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ABSTRACT

The performance of a parallel application on a scalable HPC
system is determined by user-level execution of the appli-
cation code and system-level (OS kernel) operations. To
understand the influences of system-level factors on applica-
tion performance, the measurement of OS kernel activities is
key. We describe a technology to observe kernel actions and
make this information available to application-level perfor-
mance measurement tools. The benefits of merged applica-
tion and OS performance information and its use in parallel
performance analysis are demonstrated, both for profiling
and tracing methodologies. In particular, we focus on the
problem of kernel noise assessment as a stress test of the
approach. We show new results for characterizing noise and
introduce new techniques for evaluating noise interference
and its effects on application execution. Our kernel measure-
ment and noise analysis technologies are being developed as
part of Linux OS environments for scalable parallel systems.

1. INTRODUCTION
The performance of a parallel application is the conse-

quence of user-level execution of the application code, OS-
level operations occurring during program execution, and
the interactions between the two. To understand fully the
performance achieved on a HPC machine, it would be ideal
to have an integrated set of user-level and OS-level mea-
surements, plus additional information to identify the in-
teractions and quantify their performance effects. Unfortu-
nately, current parallel performance tools operate primarily
at the level of the application code, producing a perspective
on performance that, at best, lacks information on OS con-
tributions, and, at worst, misallocates, misattributes, and
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misinterprets performance to application-only factors. It is
untenable to argue that parallel application performance is
dualistic in nature, and if only the OS were not present, the
performance tool would produce correct results. To avoid
being haunted by the performance anomalies and inconsis-
tencies caused by ghosts in the machine, next-generation
HPC performance engineering environments should include
new techniques for understanding OS effects on application
performance. Indeed, the ability to dynamically adapt the
machine to the application demands such advances.

Research in the past five years has drawn attention to
the role of the operating system in achieving scalable per-
formance on massively parallel machines [5, 17]. An impor-
tant focus has been on OS interference (a.k.a. noise) and
its effects on application progress and synchronicity. The
outcome of this work has been a better characterization of
the interference phenomena and the relationship to perfor-
mance behavior. In general, understanding how operating
systems interact with applications and how interrupts, pro-
cess scheduling, and I/O processing affect performance at
increasing scales is key to petascale systems research [14].
This is true not only for configuring the OS and developing
parallel applications to be more interference resilient, but
also for adapting the kernel online for dynamic performance
optimization.

Given a parallel application and parallel system, how is
an integrated performance view obtained, such that OS-
application interactions can be observed and analyzed? Past
OS noise research has been based almost exclusively on mod-
eling [17], specialized noise benchmarks [20], and message-
driven simulation with noise-injection [5]. These methods
do not translate to a general-purpose tool framework for
investigating integrated performance in real parallel envi-
ronments. What is required is an ability to measure OS
activity directly and to associate OS measurements with
application-level performance characteristics. Our approach
is to instrument the OS kernel and measure system opera-
tions during application execution. The association of kernel
and application measurements is supported by providing the
parallel application with low-overhead access to the kernel
performance data. The approach extends the KTAU [16]
kernel-level measurement system with a capability to create
metrics from kernel performance data that can be read by



the TAU application-level performance tool.
Section §2 describes the KTAU extensions for application-

level access to Linux kernel performance data. These allow
the TAU performance system to profile and trace kernel con-
tributors to application performance. The section also re-
ports the overheads for kernel data access using KTAU. In
many respects, noise evaluation is a stress case for tools sup-
porting integrated performance views. Section §3 describes
analysis methods developed for the noise study presented in
the paper. The work builds on our research in evaluation of
operation system interference as well as measurement over-
head analysis and compensation. Experimental results are
discussed in Section §4 and show clearly the power of the
methodology and the integrated tools. A review of related
research is given in Section §5. Section §6 summarizes the
research conclusions and outlines plans for future work.

