
General Hybrid Parallel Profiling

Allen D. Malony1 and Kevin Huck2

1Department of Computer and Information Science, University Oregon,Eugene, Oregon
2Performance Research Laboratory, Neuroinformatics Center, University of Oregon, Eugene, Oregon

Abstract—
A hybrid parallel measurement system offers the poten-

tial to fuse the principal advantages of probe-based tools,
with their exact measures of performance and ability to
capture event semantics, and sampling-based tools, with
their ability to observe performance detail with less over-
head. Creating a hybrid profiling solution is challenging
because it requires new mechanisms for integrating probe
and sample measurements and calculating profile statistics
during execution. In this paper, we describe a general
hybrid parallel profiling tool that has been implemented
in the TAU Performance System. Its generality comes
from the fact that all of the features of the individual
methods are retained and can be flexibly controlled when
combined to address the measurement requirements for a
particular parallel application. The design of the hybrid
profiling approach is described and the implementation of
the prototype in TAU presented. We demonstrate hybrid
profiling functionality first on a simple sequential program
and then show its use for several OpenMP parallel codes
from the NAS Parallel Benchmark. These experiments also
highlight the improvements in overhead efficiency made
possible by hybrid profiling. A large-scale ocean modeling
code based on OpenMP and MPI, MPAS-Ocean, is used
to show how the TAU hybrid profiling tool can be effective
at exposing performance-limiting behavior that would be
difficult to identify otherwise.

Index Terms—Parallel, performance, analysis, tools

I. INTRODUCTION

In the world of parallel performance analysis, tools are

generally distinguished by their choice of measurement

approach. Sampling-based (a.k.a. statistical sampling)

methods measure performance by statistical observation

during interrupts. Probe-based (a.k.a. direct) methods

insert code into a program to make visible specific events

during execution that can be measured directly. The

technical differences are clear and advocates of each

can point to their advantages versus the other method

(see [8]) and rightly so. The fundamental issues inherent

in statistical sampling theory and measurement theory –

accuracy, intrusion, uncertainty – can be found in many

areas of scientific practice, often leading to competing

techniques being present in many fields. However, there

are important benefits to be gained in performance

observability for parallel computing by looking for op-

portunities to integrate sampling-based and probe-based

techniques in a hybrid measurement system, especially

to improve performance interpretation and fidelity.

The research presented here is a continuation of work

to create a general hybrid measurement system for paral-

lel performance analysis. By “general” we mean the abil-

ity to apply the joint capabilities flexibly to performance

analysis requirements. Our initial effort [4] extended

the TAU Performance system R© [1] with sampling-based

measurement for hybrid parallel tracing. The basics for

enabling sampling in a probe-based infrastructure were

developed, but tracing is not a general solution for all

performance analysis scenarios and is prone to scalability

problems. Profiling, while giving up tracing’s observa-

tion of time dynamics, is more versatile in practice.

However, hybrid profiling is more challenging due to

the complex analysis being done online.

The paper reports on our progress to realize a general

hybrid parallel profiling solution. Specifically, we see the

contributions of our work including:

• Design of techniques for the merging of probe-

based and sampling-based techniques for parallel

profile measurements.

• Solving issues of sample attribution relative to

probed events not on the routine calling stack.

• Development and implementation of the hybrid pro-

filing techniques in the TAU measurement system

and analysis tools.

• Demonstration of general hybrid parallel profiling

on a multiscale ocean modeling application written

in OpenMP and MPI, in particular to show its

ability to report richer performance information.

Section §II describes the approach to hybrid measure-

ment integration and the challenges for profiling. Our

solution design and its implementation in TAU are

presented in Section §III. Here we review the devel-

opment problems encountered and their resolution in

our working prototype. Section §IV evaluates the hybrid

methods with two case studies. Several projects relate

to our efforts and are discussed in Section §V. The

paper concludes with a synopsis of results, planned

improvements, and an outlook to future directions.

II. APPROACH

Event-based sampling is so-called because certain

events trigger interrupts to occur, enabling sampling

2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/14 $31.00 © 2014 IEEE

DOI 10.1109/PDP.2014.38

204

measurements to observe program state. Timer or hard-

ware interrupts are commonly used to stop a thread of

execution and interrogate the program counter, callstack,

and other context about the computation. Sampling mea-

sures performance statistically, in the sense that time and

counts are attributed to the program context at the time of

the interrupt. Under assumptions of regularity, stationary,

and large sample size, performance can be approximated

with relatively good accuracy. In particular, sampling can

capture fine-grained behavior that would be hard to see

accurately with probes. However, all information about

the program’s computational structure (e.g., routines,

dynamic callgraph/callpaths, loops) must be determined

at runtime through PC resolution and callstack inter-

rogation. The degree of callstack unwinding can be

controlled to determine the granularity of mapping of

samples to the dynamically-created callgraph structure

during execution. A profile for each thread of execution

is created, which at minimum contains performance data

for each routine seen in execution at the time a sample

was taken.

