
Towards the Performance Visualization
of Web-Service Based Applications

Marian Bubak1,2, Wlodzimierz Funika1, Marcin Koch1, Dominik Dziok1,
Allen D. Malony3, Marcin Smetek1, and Roland Wismüller4

1 Inst. Comp. Science, AGH, Krakow, Poland
2 ACC CYFRONET-AGH, Krakow, Poland

3 Dept. of Computer and Information Science, University of Oregon, Eugene, USA
4 Fachgruppe BVS - Universität Siegen, Siegen, Germany

Phone: (+48 12) 617 44 66; Fax: (+48 12) 633 80 54
{bubak, funika, smetek}@uci.agh.edu.pl, malony@cs.uoregon.edu,

ivn@icslab.agh.edu.pl, domin@student.uci.agh.edu.pl,
roland.wismueller@uni-siegen.de

Abstract. In this paper we present an approach to building a monitor-
ing environment which underlies performance visualization for distrib-
uted applications. Our focus is to make the J-OCM monitoring system
and the TAU-Paravis performance visualization system to collaborate.
J-OCM, based on the J-OMIS interface, provides services for on-line
monitoring of distributed Java applications. The system uses J-OCM to
supply monitoring data on the distributed application, whereas TAU-
Paravis provides advanced visualization of performance data. We man-
aged to integrate J-OCM into TAU/Paravis by developing additional
software providing access to the monitor and transformation of raw
monitor data into performance data which is presented with 3-D charts.
At the end we present an extension, which introduces Web Service
monitoring into the integrated environment.

Keywords: performance visualization, monitoring tools, OMIS, TAU,
web service.

1 Introduction

The ability to monitor the execution of a distributed application and to measure
its performance is a key issue in designing and deploying such applications [1].
A standard approach assumes a kind of pre-execution instrumentation of the
source code. During execution the instrumented code generates monitoring in-
formation which are stored and presented to the user either in semi-on-line or
off-line mode. Such an approach has many limitations: it requires often source
recompilation, does not work with applications that execute very long, does not
allow to control the execution of the application. As a result, there is a distinct
need for performance analysis systems that can perform on-the-fly monitoring
and allow for application control and interaction at run-time. In this paper we

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 108–115, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards the Performance Visualization of Web-Service Based Applications 109

present our approach to building a monitoring environment and also the way
of extending it to support the monitoring of Web Services which become an
increasingly popular technology of distributed programming.

Our approach is based on the integration of J-OCM [2], a flexible monitoring
system into the TAU-Paravis visualization package [3]. Up to now there were no
tools which used J-OCM for performance analysis, so it was impossible to fully
use this on-line monitoring system for performance analysis. We use J-OCM to
supply on-the-fly monitoring data from a distributed application, while TAU-
Paravis provides advanced visualization of performance data. As J-OCM and
TAU-Paravis use different data models, our work is aimed at the development
of additional packages to make them cooperate.

The paper is organized as follows: Section 2 introduces the main features
of J-OCM. Next, Section 3 gives some details on SCIRun and TAU. Section 4
presents the concept and structure of the integrated monitoring environment.
Next, Section 5 explains a way of extending the environment to support Web
Services monitoring, followed by the features of 3-D performance visualization
in Section 6. Then we give a short overview of related work. Finally, we sum up
the work done and show some plans for further research.

2 J-OCM Monitoring System

J-OCM is a monitoring system for Java applications, compliant with the OMIS
specification [4] extended by a support for Java, in form of the J-OMIS exten-
sion [5]. The idea of OMIS (On-line Monitoring Interface Specification) is to
separate the functionality of a monitoring system from monitoring tools. The
OMIS specification defines an interface that is an intermediate layer between
them. The communication is based on the request-reply mechanism realized as
a set of services while the processing of events uses the event-action paradigm.
OMIS enables convenient access to performance objects like classes, methods,
threads, or web services; they are identified by tokens. All performance object
types, observable by the monitor, form an objects hierarchy. The OMIS concept
allows multiple monitoring-based tools like profilers, debuggers, etc. to use a
single monitoring system at the same time.

