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a b s t r a c t

The study of macromolecular systems may require large computer simulations that are too time con-
suming and resource intensive to execute in full atomic detail. The integral equation coarse-graining
approach by Guenza and co-workers enables the exploration of longer time and spatial scales without
sacrificing thermodynamic consistency, by approximating collections of atoms using analytically-derived
soft-sphere potentials. Because coarse-grained (CG) characterizations evolve polymer systems far more
efficiently than the corresponding united atom (UA) descriptions, we can feasibly equilibrate a CG system
to a reasonable geometry, then transform back to the UA description for a more complete equilibration.
Automating the transformation between the two different representations simultaneously exploits CG
efficiency and UA accuracy. By iteratively mapping back and forth between CG and UA, we can quickly
guide the simulation towards a configuration that would have taken many more time steps within the
UA representation alone. Accomplishing this feat requires a diligent workflow for managing input/output
coordinate data between the different steps, deriving the potential at runtime, and inspecting con-
vergence. In this paper, we present a lightweight workflow environment that accomplishes such fast
equilibration without user intervention. The workflow supports automated mapping between the CG and
UA descriptions in an iterative, scalable, and customizable manner. We describe this technique, examine
its feasibility, and analyze its correctness.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Despite considerable advancements in hardware and software
technologies for supporting large-scale molecular simulations,
computational chemists are confined to simulating relatively small
systems compared to most laboratory experiments and real world
bulk measurements. This constraint quickly becomes apparent in
the simulation of polymer melts, which is important for materi-
als science applications. Polymers are macromolecules that consist
of repeating units of monomers (such as CH2) that form long
molecular chains. When simulating polymeric systems, many inter-
esting properties depend on the chain length [20], such as the
boiling/melting points, the viscosity, and the glass transition tem-
perature. Even with a small number of molecules, however, it
is computationally expensive to simulate chains with more than
105 monomers each, which is a reasonable chain length to study.
Limited memory space also constrains simulations to 106–1010
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total atoms, even on large allocations of modern supercomput-
ers. Considering that a drop of butane contains approximately 1020

atoms suggests that these capabilities do not come close to bulk
experiments in the laboratory.

Defining a new representation of the polymer as a chain of soft
colloidal particles greatly reduces the amount of information to be
collected and controlled, which speeds up the simulation. It is well
known that modeling fewer colloidal particles with an appropri-
ate potential decreases the degrees of freedom and computational
requirements by an amount proportional to the granularity [3]. The
representation of a polymer as a chain of soft blobs also allows the
chains to more easily cross each other, decreasing the required time
for the simulation to find the equilibrium structure. However, the
information on the molecular local scale needs to be restored at
the end of the simulation to account for properties on the united
atom (UA) scale. In a nutshell, it is important to alternate between
the coarse-grained (CG) representation (which speeds up the simu-
lation) and the UA representation (which conserves the local scale
information). By quickly switching back and forth from UA to CG, we
open doors to new studies of polymeric systems while maintaining
simulation accuracy and efficiency. While optimizing the compu-
tational performance of CG codes is important, without a way to
incorporate UA-level detail, CG efficiency has relatively less value.
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Fig. 1. UA versus CG descriptions. CG spheres appear hard, but are soft with long
range effects. (a) UA representation with 80 chains 120 monomers per chain. (b) The
corresponding CG representation with 3 sites per chain (and 40 internal monomers
per site).

Therefore, this paper focuses on integrating an approach for con-
ducting simulations that exploit both CG efficiency and UA accuracy
(Fig. 1).

Unfortunately, it is not trivial to automate the transforma-
tion between the CG and UA representations for general sets of
input parameters. Accomplishing the overall task involves mul-
tiple processing steps, with different applications, programming
languages, naming schemes, and data representations. This issue
is common to many other scientific software environments and is
collectively referred to as the scientific workflow problem [10]. In
short, the collection of all the required steps to conduct an overall
research study comprises a workflow that may consist of several
large simulations, real-world experiments, human intervention
and analysis, and more. In this paper, we present a lightweight and
customizable approach for creating an effective scientific workflow
in the context of our CG/UA simulation experiments. We discuss
techniques that are general to other computational problems and
explore new ideas that are not prevalent in other more heavyweight
workflow toolkits.