In contrast, events in probe-based measurement rep-

resent where the probes are placed in a program and

what aspect of the program they reflect. Here, events are

made manifest when the inserted probes are executed.

Typically, begin/end events (a.k.a. interval events) are

used to make measurements between a begin and end

point (e.g, routines, loops). Profile measurements are

made directly for each thread of execution based on

which events are executed in the threads. Because events

can be nested, the event stack maintained by the profiling

system can be used to attribute performance data to

event paths. A key distinction with sampling is that

only probed events will be observed (measured) and

the events do not have to correspond only to routines.

Which events are instrumented (i.e., which probes are

active) can be controlled in probe-based measurement.

The program’s computational structure as represented

in the performance profile is described directly by the

events that occurs during execution.

The objective of a general hybrid parallel profiling

tool is to merge probe-based and sampling-based tech-

niques to deliver a more powerful framework for perfor-

mance measurement that can be controlled for specific

needs. Our approach uses a probe-based measurement

infrastructure as scaffolding for overlaying sampling-

based performance data. The basic idea is to associate

samples with the currently active probe “context” (i.e.,

observation focus), as identified by the event stack. In

this way, samples taken can be immediately partitioned

based on the current context. The timers and samples

can capture metrics other than just wall clock time,

such as hardware counters, memory usage, and power

consumption, providing a rich measurement capability.

�

�

�

�

���

������
���	

�
�
�
�
�

	
�
�
��
�
�

�����
������

��� ���������

�����
�������

�����
�������

Fig. 1. Hybrid profiling concept.

Figure 1 depicts the proposed hybrid profiling ap-

proach. On the left side is the dynamic event stack

created by a probe-based tool. At this point in the

execution, the program is “in” event D, which is nested

within event C, event B, and event A, respectively. The

event sequence A → B → C → D in the event stack

form a unique context. When a new sample occurs, the

current context is used to map the sample to a set of

samples for that context and the profile associated for

the mapped samples is updated. The probe-based profile

is updated when event transitions take place. The hybrid

profiling approach is parallel because every thread of

execution captures its own profile as above At the end

of the program execution, all of the hybrid thread profiles

are output and a parallel profile analysis tool is used to

interpret and present the data.

III. DEVELOPMENT

The general hybrid profiling approach discussed above

has been developed and is available in the TAU Perfor-

mance System. The starting point for our work was the

earlier implementation of sampling-based measurements

in TAU coupled with trace recording. However, a parallel

profiling solution introduces further complexities due to

the need for online profile analysis. In contrast to a

profile generated from trace-based analysis, the goal here

is to capture all of the performance information possible

at runtime that will produce equivalent profile results.

The following describes how this is accomplished

in TAU. We start with improvements made in the un-

derlying sampling infrastructure. The hybrid profiling

measurement and analysis implemented in TAU is then

described, along with what the user would expect to see

in the parallel profile output. TAU has unique support for

probe-based measurement that make it attractive for sup-

plementing with hybrid capabilities. These are discussed

and a simple example is given to help understand the

hybrid profiling features.

205

A. Sampling Methods
Sampling relies on a trigger to interrupt the program’s

execution, typically from periodic timers or hardware

counter overflows. Our default sampling mechanism is

based on timer interrupts occurring at 100ms intervals

(configurable through an environment variable). It is

also possible to enable interrupts on PAPI [10] counter

overflow. Hybrid profiling in TAU is done at the thread

level. Thus, all active threads of the application will

see interrupts. When an interrupt occurs, a TAU handler

routine is activated and performs the following steps:

• Determine program counter where the program was

executing

• Check if executing TAU code and process sample

accordingly

• Unwind the calling stack a certain unwind degree
(configurable)