2. APPLICATION ACCESS TO

KERNEL METRICS
The KTAU [15] instrumentation and measurement fab-

ric was developed for parallel Linux systems to observe the
performance effects of OS and runtime (OS/R) components
during application execution. KTAU instruments the Linux
kernel to intercept the kernel control path and make mea-
surements of certain components including interrupt han-
dlers, the scheduling subsystem, system calls, and the net-
work subsystem. Measurements are made with respect to
the running process, and are captured in both profile- and
trace-based forms. KTAU places the performance data for
each process in kernel space and makes it accessible through
the Linux proc file system mechanisms. KTAU also provides
a API that can be used by an application process to obtain
its own kernel performance information directly. An appli-
cation instrumented with TAU in user-space automatically
gets access to its kernel performance state due to the in-
tegration between TAU and KTAU. This also obviates the
need for a daemon-based interface to kernel performance
state as every parallel process/thread can directly access its
own kernel state and that of all other processes if required.
Unfortunately not all applications are open-source and in-
strumentable. For such cases, a daemon (KTAUD) is imple-
mented to periodically access the kernel performance data of
all or a subset of processes running on the host system, such
as kernel threads, daemons, and user-level applications. Our
noise analysis work in this paper did not use the daemon as
all our parallel workloads were instrumentable and also since
requiring a daemon can itself introduce noise. Both KTAUD
and the API use the KTAU library (libktau) to access the
kernel data in /proc/ktau/profile and /proc/ktau/trace for
profiles and traces, respectively.

In [16], Nataraj et al. demonstrated the robustness of
KTAU to elucidate kernel performance, with respect to both
a process-centric and system-wide view. However, missing
in KTAU was a capability to directly observe kernel perfor-
mance at the time of application-level events. Such a ca-
pability is important for performance analyses that require
kernel operations to be correlated with respect to application
context (e.g., in the case of noise analysis). Although the
KTAU API could be used to sample kernel performance in-
formation for each measured application event, the overhead
of the libktau proc interface (requiring a Linux system call)
limits measurement fidelity. Nataraj et al. enhanced KTAU

in [15] to provide application context attribution when a
kernel measurement was made (by looking back into TAU’s
runtime event callstack). However, this does not allow for
application-triggered observation. To give a parallel appli-
cation both efficient access to kernel performance state and
runtime observation control, a more tightly-coupled mecha-
nism is required.

2.1 KTAU Extensions
Figure 2.1 contrasts the new KTAU capability for kernel

performance data access with the libktau proc support. The
key idea is to make available a portion of application pro-
cess memory (called a metric container) for use by KTAU
to write certain kernel performance metrics. The applica-
tion can then read the kernel metrics directly from memory,
at the time an application event is triggered. The access
overhead is reduced because only a subset of the kernel per-
formance data gets promoted as metrics, avoiding the proc
system call. The metrics themselves are derived from ker-
nel performance data according to functions specified by the
application. Metric computation occurs within KTAU and
updates are made to the container at the time the kernel
returns to the application process.

2.2 Overheads
Our objective is to make KTAU kernel metrics available

to application-level performance measurement systems, such
as the TAU performance system [2]. This requires low-
overhead setup and access, preferably on the order of other
sources of performance data. We measured the overhead of
the new KTAU access mechanism relative the gettimeof-

day() (gtod) system call, PAPI counters [1], and a “no-op”
proc call (no data is transferred) implemented in libktau. Ta-
ble 1 shows the configuration and per-call overhead for differ-
ent numbers of metrics. The tests were performed on a 2.6
GHz x86 64 Xeon (Clovertown) system running a KTAU-
enabled Linux. Configuration overhead includes container
setup and metric counter installation, which increases with
the number of metrics. Typically, configuration would occur
only once at the beginning of the application. Metric access
overhead is the cost of reading the metrics. The “no-op”
proc call and gtod are measured for each KTAU test case.
All values are in cycles.

As observed, using KTAU metrics has a significantly lower
configuration cost compared to the use of PAPI. Overheads
to access metrics are on par to both PAPI counter access and
gtod. They are superior to using the earlier proc interface to
access kernel information, even when no data is transferred.

An alternative method to evaluate overhead is use a real
application benchmark and compare the cost of TAU per-
formance measurement without and with KTAU metrics.
Again, providing KTAU metric access at the application
level allows a performance system such as TAU to measure
kernel performance with application events. TAU supports
this in its ability to read multiple counters with each mea-
sured event. For this overhead test, we compared the total
execution time of the LU application from the NAS Par-
allel Benchmarks (NPB) (version 2.3) [4] running on a 16-
processor Linux cluster under different measurement setups:
base (a vanilla Linux kernel and uninstrumented LU), ktau-
only (KTAU kernel with four instrumentation points), ktau-
proc (ktau-only with proc access at end), ktau-tau (ktau-
proc with TAU instrumentation (profile and trace) of MPI



User ApplicationKTAU Linux kernel User Application KTAU Linux kernel

KTAU data

interface

KTAU
metrics

User memory spaceKernel memory space

KTAU data KTAU data

libktau /proc libktau metric
interface

Kernel memory space User memory space

Figure 1: KTAU support for kernel performance data access. The left figure depicts the KTAU proc interface
to KTAU data. Here a Linux system call transfers the data from kernel to user space. The right figure
shows the new support for promoting KTAU-computed kernel metrics to user-space by mapping application
memory to KTAU kernel memory.