The paper is organized as follows: Section 2 contains back-
ground information regarding the CG approach and integral
equation theory, Section 3 discusses the design and implemen-
tation of the fast equilibration workflow, Section 4 presents our
experiments in evaluating the workflow, Section 5 discusses related
work, and Section 6 contains concluding remarks.

2. Background

This section briefly reviews the coarse-grained approach based
on integral equation theory. We consider a homopolymer fluid
(in which all monomers are the same type) with molecular num-
ber density, �m, consisting of n polymer chains. Some number
of monomer sites, N, makes up each polymer chain, where each
site is usually taken to be either a CH, CH2 or CH3 group. This
bead-spring description is the UA simulation model. Within the
UA description, the Polymer Reference Inter Site Model (PRISM)
site-averaged Ornstein-Zernike equation relates the relevant pair
correlation functions in Fourier Space [21]:

ĥmm(k) = ω̂mm(k)ĉmm(k)[ω̂mm(k) + �ĥmm(k)] (1)

where the “mm” superscript denotes monomer–monomer interac-
tions and hmm(k) is the Fourier transform of the total correlation
function, hmm(r). In fact, hmm(r) = gmm(r) − 1, where g(r) is the well
known radial distribution function. Also from Eq. (1), cmm(k) is the
direct correlation function, ωmm(k) is the intra-chain structure fac-
tor, and � is the monomer site density, given as � = N�m. The CG
representation can be fully represented as a function of the physi-
cal and molecular parameters that define the atomistic description.
The key quantity to be solved in the CG representation is the poten-
tial, which must be included as an input to the molecular dynamics
(MD) simulation of the polymer melt in the reduced CG repre-

sentation. This potential has been derived analytically using an
integral equation formalism. In the CG model, each chain contains
an arbitrary number nb of chemically identical blocks, or “blobs”.
Each block contains a sufficiently large number of sites so that
we can utilize Markovian properties of the internal chain’s ran-
dom walk. The integral equation coarse-graining approach (IECG)
allows us to determine an analytical solution to the potential when
N/nb = Nb ≈ 30. At that scale the structure of the chain follows a ran-
dom walk, and the distribution of the CG units along the chain is
Markovian, so that the IECG formalism can be solved analytically
[6]. In a macromolecular liquid, the random distribution of the CG
units is a general property of any molecule when sampled at large
enough lengthscales [8].

The IECG model conserves thermodynamics while accurately
reproducing the structure of polymer liquids across variable levels
of resolution [6,7,16]. Insights from the IECG theory provide reason-
able justifications for some of the advantages and shortcomings of
coarse-graining methods in general [13,14].

The potential is solved analytically in the mean spherical
approximation, which is valid for low compressible polymer liq-
uids [12]. In the limit of large separations in real space, where r � 1
(in units of the polymer size), the potential is approximated as [5,7]

Vbb(r) ≈ kBT
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. The key quantity of
interest here is the universal parameter �b = Nb�|c0|, which is
defined once we decide the level of coarse-graining, Nb, as well as
the molecular and thermodynamic parameters of our system. This
quantity also depends on the direct correlation function at k = 0,
c0, which is in principle not known. However, this function relates
to the potential between atomistic units and the isothermal com-
pressibility of the liquid, so it can be determined numerically or
from experiments.

When compared with full atomistic simulation (i.e., UA) the CG
simulations that use the potential of Eq. (2) show quantitative con-
sistency in the structure and thermodynamics. The CG potential is
in this way fully transferable, and it can be conveniently applied in
MD simulations of polymer melts, at the chosen thermodynamic
and molecular parameters, with computational gain. The ability
of CG models to maintain thermodynamic and structural prop-
erties while varying the coarse-graining resolution is important
when one develops computational techniques with variable reso-
lution. It allows the computational time of the MD simulations to be
controlled by changing the resolution as needed. This notion moti-
vates the development of a workflow that supports transformation
between the UA and CG descriptions, which dynamically adjusts
CG resolution at desired simulation times and spatial regions, while
maintaining simulation accuracy and equilibrium through transi-
tions to united-atom simulation.