The current program counter context is provided by

the signaling mechanism. Because hybrid profiling is

active, there is a chance that TAU was in the middle of

handling an event probe for the application at the time

of the interrupt. A flag is set upon entry to TAU and

reset on exit. If the interrupt handler finds the flag set, it

does not process the sample. A process-global count of

samples dropped is incremented and will be output with

the final profile.
The interrupt handler can capture call path data by

unwinding the call stack. If call stack information is not

required, a flat profile of the time spent for each line

of code sampled in the context of TAU probe events

is recorded. Enabling call stack unwinding to a certain

degree D allows call paths of up to length D ending

at the sampled PC to be used to distinguish the sample

in the hybrid profile. Alternatively, the unwinding can

terminate automatically by comparing the callstack of

the sample with the callstack at the beginning of the

current timer. When a common ancestry in the stack

is found, unwinding can terminate. There are different

packages available for call stack unwinding, each with

it advantages and disadvantages. Previously, we used

the HPCToolkit [2] call stack unwinder because it was

most robust. However, that code is tightly coupled with

HPCToolkit and not available as a library. Instead, we

created a modular call stack unwinding interface in TAU

whereby different options can be used more flexibly,

depending on platform availability. The Linux backtrace
facility will be used by default. However, the libun-
wind [12] library is often available and is arguably the

most portable stack unwinding system. It is our preferred

unwinding option new integrated framework and has

clear documentation describing which of its interface

calls are thread and signal safe. Unfortunately, libun-

wind is not 100% robust on all major HPC platforms.

StackwalkerAPI [13] is a strong alternative to libunwind,

although less robust with respect to its use within the

context of a signal handler. We have included support

for StackwalkerAPI under our modular framework with

caveats.

B. Hybrid Profile Measurement

Once the PC and call path are determined, TAU

performs the following steps to measure the hybrid

profile for a sample:

• Determine the TAU event context

• Update the hybrid profile for the sample and event

context

The TAU event context is updated during probe mea-

surement operations. When a probe begin event occurs,

a new event context is determined by a hash of the old

event context and the new event. The new event is placed

on the TAU event stack together with the new event

context. Thus, when a sample is being processed, the

current event context can be determined quickly.

For every sample uniquely defined by the tuple {event
context, PC, call path}, the frequency count and accu-

mulated measurements are updated and stored for every

thread. Concurrently, TAU profiles for every probed

event that occurs on every thread are being measured

as the application executes. The extent of the hybrid

profile measurement is determined by the number of

probe events, the depth of event paths desired, the depth

call path desired, and the uniqueness of event contexts

observed. All but the last of these determinants are under

the user’s control.

C. Hybrid Profile Generation

At the end of the application’s execution, the sample

addresses are resolved to their symbolic names, profile

metric statistics are calculated, and the hybrid profiles

are written to files. For each probed event context, an

entry is created in the profile to represent the samples

captured while the application was in that context. These

“context events” share the names of their probed par-

ents and are labeled as “CONTEXT” in the profile.

For example, the Hybrid profile in Figure 2 has a

CONTEXT event for a leaf timer event (matrixMul-

tiply [{matmult.cpp}{32}]¡size¿=¡512¿]) that contains

samples. For every sample in the container, the PC

is resolved using GNU binutils [14] into the symbolic

name of the function being executed at the time of

the interrupt, the file location of the code, and the line

number information. This is a best-effort operation. In

the worst case, if we fail to acquire any symbolic infor-

mation, “UNRESOLVED” is displayed with the option

to also output the address value. If stack unwinding is

206

enabled, the unwound callpath to unresolved samples can

potentially provide sufficient context to resolve a sample

address to a meaningful library API call up the call stack.

We have chosen to treat the sampling information for a

single line of code, where known, as the smallest unit for

presentation. This required us to accumulate the sampled

metric for different addresses to their common unique

symbolic information and line numbers.

For all of the samples recorded within the bounds of

a unique event context, their accumulated metric total

is represented as the inclusive metric for the associated

context event. This inclusive metric should be an ap-

proximation of the exclusive metric of the actual probed

event. Each uniquely-resolved sample string is repre-

sented as a single new “SAMPLE” event, in the form of

a function name by file path name by line number triple.

“SAMPLE” events are always leaf nodes in the hybrid

profile. With call stack unwinding enabled, “UNWIND”

event nodes represent call sites that eventually end with a

sample event as part of a functional call stack. Depending

on the unwinding depth, the collection of these call stack

chains form a forest with each tree’s root node as a direct

child of the appropriate sample parent.

Interestingly, TAU’s existing parallel profile output

format was able to be used directly for representing the

new hybrid profile information because event names are

represented as strings and the annotations above (CON-

TEXT, SAMPLE, UNWIND, UNRESOLVED) could be

easily encoded. TAU’s parallel profile output procedures

could also be used directly. TAU can produce a profile

file for each thread of execution or a single merge file for

all thread profiles. The ParaProf parallel profile analysis

tool has been improved to display hybrid profiles. The

example below and in Section §IV give some demonstra-

tion of the types of views ParaProf provides. One feature

ParaProf provides is a summary aggregation of samples

within a routine, displaying this information with the

“SUMMARY” label in the profile.