# Metrics KTAU config Metric access gtod PAPI config PAPI access “no-op” proc

1 18520+17408 192 238 1830064 248 1150
2 18504+19112 272 - 1836720 304 1148
4 18864+25112 288 - — — 1215
8 18856+33776 400 - — — 1148

Table 1: KTAU metric access overhead relative to gettimeofday() (gtod), PAPI, and a “no-op” proc call. All
values are in cycles.

events), and ktau-tau-metrics (ktau-tau with metric counters
access). Table 2 shows the minimum execution time (over
five experiments) with the percentage slowdown calculated
with respect to the baseline experiment.

The LU overhead results are remarkable in several re-
spects. First, a KTAU-instrumented Linux kernel, with
four kernel actions being measured, showed indistinguish-
able LU performance compared to a vanilla Linux kernel.
Second, with kernel performance data being measured, ac-
cess to KTAU metrics introduces minuscule overhead com-
pared to standard TAU performance measurements. Last,
enabling profiling and tracing of MPI events introduces less
than 1% execution time delay.

The ability to access kernel performance data as KTAU
metrics at the application level allows for finer correlation
of application performance with kernel operation. It places
kernel actions in the context of application logic and state.
This is important for the analysis of event-relative kernel
behavior, such as occurs in noise cases.

3. NOISE MEASUREMENT AND

ANALYSIS
Time spent in the operating system during an applica-

tion’s execution influences its performance. When the OS
is working on behalf of the application, it is reasonable to
regard the OS work as a component of application execu-
tion. Characterizing OS activities could certainly aid per-
formance understanding. When the OS is not working on be-
half of the application, it introduces performance artifacts,
what has come to be referred to as “noise.” The question
of whether noise poses a significant slowdown in very large
scale environments has been investigated by several previous
works [17, 9]. Excellent research has been done to uncover
the nature of OS noise and to relate it to scalable application
performance [5, 21]. However, little of this work has tried to
quantify the OS noise directly, in vivo with application-level
measurements. Our objective was to examine the problem of

noise measurement and charecterization, provide measure-
ment and analysis methodologies and noise quantification
metrics that provide new insights into how applications re-
act to the different noise sources in an OS.

The KTAU project, and several others, have shown that
the Linux kernel can be instrumented and measured. The
question we pose here is whether OS noise can be measured
and analyzed to understand its performance effects. The
noise measurements require identifying Linux kernel oper-
ations that occur independent of application involvement.
In the following experiments, we limit ourselves to known
sources of noise that come from timer and scheduling re-
lated OS activity. These include:

• timer interrupt : This is a periodic hardware interrupt
(triggered by a clock source) to keep time in the system
and manage timers. The interval is defined at Linux
kernel compile time and has common values of 10, 4,
and 1 msec. The timer interrupt is a “global” timer
interrupt – it is delivered to only one processor/core
per system.

• smp apic timer interrupt : This is also a periodic inter-
rupt that has the same frequency as timer interrupt.
In contrast, this is a“local” interrupt – it is delivered to
every processor/core. The main purpose is to update
process times for scheduling.

• schedule: This represents“pre-emptive”scheduling only,
in contrast to yielding the processor voluntarily. The
value is the total time that a process spends not execut-
ing as a result of being pre-empted by another runnable
process. Process quantums and process pinning can
affect it.

In the noise experiments we report below, KTAU was con-
figured to measure the above three noise metrics and provide
access to the TAU performance system. Note that KTAU
is not limited to tracking and promoting these events alone
– any OS-event can be tracked in the same manner. TAU



NPB LU Class C on 16 Nodes - Total Exec. Time (sec)

Metric base ktau-only ktau-proc ktau-tau ktau-tau-metrics
Minimum 475.04 475.53 476.73 479.34 479.66

% Min Slowdown — 0.10 0.36 0.91 0.97

Table 2: LU overhead results comparing KTAU-instrumented kernel and metric access under different mea-
surement scenarios.

a. Amplification with wait time b. Absorption with wait time

c. Absorption without wait time d. Collective with barrier-semantics

Figure 2: Noise Estimation Illustrated

makes performance measurements of instrumented applica-
tion level events during execution. If KTAU metrics are
available for an experiment, those metrics will be measured
and stored with the TAU performance data. TAU can gen-
erate parallel performance profiles or traces.

Parallel profile analysis in TAU reports statistical perfor-
mance information for each thread of execution. Depending
on what events were instrumented and the level of event
callpaths measured, TAU profiling can provide a rich ac-
counting of performance per event. Because KTAU metrics
provide TAU with an additional performance data source,
kernel noise statistics and their distribution will be shown
for all parallel threads and events.