3. Fast equilibration workflow

This section describes the fast equilibration workflow, which
consists of a series of computational programs and analyses that
comprise an overall application for quickly stabilizing a polymeric
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Fig. 2. The fast equilibration workflow. Circles (1, 3, 5, and 7) represent stages of
custom programs that either generate coordinates and potentials, transform data for
input into LAMMPS, or conduct convergence analysis. Squares (2, 4, and 6) represent
parallel LAMMPS molecular dynamics simulations executed via MPI. Our workflow
system automates this process for a given set of input parameters. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

liquid. Fig. 2 shows the 7 high-level stages involved in the work-
flow, each of which may involve multiple processing steps. Each
step is accomplished by one or more programs, applications, or
simulations. Before this work, these steps each required manual
intervention by a researcher, but now they are automated by our
fast equilibration workflow.

3.1. Workflow design

Stages 1 and 2 from Fig. 2 initialize the workflow by generating a
geometric configuration and equilibrating the system just enough
to remove instabilities. Stage 1 randomly generates a polymer sys-
tem of n chains, each with N monomers. Each chain begins at a
random coordinate, and the subsequent N monomers bond ran-
domly onto the enclosing spherical surface. Given a desired n, N
and �, we generate a collection of random chains within a sim-
ulation box of volume V with periodic boundary conditions and
length, L, such that V = L3. We also include periodic boundary image
flags to help reconstruct the polymer chains later. Because ran-
domly generated configurations likely contain regions of high strain
and numerical instabilities due to overlapping chains, we carefully
adjust the configuration of these areas. Stage 2 accomplishes this
with a brief LAMMPS1 simulation in which chains slowly drift apart
via a soft repulsive potential for 10 ps of simulation time. Then, we
minimize energy via a Lennard-Jones potential with a series of short
executions, in which the system runs for 1000 timesteps with an
incrementally increasing amount of time per step (e.g., 0.02, 0.08,
0.25 fs, etc).

Stages 3 through 7 constitute an iterative strategy that
alternates between the UA and CG representations towards equili-
bration. Stage 3 determines the center of mass for each soft-sphere
that encompasses a group of Nb monomers. The center of mass
coordinates are the “fictitious sites” of the soft colloids from which
the multi-block potential is derived. During this stage we also store
the internal monomer configurations within each block for rigid
tracking within the upcoming CG simulation (see Section 3.2.2).
The multi-block potential, which depends on parameters such as
temperature, density, and number of blocks per chain, is generated
at runtime during the first iteration [6]. The ensuing LAMMPS exe-

1 LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a clas-
sical molecular dynamics code. http://lammps.sandia.gov.

cution in Stage 4 simulates the CG system with the multi-block
potential, treating the internal monomer chains within a block
as coupled rigid bodies. In our experiments below, Stage 4 runs
approximately 60,000 timesteps at 3 fs per step, although this is
easily customizable.

After the CG simulation, Stage 5 restores the UA description by
applying the saved internal chain coordinates to their new loca-
tion within each updated block position. To mitigate any unphysical
bond lengths within chains, Stage 6 runs a short simulation within
the UA description using the same Lennard-Jones pair potential
from Stage 2. Finally, in Stage 7, we determine whether or not
to perform another iteration. While there are several alternatives
for evaluating convergence effectively, we choose to consider the
total correlation function, hmm(r), because of its relevance in deriv-
ing system thermodynamic properties (see Section 4.2). Finally, if
we determine that the system has satisfactorily equilibrated, the
workflow is complete.