D. Benefits of Hybrid Profiling in TAU

Hybrid parallel profiling brings significant benefits to

a purely probe-based performance tool like TAU. It is

challenging for probes to observe the performance of

routines that take little time per call. The overhead of

probe execution affects the accuracy of small measure-

ments. Furthermore, the overhead for high-frequency

probes accumulates throughout the program, intruding

on performance behavior. The only recourse for TAU

previously was to identify those offending probe events

and disable them. In this case, with hybrid profiling, it

is possible to see lightweight program execution with

samples, while contextualizing the samples relative to the

events still being probed. In addition, the integration of

sampling brings an ability to see finer-grained projection

of performance to regions of code.

There are unique features of TAU’s performance

measurement methodology that are enhanced in hybrid

profiling. Basically, an event in TAU is represented by

a name and a probe is a point in a program’s execution

where an event is seen and measured. If TAU sees a

new event name at a probe, it creates a new event.

Thus, a variety of events can be created to represent

the execution by just introducing new names. Standard

events based on program structure, such as routines

and loops, can be combined with more abstract events

based on program phases, parameters, time, and program

state. In this way, program execution semantics can be

captured in the profiling measurements. Because event

context is used to partition the samples obtained in

hybrid profiling, the event semantics extend to the hybrid

data. This is demonstrated in the example below.

Another important advantage of hybrid profiling is

found in TAU’s support for multi-language applications,

particularly those involving high-level scripting, as with

Python. The problem with pure sampling in these sce-

narios is the need to fully unwind the callstack to see

high-level Python statements. The middle portions of

the callstack reflects the inner workings of the Python

runtime system, which might be of little interest to the

user. In general, hybrid profiling can be used to do

away with unnecessary callstack detail and still retain

performance attribution to high-level events.

E. Simple Example
Figure 2 shows a simple sequential example

that demonstrates hybrid profiling. On the left is

a program that multiplies two matrices, a and b,
for 3 different matrix sizes, 128x128, 256x256,

and 512x512. Little routines to multiply and add

elements are used in the matrix multiplication code.

The matrix creation and free routines use memory

allocation and free functions internally. The outer loop

repeat the matrix multiple 5 times, just to make the

program more interesting. The macros PHASE_START,

PHASE_STOP, PARAM_PROFILE_START, and

PARAM_PROFILE_STOP are used to enable TAU

probe instrumentation.

Consider a sampling-only profile of the program. TAU

hybrid profiling can be controlled to enable this option,

with only main instrumented. The top screenshot dis-

plays the result from an execution of the program on

a Intel Xeon X5650 compute node at 2.67GHz, with

72 GB memory. ParaProf’s unfolded call path display

is used to show where the samples occur relative to

the calling routines and call sites. We have exposed the

samples for the matrixMultiply call. Notice that we

can see samples occurring in the small functions along

207

�������	

����
����������	���������������

�����������������������
���� ��	

�������������	��
��������������������!��� ��	

��������
���������������

����������"��
#�
���������

������$���"��
#�
���������

������"���"��
#�
���������

��������	�
��	��������	��
��������
���#%&
�'&(����$��"�������

��������	�
��	����������
��������#�
������������

��������#�
����$�������

��������#�
����"�������

�����

���������������
���

)��*���
���#%&
�'&(�*�%$&�++��++$�++"����
������	

����
���,�-�

��*�%$&�
�'�

�������������������� ��	

���������-����-������- ��	

�����������,����,������, ��	

��������
�'����%&
�'&(.&��
������-���$�-��,���

��������"����,�����**.&��
�"����,���
�'��

�������

�������	
��

�	���	
��

�����

Fig. 2. TAU hybrid profiling is shown for a simple sequential example (left). Profiles from executions with only samples (top) and only probes
(middle) are compared to hybrid profiling. The runtime of the program without measurement was 14.751 seconds. The column “Calls” shows
the number of calls for timers, and the number of samples for samples. Inclusive and exclusive times for samples are expected to be the same
value.

with their routine ancestry. This verifies that sampling

is working properly. However, what is not captured is

the relationship of the samples with the matrix sizes and

with the outer iterations.

Suppose we want to see these relationships. A probe-

based profile alone would lose the samples entirely, as

seen in the middle screenshot. We do see how TAU

can generate events corresponding to loop iterations and

specialize according to the calling parameters. However,

only when hybrid profiling is enabled do we see the

complete picture in the bottom screenshot. TAU is able to

fully associated samples with where they occur relative

to the active event context. Because iteration phases and

parametrized routines translate to unique event names,

new event contexts result. Thus, similar information

would be seen if we unfolded the other iteration phases

and matrix sizes.