The interesting question is whether parallel profiles of ker-
nel noise are enough to understand how noise affects perfor-
mance. TAU computes both inclusive and exclusive data,
which together with callpath- and phase-profiling [12], af-
fords attribution to application components at any level of

event detail. While profiles may be enough to uncover noise
determinants to application performance, they do not cap-
ture noise dynamics and will lack explanative power.

On the other hand, TAU tracing will record a timestamp
record for every event occurrence for every process during
execution. With KTAU enabled, each event record will in-
cluded the three noise metrics. Noise research has shown
that performance effects are determined by the application
context when and where noise occurs, and different appli-
cations with show different noise sensitivities (both compli-
mentary and adversarial). Noise can accumulate and am-
plify execution time. Noise can also be absorbed and have
little consequences. Trace analysis is important to explain
these differences.

The trace analysis algorithms we developed are extensions
of prior work on parallel measurement overhead compensa-
tion [11, 23]. The basic idea is to construct an approximated
timeline without the influence of noise. Local noise is accu-



mulated as we process it in the trace. At every event entry or
exit, the local noise values are stored in the trace. We main-
tain an accumulated noise value for each process. This value
will accumulate all local noise during non-communication
events. At communication events, the accumulated noise
can go up (amplification) or down (absorption) based on
the analysis.

To illustrate, we will look at four examples. Figure 2(a)
shows the simplest case of noise amplification. Before the
communication events, Process 1 has accumulated 100ms of
noise, and Process 2 has accumulated no noise. We con-
struct the approximated timeline and reason that Process
1’s send event (S) would have occurred 100ms previous in
the absence of noise. The start of Process 2’s receive event
(Rb) would not have changed, since Process 2 had no lo-
cal noise. However, we can now reason that the end of the
receive event (Re) would have occurred earlier because it
is no longer delayed by Process 1 (which now sends earlier).
Having established the approximated timeline, we determine
the accumulated noise for each process simply by subtract-
ing the approximated exit time from the measured exit time.
For a send event, no accumulation or absorption is possible,
so Process 1 will maintain its 100ms of accumulated noise.
Process 2 would have finished this receive 100ms earlier, so
it’s accumulated noise is now 100ms. In this case, we track
100ms of noise amplification on Process 2.

Figure 2(b) shows a case of noise absorption. As before,
we construct the approximated timeline by moving the start
events back by the current accumulated noise. We see in
this case that Process 2 has a measured exit of 2000ms and
an approximated exit of 1970ms, indicating that it has an
accumulated noise of 30ms. Here, 70ms of the 100ms of local
noise on this process has been absorbed. This is possible due
to the 1000ms of measured wait time.

Figure 2(c) shows a case where there is no wait time. The
send occurs before the receive starts. Again, we move the
start times back by the current accumulated times. Then we
reason about where the receive exit can occur. It can occur
no earlier than the send. Since the send will now occur at
time 970, Process 2 could exit as early as then. Since the
measured exit was 1003, we have 33ms of accumulated noise
after this receive event. So Process 2 has absorbed 67ms of
it’s 100ms of noise.

Figure 2(d) shows a collective operation with barrier se-
mantics. The measured barrier begin (Bb) and end (Be)
times are shown for each process. The algorithm for col-
lectives is much the same. We construct an approximated
timeline by moving the entry points back by the current
accumulated noise values. Next, we examine the measured
trace to determine the sync time. As an approximation, we
compute the sync time to be the difference between the last
measured entry and the last measured exit. After deter-
mining the approximated entry times, we approximate the
exit times by adding the sync time to the last approximated
entry.

The trace analysis maintains the amount of accumulated
noise and the amount of local noise amplified and absorbed
for each process for every event. At the end of the trace,
the accumulated noise represents the amount of the total
execution time due to noise. The analysis can be conducted
for the entire noise (sum of the noise metrics) or for each
noise metric separately, allowing an estimate of performance
change if only that metric were removed.

4. EXPERIMENTAL RESULTS
A series of experiments were performed to demonstrate

and evaluate the KTAU-based noise measurement and anal-
ysis methods. We begin with the validation of the noise
tracking methodology at scale, using a synthetic bulk syn-
chronous parallel program with noise injection on a BG/L
platform. Second, the LU and CG benchmarks from the
NAS NPB [4] were tested to demonstrate the extent of noise
information that can be obtained with just profiling and
the visualization of this information with existing tools in
the TAU performance system. Finally, noise-tracking ex-
periments were conducted with the Sweep3D benchmark to
highlight the ability of our noise trace analysis and the effi-
cacy of our metrics.