The J-OMIS specification, which underlies J-OCM, extends OMIS to match
the monitoring of Java applications. It introduces new, specific for Java types
of objects and services, to form an object hierarchy relevant to Java. It also
divides the new object hierarchy into two kinds of objects – execution ones:
nodes, JVMs, threads, and application ones: interfaces, classes, objects, meth-
ods. Each object has its own set of services divided to three groups: information
services - to provide information about objects, manipulation services - to al-
low to change objects’ states, and event services to trigger some actions when
matching events occur. Event services are used by tools to program the monitor-
ing system for getting specific data from a monitored application or manipulating
it. J-OCM (see Fig. 1) is implemented as an extension to the OCM monitoring
system [6].

110 M. Bubak et al.

SHMLAE

JVMLM JVMLMJVMLM JVMLM

JVMLM = [JVM] agent

JVM JVM JVM JVM

Node Distribution Unit

SHMLAE

Tool A Tool B
performance analyzer debugger

NodeNode

Legend:
 New components

Elements of Distributed
Application

Local Monitor Local Monitor
JVMEXT

RMIEXT

JVMEXT

RMIEXT

Fig. 1. Architecture of J-OCM

Recently, J-OCM was extended to enable the monitoring of web-service based
applications written in Java. Some modifications have been introduced to the
J-OMIS interface specification. The extension provides means for accessing web
services and forwarding web-service specific events.

3 SCIRun and TAU

Within our work we are integrating J-OCM with TAU-Paravis visualization
package. Paravis, which is a part of the TAU(Tuning And Analysis Utilities)
monitoring environment , is developed at the University of Oregon in Eugene
[7, 8]. Paravis introduces advanced 3-D visualization into TAU.

TAU-Paravis is built within SCIRun, a powerful Problem Solving Environ-
ment [9]. It is developed at the University of Utah, as an open source software.
SCIRun can be used widely for solving various scientific problems. It consists of
the modules that allow to perform complicated computations, data transforma-
tions, and provide advanced visualization. An application built within SCIRun is
composed from the modules which can be connected one to another through pipes
carrying data. A module usually gets input data, performs some computations
on it and sends the results to another module. Through various configurations of
modules the user can solve many complicated scientific problems.

The concept of providing monitoring data by J-OCM to a tool required ad-
ditional software to be written. We had to develop a new package in SCIRun
to make TAU/Paravis work with J-OCM. The new set of modules is responsi-
ble for: programming the J-OCM monitoring system, receiving the events from
it, selecting a performance object to be monitored, controlling the execution of
application, and processing the data which are passed to TAU-Paravis.

Towards the Performance Visualization of Web-Service Based Applications 111

4 Design of Monitoring Environment

The new monitoring environment can be divided into two parts: a monitor-
ing subsystem and an SCIRun compliant tool. The tool is responsible for the
programming monitoring activities, handling monitor events, measuring and vi-
sualizing. The tool runs inside SCIRun and consists of several packages. Its most
important components are the TAU package and JOCM package. We focused
on the second one. The JOCM package contains several SCIRun modules, data
types and ports definitions. They provide access to the monitor and produce
a TAU compatible data structure on the output. The structure is a 3-D ma-
trix. Having passed such matrices TAU can be used to provide matrix specific
operations on the data.

Fig. 2 presents an overview of the system architecture. J-OCM and SCIRun
are two separate systems which communicate using the J-OMIS interface.
SCIRun access modules execute J-OCM specific services and handle responses
and events. In principle, it is possible to use any monitoring system other than
J-OCM, which complies to the J-OMIS interface. A monitoring system can be
developed or evolve separately without influencing the whole environment.

Fig. 2. System architecture

In the JOCM package we define the following kinds of objects which can be
monitored: Node (physical machine), JVM (Java Virtual Machine), Class (Java
class), Method (class method), and Thread (Java thread)

Each performance object has its representation within J-OCM in form of
token. Objects form a hierarchy with nodes on the top and methods and threads
at the bottom. Each performance object is associated with a specific SCIRun
access module. The monitoring environment can be easily configured by placing
modules and connecting them according to the objects hierarchy. Each access
module can be attached to one or more J-OCM tokens. It is possible to attach
multiple modules to the same token.

The access modules perform monitor programming, but they also handle
events from J-OCM. The module on top of the hierarchy receives all event

112 M. Bubak et al.

notifications and passes them down until the event comes to the module which is
intended to handle it. Each access module has also a performance output which
can be connected to some measurement module’s input port.