IV. RESULTS

To evaluate hybrid profiling in parallel programs,

we first tested it with the NAS Parallel Benchmarks

(NPB) [15], focusing on overhead versus information

content for different profiling alternatives. We then ap-

plied hybrid profiling to a scalable ocean modeling

simulation to investigate the causes for performance in-

efficiencies in computation and communication routines.

A. NAS Parallel Benchmarks Overview

The OpenMP version of the NPB (NPB-3.2.1

OpenMP) provided us with a good cross-section of codes

to compare profiling methods (sampling only, probe only,

hybrid), particularly with respect to their measurement

overhead. Our goal was to characterize the overhead

against uninstrumented (clean) runs. Probed runs used

full and selective instrumentation of routines. Full in-

strumentation represents a profile where every function

in the benchmark is instrumented with a timer. Selective

instrumentation is performed by analyzing a full instru-

mentation profile to remove lightweight routines that are

called frequently, and introduce excessive measurement

overhead. Hybrid uses the same instrumentation as se-

lective with sampling turned on and unwinding limited

to a known degree. That is, the unwinding is stopped

when an entry in the program stack for the current

sample matches an entry in the program stack captured

at the current timer entry. In general, we expect overhead

characteristics to be code dependent. Specifically, we are

looking to see what the relative overhead of adding hy-

brid support would be compare to sampling and probing

alone. The benchmarks were compiled and executed on

a single node of the ACISS cluster at the University of

Oregon [?] with two Intel(R) Xeon(R) X5650 2.67GHz

6-core CPUs and 72GB of memory.

Table I gives the execution time results for 4 of the

NPB programs. All show speedup as the number of

208

TABLE I
NAS PARALLEL BENCHMARKS OVERHEADS. THE Clean COLUMN

REPRESENTS THE TIME TO EXECUTE THE BENCHMARK WITH NO

MEASUREMENT. THE Sampling COLUMN REPRESENTS THE TIME TO

EXECUTE THE BENCHMARK USING TAU SAMPLING ONLY. THE

Select COLUMN REPRESENTS THE TIME TO EXECUTE USING

SELECTIVE INSTRUMENTATION. THE Hybrid COLUMN REPRESENTS

THE EXECUTION TIME WHEN USING THE HYBRID PROFILING

TECHNIQUE. THE Full COLUMN REPRESENTS THE EXECUTION TIME

WHEN PERFORMING FULL INSTRUMENTATION.

BT Clean Sampling Select Hybrid Full
1 246.20 248.71 250.61 244.97 2355.43
2 125.24 125.38 125.82 124.95 1644.89
4 64.90 64.67 65.26 64.49 875.45
8 37.65 37.77 37.99 38.19 1033.80

12 30.15 31.37 30.43 30.48 1002.12

EP Clean Sampling Select Hybrid Full
1 61.46 64.40 61.43 63.17 61.89
2 30.96 31.81 30.88 31.76 31.03
4 15.53 16.01 15.51 15.90 15.58
8 8.10 8.34 8.11 8.33 8.15

12 5.44 5.54 5.43 5.55 5.42

FT Clean Sampling Select Hybrid Full
1 51.68 51.24 52.62 51.43 56.46
2 26.62 26.68 26.83 26.63 29.44
4 14.00 14.06 14.01 13.95 15.27
8 9.42 9.57 9.42 9.50 9.96

12 8.76 9.05 9.09 9.12 9.76

LU-HP Clean Sampling Select Hybrid Full
1 248.02 278.16 253.27 280.81 251.80
2 121.24 125.90 125.75 125.57 127.26
4 64.22 68.47 69.24 68.70 69.64
8 37.81 42.43 43.52 44.05 45.11

12 29.92 34.30 36.26 36.16 37.61

threads increases in different modes, except for BT(Full).

We will get back to this momentarily. The next general

result is that hybrid and selective are relatively close in

time for parallel execution. This is encouraging since it

implies that we can acquire additional information from

sampling at low cost. There are interesting behaviors in

the 1 thread timings. Although 5 tests were run for each

case and the minimum time taken, 1-thread runs can be

sensitive to measurement, leading to unexpected results,

such as BT(Clean) and FT(Clean) being slower than their

hybrid versions, and LU-HP(Full) being faster than LU-

HP(Select). It is interesting to see that there are cases

where sampling can result in higher overheads versus

probe measurements. This would usually be the case

when there were few routines instrumented, such as in

EP. However, the sampling runs here are also unwinding

all the way in order to provide attribution. Here hybrid

can be beneficial for filling in the gaps and providing

context to limit unwinding.

