Workshop on Managed Many-Core

Systems, 2008.
[6] F. Nemati, R. Inam, T. Nolte, and M. Sjodin, “Towards resource sharing

by message passing among real-time components on multi-cores,” in
Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th

Conference on, pp. 1–4, Sept 2011.
[7] D. Pasetto, M. Meneghin, H. Franke, F. Petrini, and J. Xenidis,

“Performance evaluation of interthread communicationmechanisms on
multicore/multithreaded architectures,” in Proceedings of the 21st In-

ternational Symposium on High-Performance Parallel and Distributed

Computing, HPDC ’12, (New York, NY, USA), pp. 131–132, ACM,
2012.

[8] C. Clauss, S. Pickartz, S. Lankes, and T. Bemmerl, “Towards a multicore
communications api implementation (mcapi) for the intel single-chip
cloud computer (scc),” in Parallel and Distributed Computing (ISPDC),

2012 11th International Symposium on, pp. 148–155, June 2012.
[9] H. C. Lauer and R. M. Needham, “On the duality of operating system

structures,” SIGOPS Oper. Syst. Rev., vol. 13, pp. 3–19, Apr. 1979.
[10] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,

vol. 21, pp. 666–677, Aug. 1978.
[11] J. Ribeiro, N. da Silva, R. Moron, and C. Moron, “From design to

implementation using the parallel program generator,” in Euromicro

Conference, 1998. Proceedings. 24th, vol. 2, pp. 924–931 vol.2, Aug
1998.

[12] T. Delaitre, G. Ribeiro-Justo, F. Spies, and S. Winter, “A graphical
toolset for simulation modelling of parallel systems.,” Parallel Comput.,
vol. 22, no. 13, pp. 1823–1836, 1997.

[13] A. Itzkovitz, A. Schuster, and L. Shalev, “Millipede: A user-level nt-
based distributed shard memory system with thread migration and
dynamic run-time optimization of memory references,” in Proceedings

of the USENIX Windows NT Workshop on The USENIX Windows NT

Workshop 1997, NT’97, (Berkeley, CA, USA), pp. 19–19, USENIX
Association, 1997.

[14] F. Heinze, L. Schafers, C. Scheidler, and W. Obeloer, “Trapper: elim-
inating performance bottlenecks in a parallel embedded application,”
Concurrency, IEEE, vol. 5, pp. 28–37, Jul 1997.

[15] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombás, “P-grade: A grid programming environment,” Journal

of Grid Computing, vol. 1, no. 2, pp. 171–197, 2003.
[16] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”

Int. J. High Perform. Comput. Appl., vol. 20, pp. 287–311, May 2006.
[17] G. L. et. al., IBM System Blue Gene Solution: Performance Analysis

Tools. Armonk, NY, USA: IBM Redpaper, 2014.
[18] V. Pillet, V. Pillet, J. Labarta, T. Cortes, T. Cortes, S. Girona, S. Girona,

and D. D. D. Computadors, “Paraver: A tool to visualize and analyze
parallel code,” tech. rep., In WoTUG-18, 1995.

[19] J. Reinders, VTune Performance Analyzer Essentials. Intel Press, 2005.
[20] P. F. Sweeney, M. Hauswirth, A. Diwan, M. Biberstein, and Y. Harel,

“Understanding performance of multi-core systems using trace-based
visualization,” in Proceedings of the First Workshop on Software Tools

for Multi-Core Systems (STMCS06), March 2006.
[21] VisualRTXC, Development Environment. Houston, Texas, USA:

Quadros Systems Inc., 2014.

118