The second category of modules contains measurement modules. They are
responsible for building measurements from monitoring events and gathering
measurement results. Measurements are connected to some metrics. We have
defined the following metrics:

– method execution time (aggregate or momentary, inclusive or exclusive, in
context of a thread)

– thread status over time
– garbage collector activity (execution time, released memory size)

The “method execution time” can be aggregated at the class level. In this
case, the “class execution time” is a sum of all class methods execution times.
The monitoring of thread status provides important information about the ac-
tivity of a thread. This information can be useful in solving the issues of thread
synchronization.

The measurement modules gather performance data and transform it into 3-
D matrix structures. These can be passed to TAU modules which perform some
additional transformations like aggregation or scaling. The results are being used
to produce 3-D charts which are finally rendered by an SCIRun built-in rendering
module.

The functionality of the system is much broader that performance visualiza-
tion only. It can also take control over an application execution. Now this ability
is limited to threads only. The user can make use of this feature to change a
thread status during the execution, without modifying source code.

5 Web Services Monitoring

The Web Services approach to building distributed applications is getting more
and more popular. The advantages of using web-based components are very
difficult to overestimate. Such components have well-defined interfaces and can
be easily accessed. An issue when using Web Services is their performance, due
to the use of XML-based communication protocols.

Debugging and optimizing a single Web service is quite an easy task. Prob-
lems occur when Web services start to interact while forming a working web
application. In this case the ability to do performance analysis is extremely im-
portant. It is still very difficult to find a complete solution for the performance
monitoring and visualization of web services.

Following the extension done to J-OCM, we have developed additional mod-
ules for accessing the new types of performance objects. These modules are:

– Web Service access module
– Web Service’s port access module
– Port’s operation access module

Towards the Performance Visualization of Web-Service Based Applications 113

The Web Service access module can be connected to the Node access module.
In this way the new modules extend the existing modules hierarchy (it is related
to the extended J-OCM tokens hierarchy).

We have defined relevant metrics:

– Resources usage (CPU, memory)
– Communication (throughput, latency, reply time)
– Requests (frequency, SOAP message processing time, message size)
– Run-time specific (operation execution time)

These metrics define the new measurements which require new modules for
gathering the measurement results. The important thing is that the output of
these modules is still TAU’s 3D matrix. As a result the visualization engine is
invariant to changes.

Within this concept, a very important part of the work are extensions to the
monitoring system. J-OCM must be able to manage a web service’s distribution
which differs from that on a cluster of nodes supported by J-OCM. Since nodes
can be grouped into sites, the monitoring system architecture must comprise
Service Managers above Local Monitors. Service Managers are managed by Ser-
vice Distribution Unit instead of the Node Distribution Unit as it was in the
cluster-oriented version of J-OCM.

6 Performance Visualization

The advantages of 3-D visualization over 2-D are obvious. 3-D charts are much
more readable and can provide more information at the same time. One of the
most important advantages of TAU is the ability to perform such visualization
in real time. The user is enabled to see what performance problems occur during
an application’s execution. The user is enabled to access various performance

X

Y
Z

Fig. 3. Summarized message parsing time (X-time; Y-web services; Z-measured value)

114 M. Bubak et al.

data on different objects at the same time. In this case it is much easier to figure
out dependencies between performance phenomena (e.g. bottlenecks).

In Fig. 3 we show an example performance visualization session of several
similar web services (“Hello world”). The monitoring environment is configured
to measure the SOAP messages parsing time. Each “Hello world” Web service is
located on a different physical machine. The client application randomly sends
requests to the Web services. With the tool we can observe the dynamics of
increase in the aggregate parsing time over the execution.

7 Related Work

There are a large number of monitoring tools for Java distributed programs.
Commercial tools like AmberPoint Express1 for .NET platform or open source
ones like Apache jMeter2 for Java provide for the user a lot of useful features.
They support advanced visualization and can point at application bottlenecks.
However, each of them runs as a client application. They test Web Services by
sending requests and counting the response time or number of fails. They can
also inspect SOAP packages. However, an issue is that they do not allow the
user to get insight into what really happens inside the Web Service.

Our goal is to overcome this constraint and to provide that our approach can
point at the part of the Web Service (initialization, request processing, operation
invocation or response) responsible for the performance problem. Moreover, the
system under discussion supplies more advanced visualization and can be easily
extended by new functionality.