The Block Tri-diagonal (BT) experiments are demon-

strative of the problems naı̈ve, full instrumentation can

cause. In cases such as these, selective instrumentation

is necessary to reduce overhead, but it comes at the

potential loss of performance detail. The main com-

putation phases of BT solve along the X, Y, and Z

dimensions and a selective instrumentation approach can

observe these events with reasonable overhead. How-

ever, each phase calls several smaller routines many

times. In order to associate the performance of these

routines with the phases, we used hybrid profiling as

shown in Figure 3. The Z_SOLVE, Y_SOLVE, and

X_SOLVE events are TAU phases, providing context to

the OpenMP_PARALLEL_REGION event coming from

the OpenMP GOMP runtime system instrumentation.

What is important to observe is the exposure of the

lower-level routines now possible, for very little addi-

tional cost.

B. MPAS-Ocean

The Model for Prediction Across Scales (MPAS) [9]

is a framework project jointly developed by the National

Center for Atmospheric Research (NCAR) and Los

Alamos National Lab (LANL) in the United States. The

framework is designed to perform rapid prototyping of

single-component climate system models. Several mod-

els have been developed using the MPAS framework.

MPAS-Ocean [11] is designed to simulate the ocean

system for a wide range of time scales and spatial scales

from less than 1 km to global circulations.

Like other MPAS simulations, MPAS-Ocean is devel-

oped in Fortran using MPI for large scale parallelism.

MPAS-Ocean has been ported to several architectures

and compilers, and in an effort to increase concurrency

and efficiency on a wider range of large-scale distributed

systems with multicore nodes OpenMP worksharing

regions have been introduced. Many systems also pro-

vide vector instruction capability, further increasing the

potential for concurrency. The developers have recently

restructured key aspects of the code and annotated them

with compiler pragmas to encourage the use of vector

optimizations with the Intel compiler.

The MPAS-Ocean application had previously been

instrumented with internal timing functions. TAU was

integrated by replacing the timing infrastructure with

TAU timers. Linking in TAU also provided measurement

of MPI communication through the PMPI interface,

OpenMP through library tool support, and hardware

counter data using PAPI. The application instrumentation

was mostly at a high level, encapsulating key phases

in the simulation model. The application timers indi-

cated that the ocean tendency tracer computation ran

significantly faster (∼ 19% faster) with the code restruc-

turing and vector instructions, along with a mysterious

greater reduction in MPI communication time. Hybrid

measurement was used on Hopper, a Cray XE6, to gain

deeper insight into what was causing the performance

improvement. The addition of samples should provide

209

�
�
�
�
��
�

Fig. 3. Hybrid profile of BT showing merged events and samples.

deeper insight into the uninstrumented regions of code

which would explain the performance improvement.

In the tracer computation, two key phases of the

advection phase were reduced in execution time, and

two others to a lesser degree. These four phases

compute high/low order horizontal/vertical flux and

they make calls to one of the vectorized routines,

mpas_ocn_tracer_advection_mono_tend.

The sampled routine showed a significant decrease in

average time spent in that function, as expected with

four-way vectorization. Table II shows the reduction in

various hardware measurements.

TABLE II
BEFORE AND AFTER VECTORIZATION OF

MPAS_OCN_TRACER_ADVECTION_MONO_TEND .

Before After
Metric Mean Max Mean Max
Time 39.165s 152.850s 19.807 35.990s
TOT INS 2.65E10 8.74E10 1.77E10 3.69E10
TOT L1 DCM 4.58E8 2.67E9 6.12E7 1.98E8
FP INS 5.89E9 1.95E10 2.43E9 5.13E9

Table II also shows a very significant reduction in

the worst performing thread, about 117 seconds. This

explains the reduction in MPI_Wait synchronization

times during the subsequent RK4-pronostic halo update.

Because all of the computation is executed within one

OpenMP region with guided scheduling and without

explicit thread barriers, the reduced variability between

thread computation times results in reduced synchro-

nization times. Figure 4 shows a very strong correlation

between the sampled computation and directly measured

communication events.

V. RELATED WORK

The probe-based and sampling-based measurement

methodologies have been implemented standalone in

several parallel performance tools, but only a few in-

tegrate aspects of both in one form or another. Here

we focus on representative related research work where

some degree of hybridization is found.

The Unix gprof [16] tool is perhaps the earliest

example where routines are instrumented to record call

count and ancestor/descendant information, with sam-

pling used to capture a flat time profile. The attribu-

tion of execution time along the callgraph is done by

statistical distribution based on parent-child call counts.