3.2. Workflow implementation

This section describes in more detail the implementation2 of
the workflow design discussed in the previous section. Our overall
approach involves bundling each set of Fortran and C programs that
encapsulate Stages 1, 3, 5, and 7 (in Fig. 2) with Python scripts. Then,
using a standard Python argument parsing system, argparse, to
define all the parameters in Table 1 at launch time, we subsequently
pass the parameter bundle (as a Python object) through the entire
workflow program. During initial development of the workflow, the
computational and analytical programs were hard coded to con-
tain the parameters, filenames, and directory paths. In addition,
no record of launch configurations were stored (such as number
of MPI processes, the cluster name, or execution time). After eas-
ily restructuring the internal programs and procedures to extract
relevant values of the parameters from the argparse interface, a
fully automated system for doing UA/CG polymer equilibration is
in place. For instance, one can now launch the entire workflow with
a single command:

fast equil -nchain 350 -nmonomer 192 -
sitesperchain 6 -temperature 450

-bondlength 1.55 -mono-mass 14.0 -cnot -9.7 -
timestep 1.0 ...

Certain flags, such as -viz, can provide outlets for user anal-
ysis by stopping the workflow and presenting a visualization of a
desired quantity, such as hmm(r), or the simulation box itself. If flags
are not specified, they are set to default values as disclosed by the
–help reference flag.

Upon each launch of a workflow instance, the parameter set,
execution timestamp, and path to output datafiles are saved to
a database management system (DBMS) for historical reference
and provenance. Our current implementation interfaces the Python
workflow runtime code with a local SQL-based DBMS. Future work
will consider how to extend this feature towards collaborative
efforts by exploring remote database interactions and knowledge
awareness/extraction.

The previous discussion is related to defining the parame-
ter space within the various components of the workflow in an
automated fashion. However, there are some peculiarities in the
LAMMPS side of the workflow in Stages 2, 4, and 6 that deserve
special attention. This is the subject of the following subsections.

2 The source code is available at https://github.com/davidozog/Fast-
Equilibration-Workflow.
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Table 1
Input parameter dependencies for the stages of UA/CG equilibration. Our workflow system obviates tracking dependencies by implicitly passing all parameters throughout
each stage, forming a unique parameter space for each overall experiment. (Items marked with * are not directly passed to LAMMPS, yet they determine the total number of
input atoms.)

Input parameter Create chain Coarse grain Strip CG Converge LAMMPS

create chain cg chain multiblock strip cg hmmr lmp run

� (density) Yes No Yes No Yes No
T (temperature) No No Yes No No Yes
n (# of chains) Yes Yes No Yes Yes Yes*

N (monomers) Yes Yes Yes Yes Yes Yes*

nb (# of blocks) No Yes Yes Yes No Yes*

c0 (dc constant) No No Yes No No No
L (box length) No Yes Yes No Yes Yes
p (MPI procs.) No No No No No Yes
Experiment ID No No No No No No
. . .

3.2.1. Generating LAMMPS input and the multi-block potential at
runtime

Our initial implementation of the multi-block potential util-
izes the table feature of LAMMPS for doing bond, angle, and
intermolecular calculations. Although a direct evaluation of the
potential may feasibly achieve better performance, the table
approach establishes the overall workflow and, if necessary, is
substitutable in future versions. Because the multi-block poten-
tial depends on the parameters �, T, N, nb, c0, and L, we generate
the potential at runtime. Fortunately, this takes less than 5 s on a
standard processor, which is negligible compared to a typical cycle
of the workflow, which can take several hours even on hundreds of
processors.

Another interesting feature of our workflow environment is that
we generate LAMMPS input files via a template processor system.
Originally, template processors were designed to be used to create
dynamic websites in which content is generated on-the-fly by fill-
ing an HTML template file with runtime data [15]. This avoids the
error-prone, tedious, and inflexible approach of generating content
with code in this manner:

Template processing, on the other hand, renders the following
index.html input template:

< html >< body>< p> @user.name: @user.age < /p>< /body><
/html>

with standard programming objects like so:
template.render(”index.html”, {”user”: Jane})
An intriguing analogy existed when we initially generated

LAMMPS input files,
print(”minimize”+ str(etol) +” ”+ str(ftol)

+” ”+ str(maxiter) +...)
So, with a LAMMPS input template (in.lammps),
minimize @etol @ftol @maxiter @maxeval...
we can render the simulation input files in the same fashion:
parameters = {”etol”: 1e-4, ”ftol”: 1e-6,