8 Conclusion

Performance visualization is important for several reasons. Efficient application
programming requires efficient techniques for performance analysis and visual-
ization. When dealing with distributed systems the need in such a functionality
is even stronger.

It is still difficult to find comprehensive open source solutions for performance
monitoring, analysis and visualization of web services. Most of available tools are
limited to the SOAP messages analysis. Our approach is to attach the monitoring
tool to the Web service container and obtain from it needed monitoring data.

The system under discussion is open source and offers a functionality required
in case of the monitoring of distributed Java applications and also web services
implemented in Java. It uses a powerful scientific visualization environment -
SCIRun which is widely used due to it’s open architecture. As a result, the
system’s functionality can be easily extended by adding new modules.

As any monitoring system, J-OCM induces some overhead into the monitored
application performance, due to the local agents which may do dynamical in-
strumentation of the monitored application. In other cases, agents use the JVM
1 [http://www.amberpoint.com/solutions/express.shtml]
2 [http://jakarta.apache.org/jmeter]

http://www.amberpoint.com/solutions/express.shtml
http://jakarta.apache.org/jmeter

Towards the Performance Visualization of Web-Service Based Applications 115

built-it Tool Interface which influences the performance to a small extent. The
results of overhead measurements will be presented in the final version of the
paper. As well we will provide the results of scalability research.

One of the important issues of the whole environment we will work on in
further research is to optimize the resources usage needed by SCIRun (mem-
ory, CPUs, efficient graphics accelerator), which is crucial in large distributed
applications.

The web page of the monitoring environment is being worked on.

Acknowledgements

This research was partially supported by the KBN grant 4 T11C 032 23.

References

1. M. Gerndt, Automatic performance analysis tools for the Grid, Concurrency and
Computation: Pract. Exper, Vol. 17, pp. 99-115, 2005

2. W. Funika, M. Bubak, M.Smȩtek, and R. Wismüller. An OMIS-based Approach
to Monitoring Distributed Java Applications. In Yuen Chung Kwong, editor, An-
nual Review of Scalable Computing, volume 6, chapter 1. pp. 1-29, World Scientific
Publishing Co. and Singapore University Press, 2004.

3. TAU’s 3-D Profile Visualizer - ParaVis, University of Oregon, Computer and Infor-
mation Science
http://www.cs.uoregon.edu/research/paracomp/tau/tauprofile/dist/paravis/

4. Ludwig, T., Wismüller, R., Sunderam, V., and Bode, A.: OMIS – On-line Monitor-
ing Interface Specification (Version 2.0). Shaker Verlag, Aachen, vol. 9, LRR-TUM
Research Report Series. 1997
http://wwwbode.in.tum.de/˜omis/OMIS/Version-2.0/version-2.0.ps.gz

5. Bubak, M., Funika, W., Wismüller, R., Mȩtel, P., Or�lowski. Monitoring of Distrib-
uted Java Applications. In: Future Generation Computer Systems, 2003, no. 19, pp.
651-663. Elsevier Publishers, 2003

6. R. Wismüller, J. Trinitis and T. Ludwig: A Universal Infrastructure for the Run-
time Monitoring of Parallel and Distributed Applications. In Proc. Euro-Par’98,
Southampton, UK, September 1998, LNCS 1470, pp. 173-180. Springer-Verlag, 1998

7. A. D. Malony, S. Shende, and R. Bell, “Online Performance Observation of Large-
Scale Parallel Applications”, Proc. Parco 2003 Symposium, Elsevier B.V., Sept.
2003.

8. A. D. Malony, S. Shende, R. Bell, K. Li, L. Li, and N. Trebon, “Advances in the
TAU Performance System,” Chapter, “Performance Analysis and Grid Computing,”
Kluwer, Norwell, MA, 129-144, 2003.

9. C. Johnson, S. Parker, “The SCIRun Parallel Scientific Computing Problem
Solving Environment” Proc. Ninth SIAM Conference on Parallel Processing for Sci-
entific Computing, 1999.
http://software.sci.utah.edu/scirun.html

	Introduction
	J-OCM Monitoring System
	SCIRun and TAU
	Design of Monitoring Environment
	Web Services Monitoring
	Performance Visualization
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