Originally, gprof only worked with sequential programs,

but more modern versions support multi-threaded profil-

ing. Whereas gprof provides basic functionality, HPC-
Toolkit [2] is probably the most sophisticated parallel

performance tool that relies almost exclusively on sam-

pling. It collects full callpath information with optimized

callpath resolution based on calling context trees. HPC-

Toolkit can produce both profiles and traces of scal-

able parallel applications. Its ability to attribute causes

of performance problems by “blame shifting” benefits

from HPCToolkit’s targeted instrumentation of certain

execution states (via probe wrappers of resource-related

routines) as a way to enhance context information.

The work by Servat et al. [5], [6] is an interesting

hybrid approach that uses computation region instrumen-

210

(a) Without vector instructions. (b) With vector instructions.

Fig. 4. Strong positive correlation between computation and synchronization in MPAS-Ocean. The depth and color represent the time spent in
high_ord_hori_flux and the sampled mpas_ocn_tracer_advection_mono_tend routine, while the height and width represent the
time spent in MPI_Wait and the halo update, respectively. With vector instructions the correlations remain, even strengthen, but the observed
ranges are smaller, as shown in Table IV-B.

tation (i.e., probes between consecutive MPI exit/entry

points) together with sampling for computing fine-

grained performance for representative region execution

as determined by clustering. The approach gathers the

probes and samples in a trace and “folds” the collected

samples into their respective synthetic region by preserv-

ing their relative metrics (time, hardware counters) to

show high-fidelity region computing evolution.

Our earlier research on hybrid performance measure-

ment [4] was inspired by Servat et al.’s techniques.

Here we integrated a sampling mechanism with the

TAU measurement infrastructure with the purpose of

overcoming the inherent probe-based limitations of ob-

serving lightweight events and fine-grained performance

behavior. It was the first real example of an integrated

hybrid measurement system in that it allowed both meth-

ods to be fully utilized and the analysis to be merged.

Because traces were produced, we could effectively

capture equivalent performance data to Servat et al.,

but with more event detail. However, tracing was the

only means for producing data. Providing general hybrid

profiling is harder and is the focus of our present work.

The research work of Szebenyi et al. [7] is closest to

our efforts. They implemented a hybrid profiling tech-

nique in the Scalasca tool where only MPI events were

measured with probes and the rest of the computation

profiled with sampling. (Interestingly, this is similar to

the approach of Servat et al. above, except with profiling

and minus the clustering and folding.) The work ad-

vanced the efficiency of obtaining callstack information

at MPI entry events and reconciling performance data

gathered by the two methods. Our contribution in this

paper essentially extends the MPI-based hybrid profiling

to include any event, thereby allowing for more refined

event-sample association without the need to generate

execution traces. The callstack unwinding optimizations

they developed are easily incorporated in our TAU

implementation.

VI. CONCLUSION AND FUTURE WORK

A general hybrid parallel profiling technique has been

designed to merge sampling and probing measurement

techniques in a single integrated tool. The approach

was implemented in the TAU performance system and

applied to sequential and parallel codes to demonstrate

the functionality available and how the tool might be

applied in practice. Our work builds on a research

history where steps towards hybrid measurement have

demonstrated important benefits, but a full parallel pro-

filing solution has not been realized. The main research

contribution we bring is in the annotation of runtime

samples with event context, allowing the probed events

to form the skeleton for sample storage and profile

measurements. Furthermore, the hybrid parallel profiling

data we are able to obtain can be processed by a powerful

parallel profile analysis tool. ParaProf can show fully

integrated views of profile and sample information for

parallel multi-threaded and message passing programs.

The MPAS-O application was given as a example of

performance problems that routinely appear for which a

hybrid approach can help to uncover.
There are several directions for future research and

development we are pursuing. The current implantation

of hybrid parallel profiling in TAU provides the user with

various options to control the degree of measurement:

• Probing: select events, enable event path profiling

for a specified depth

• Sampling: set timer interrupt period, set depth call

stack unwinding

Also, the user can capture hardware counters for both

events and samples. These options all interact to de-

termine the level of performance observation. However,

211

there are scenarios where we might want to use some

dynamic hybrid control in order to improve the mea-

surement efficiency. For instance, suppose we wanted to

unwind the call stack for a sample until we encounter

the parent of the last probed event. The idea is to limit

the degree of unwinding by using what is known about

the event’s routine ancestry. While this can reduce the

time spent unwinding, it requires a means to determine

an event’s parent quickly when the event is entered.

Unfortunately, our current approach is too inefficient.