”maxiter”:100, ”maxeval”: 1000}
template.render(”in.lammps”, parameters)
Template processing is central to the popular model-view-

controller (MVC) architectural pattern. It is clear that many scientific
workflows fit the same design pattern, where the data is the model,
the workflow is the controller, and the simulation input/output is
the view. Just as the MVC paradigm emphasizes a separation of
concerns between database engineers, backend programmers, and
designers [19], we see MVC applying equally as well to the data sci-
entists, software engineers, and domain specialists that represent
the stakeholders in any effective scientific workflow. It is prudent
to note the ubiquity of managing scientific simulations through
input files (LAMMPS, GROMACS, NWChem, Gaussian, GAMESS,

OpenMC, Nek5000, and many more), and that controlling the
parameters dynamically with a clear separation of implementation
concerns exposes new research possibilities and opportunities for
productivity.

3.2.2. Transforming from the CG to the UA description with the
POEMS library

Our approach for transforming between the UA and CG descrip-
tions involves storing the coordinates internal to blocks before the
CG simulation and treating them as rigid bodies. This is done using
the Parallelizable Open Source Efficient Multibody Software (POEMS)
library included with LAMMPS. In POEMS, when computing the
total force and torque on rigid bodies, the coordinates and veloc-
ities of the atoms update such that the collection of bodies move
as a coupled set [1]. When transiting from UA to CG, the definition
of the rigid blocks and their internal atomic identities occurs in
Stage 3 of the workflow simultaneously with the generation of the
CG description. When mapping from CG back to UA in Stage 5, the
final state of the simulation from Stage 4 is used to restore the rigid
coordinates. After stripping the fictitious sites from the simulation

box, Stage 6 commences with the appropriate timestamp update
to keep the overall simulation time consistent.

In our simulations, we observe that calculating the force and
torque on rigid bodies comes at a performance cost. However,
more efficient methods for carrying the rigid coordinates exist,
for instance, by either (1) ignoring rigid body calculations or (2)
regenerating random internal configurations between stages of the
workflow. Because our approach only requires that chains’ random
walks be Markovian, approach 2 may bear fruit. Our preliminary
studies show that simulations applying methods 1 and 2 exhibit
speedups over UA on the order of the granularity factor. Future
work will consider in detail the performance of alternative methods
for managing the internal configurations.

4. Experimental

4.1. Experimental setup and evaluation

We conducted our scientific workflow evaluation on the ACISS
cluster located at the University of Oregon. Experiments are run on
the 128 generic compute nodes, each with 12 processor cores per
node (2x Intel X5650 2.67 GHz 6-core CPUs) and 72 GB of memory
per node. This is a NUMA architecture with one memory controller
per processor. ACISS employs a 10 gigabit Ethernet interconnect
that connects all compute nodes and storage fabric. The operating
system is RedHat Enterprise Linux 6.2, and MPICH 3.1 is used with
the -O3 optimization flag.
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Fig. 3. The total correlation function, hmm(r), for a workflow experiment with
� = 0.03355 sites/Å3, T = 450 K, n = 350, N = 192, nb = 32, c0 = −9.67344, L = 126.05 Å,
and p = 96 MPI processes on the ACISS cluster. The bottom curves show 3 ramping
steps from Stage 2 of the workflow (as in Fig. 2) and the top curves show 4 iterations
through Stages 3–7. Satisfactory convergence occurs (both in terms of �hmm

i
(r) and

w.r.t. full UA) after 4 workflow iterations.

Overall, the overhead introduced by stages 1, 3, and 5 is negligi-
ble (far less than 1% of the total workflow execution time). Due to
space limitations, we defer computational performance measure-
ments for another publication. We instead focus on the correctness
and validity of our approach as verified by the radial distribution
function.