However, we believe that the optimizations discussed in

the work by Szebenyi et al. [7] can be applied to this

problem. (Note, an event’s routine ancestry is also useful

for contextualizing the event. We plan to use the solution

approach to develop event callsite profiling.)

The hybrid techniques we have developed can be

directed towards developing a “folding” technique on-

line. Folding is useful in iterative applications where

an iteration timer is inserted into the application that

indicates the beginning and end of an iteration. The basic

idea is to capture samples that occur between two paired

(start/stop) probe events. However, instead of recording

the sample with respect to its PC in the sample profile,

the time since the start event is used. The samples from

all iterations can be sorted by their deltas values and

“folded” into a synthetic iteration, in order to provide

a higher resolution sampling of the synthetic iteration

with a lower sampling frequency. Servat et al. [6] post-

process a sample trace, but we believe that is tracing is

not absolutely necessary. Much of the hybrid profiling

infrastructure is there to test this theory with minor

modifications.

VII. ACKNOWLEDGMENTS

This work is supported by the United States Na-

tional Science Foundation SI2-SSI grant 1148346 and

United States Department of Energy SciDAC grant DE-

SC0006723. The authors would like to thank Doug

Jacobsen of Los Alamos National Laboratory for his

contribution of the MPAS-Ocean profile data. Doug

Jacobsen is supported by the US DOE Office of Sci-

ence, Biological and Environmental Research program.

ACISS was supported by an NSF OCI Major Research

Instrumentation grant 0960354.

REFERENCES

[1] S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” International Journal of High Performance Computing
Applications, Vol. 20, No. 2, pp. 287–311, Summer 2006.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, N. Tallent, “HPCToolkit: Tools for Perfor-
mance Analysis of Optimized Parallel Programs,” Concurrency
and Computation: Practice and Experience, Vol. 22, No. 6, pp.
685–701, 2010.

[3] R. Kufrin, “Perfsuite: An Accessible, Open Source Performance
Analysis Environment for Linux,” Linux Cluster Conference)
(LCC), 2005.

[4] A. Morris, A. Malony, S. Shende, K. Huck, “Design and Im-
plementation of a Hybrid Parallel Performance Measurement
System,” International Conference on Parallel Processing pp.
492–501, 2010.

[5] H. Servat, L. Germán, K. Huck, J. Giménez, J. Labartaa, “Frame-
work for a Productive Performance Optimization,” Parallel Com-
puting, Vol. 39, Issue 8, pp. 336-351, August 2013.

[6] H. Servat, G. Llort, J. Giménez, J. Labart, “Detailed Performance
Analysis using Coarse Grain Sampling,” Workshop on Produc-
tivity and Performance (PROPER), pp. 185–198, 2009.

[7] Z. Szebenyi, T. Gamblin, M. Schulz, B. de Supinski, F. Wolf,
B. Wylie, “Reconciling Sampling and Direct Instrumentation
for Unintrusive Call-Path Profling of MPI Programs,” IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), pp. 640-651, May 2011.

[8] A. Malony, J. Mellor-Crummey, S. Shende, “Methods and Strate-
gies for Parallel Performance Measurement and Analysis: Ex-
periences with TAU and HPCToolkit,” D. Bailey, R. Lucas, S.
Williams (Eds.), in Performance Tuning of Scientific Applica-
tions, pp. 49–86, CRC Press, New York, 2010.

[9] MPAS: Model for Prediction Across Scales, http://mpas-dev.
github.io, Los Alamos National Lab and the University Corpora-
tion for Atmospheric Research, 2013.

[10] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, “Using
PAPI for Hardware Performance Monitoring on Linux Systems”,
in Conference on Linux Clusters: The HPC Revolution, Linux
Clusters Institute,2001.

[11] T. Ringler, M. Petersen, R.L. Higdon, D.W. Jacobsen, P.W.
Jones, M. Maltrud, “A Multiresolution Approach to Global Ocean
Modeling,” in Ocean Modeling, v. 69, pp. 211–232, Sept. 2013.

[12] The libunwind project, http://www.nongnu.org/libunwind/, 2013.
[13] StackwalkerAPI, http://www.dyninst.org/stackwalker Dyninst

Project, 2013.
[14] GNU Binutils, http://www.gnu.org/software/binutils/ GNU, 2013.
[15] NAS Parallel Benchmarks, http://www.nas.nasa.gov/publications/

npb.html NASA Advanced Supercomputing Division, 2013.
[16] S. Graham, P. Kessler, M. Mckusick, “Gprof: A call graph

execution profiler”, in SIGPLAN Not., v. 17, pp. 120–126, 1982.
[17] ACISS, http://aciss.uoregon.edu/ University of Oregon, 2013.

212