4.2. Radial distribution function analysis

Analysis of the radial distribution function is critically important
in the evaluation of the validity of a simulation result. Given this
function and assuming pairwise additivity, all the thermodynamic
properties of the liquid may be calculated [17]. This function, often
called g(r), is defined as

g(r) = 1
�

〈 1
N

n∑
i

n∑
j /= i

ı(	r − 	rij)〉

and h(r) = g(r) − 1 (we introduced h(r) in Section 2). We calculate
h(r) at the convergence step of each workflow iteration, and com-
pare it to the previous determination of h(r). If the mean percentage
error is less than a user-defined threshold, then the workflow
completes. If available, we can alternatively compare to a long-
running “full UA” simulation (with no CG). To clearly specify that
we calculate this quantity in the UA (monomer) representation (not
including the block sites), we henceforth use the mm superscript,
denoting this function as hmm(r).

Fig. 3 shows hmm(r) for several phases of the workflow. In this
experiment, the full UA “gold standard” ran for 1.25 ns of simula-
tion time, and is shown as the black dotted line. The 4 CG iterations
were run for a total of 0.72 ns, and each UA transition stage (Stage
6 from Fig. 2) ran for 0.0125 ns. The “Timestamp Ramp” steps cor-
respond to Stage 2 with total simulation times of 20, 80, and 250 fs,
respectively. The figure clearly shows that the system converges
quickly towards the correct liquid character.

Without the automated workflow, creating Fig. 3 would have
required too many human hours and too much tedious interven-
tion between simulations to have been practical. Furthermore,
experiments of this nature are easy to launch with different input
parameters through a job scheduler, such as PBS. It is no more dif-
ficult to conduct an experiment with a few simulations than with
hundreds of simulations, except for the time it takes to execute.

5. Related work

Related research supports the notion that the CG represen-
tation equilibrates more quickly than fully atomistic replicas,

and that re-expressing a melt in the UA description can more
completely equilibrate the system [3]. While our verification of
hmm(r) is encouraging for verifying correctness, this function is
known to be relatively insensitive to certain geometric flaws, par-
ticularly in bonding. For instance, it may be possible to have a
well-matched hmm(r), but still have occasional bond lengths that
are unphysical. Instead, Auhl [2] evaluates 〈R2(n)〉/n and shows that
this phenomenon may occur and can be fixed. Future work will
examine 〈R2(n)〉/n in Stage 7 of the workflow (which may be less
expensive to compute than hmm(r)).

Research and development on scientific workflows is pervasive.
Some of the more popular frameworks include Kepler (with recent
notable applications in drug design [11] and support of distributed
data-parallel patterns, such as MapReduce [22]) Pegasus [9], and
Taverna [18]. Other related work focuses on the intricacies of data
modeling and dataflow in scientific workflows [4]. Instead of com-
mitting to a full-blown workflow framework up-front, this paper
has focused on the advantages of using a considerably lightweight
system for managing input parameters while benefiting from
simple data provenance and template processing. As far as we
are aware, template processing capabilities within other scientific
workflows is limited, and is not to be confused with reusable
“workflow templates”, which is a powerful plug-and-play concept
found in any good workflow suite. Our future work may consider
porting our implementation to a more powerful workflow system,
but we are so far content with the portability, ease of customization,
lack of a GUI, and template processing features within this work.

6. Conclusion

Coarse-graining methods benefit from reduced computational
requirements, which expands our capabilities towards simulating
systems with a realistic number of atoms relative to labora-
tory bulk experiments. However, without integrating local scale
UA information, configurations cannot equilibrate as completely.
This paper focuses on a workflow based solution for exploiting
CG efficiency and UA accuracy by iterating between UA and CG
representations towards convergence. By utilizing a lightweight
scheme for propagating parameters, controlling simulation input
files via template processing, and generating multi-block poten-
tials in the CG description, we have constructed an automated
system for conducting large scale experiments of polymer liq-
uid systems. We have verified the correctness of the approach
of mapping between the atomic and coarse-grained descriptions
by comparing the radial distribution function of a long-running
atomic simulation with a series of iterations through the work-
flow.

The fast equilibration workflow system enables the running of
experiments that were previously not possible, such as parameter
sweeps across different densities, CG granularities, temperatures,
and more. Our simple workflow system is based on Python, and
incorporates support for parallel (MPI) simulations, data proven-
ance, and template processing. Future work will examine and
optimize the computational efficiency, introduce more powerful
workflow features, and explore more thorough verifications of cor-
rectness.
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