4.1 Empirical Validation of Noise-Tracking
A fundamental problem in validating a methodology that

seeks to estimate slowdown due to noise is that in any in-
trinsically noisy environment it is not possible to remove all
the existing noise. After all, that is the original problem this
measurement tool and analysis methodology are seeking to
aid in solving. One approach is to take an existing noise-less
environment, introduce noise into it, and then compare the
runtime of the parallel job with and without noise. This
is the approach followed by Beckman et. al. [5] in their
study of the effect of noise on collectives on the IBM BG/L
machine. We adapt their methodology and Selfish noise-
injection suite [5] to validate our noise analysis techniques
at a larger scale.

We modified Selfish to export a global counter that iden-
tifies exactly how much noise has been injected (akin to
how KTAU measures Linux kernel noise and publishes noise
metrics). This Selfish counter is read and stored by TAU
at application events (mainly, MPI communication events).
The trace analyzer processes the traces containing Selfish-
injected noise information, delivering an accumulated noise
at the end for each process. We can use this value to pre-
dict execution time in the absence of Selfish-injected noise.
This compensation estimate can be compared against the
noise-less run to determine trace analysis accuracy.

We use a bulk-synchronous parallel (BSP) benchmark as
this category of codes suffers significant noise-related slow-
downs. This BSP program has two main phases, computa-
tion and collective, and repeatedly iterates over them. It
allows control of the computational grain and can be run in
either strong or weak scaling modes. In strong scaling mode
the total work is split across the processors, which results
in the computational grain being halved for every doubling
of node-count. The computational-grain remains the same
in weak-scaling mode (essentially increasing the total work
with the node-count). We repeat the runs with the following
configurations:

• no noise: It is run without any external noise injection.

• with 1% noise: Noise is injected at a frequency of
1000HZ with every noise event costing 10 microsec-
onds. This translates to a total noise of 1%.

• with 5% noise: Similar to the 1% noise case, except
that every noise event costs 50 microseconds.

• with 10% noise: Similar to the 1% noise case, except
that every noise event costs 100 microseconds.
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Figure 3: Validation of Noise Tracking with Injected Noise

Experiments are run under the strong-scaling mode for
10000 iterations with total work set to take a duration of
64000 microseconds per computational phase over 32, 64 up-
to 2048 processors. This results in a computational grain of 2
milliseconds over 32 processors and 31.25 microseconds over
2048 processors respectively. The values were chosen so as to
exacerbate the noise-problem as scale increases. Figure 3(a)
shows the results of the runs for each node-count and amount
of injected noise. The no noise and with noise curves are
already explained. The points on compensated curves are a
result of subtracting the accumulated noise (as reported by
the trace-analysis) from the runtime of the corresponding
with noise experiment. As can be seen, for every noise %,
the compensated curves are almost entirely overlaid over the
no noise curves.

We define two metrics, to further quantify the accuracy of
the noise-tracking. The %Runtime-Estimation Error (%RE)

is defined as:

%RE =
no noise runtime − compensated runtime

no noise runtime
∗ 100

and %Noise-Estimation Error (%NE) is defined as:

%NE =
dilation due no noise − accumulated noise

dilation due to noise
∗ 100

Figure 3(b) shows %RE to be low throughout (with the
highest value being 1.06 for 1% injected noise). But it shows
an increasing trend toward larger scales. In contrast the
%NE (Figure 3(c)) is stable across the node-counts. This
suggests that the error is a function of the total noise in
the system and the increasing %RE is an artifact of the
exponential increase in noise-related slowdown as compared
to the no noise value. The accuracy is also shown to improve
with greater injected noise (for the noise distribution tested).
It is noteworthy that the analysis under-estimated noise in
all experiments.
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4.2 LU and CG Noise Testing
We ran the NAS Parallel LU and CG benchmarks and

performed noise-component studies. We use those runs to
report on the integrated profiling capabilities. The top-half
of Figure 4 shows NPB LU running on 32 processors un-
der two different configurations, baseline and pinned/non-
irqbalanced. The figures are screenshots of the ParaProf [6]
parallel performance visualization tool. Each bar represents
the total amount of a single type of noise-metric experi-
enced by one application MPI rank. The leftmost metric is
the global timer interrupt, the center is the local smp apic-
timer interrupt and the right one denotes the pre-emptive

schedule. All units are seconds, except schedule which is
reported as microseconds.

The baseline configuration view for LU shows how certain
noise-sources (smp apic timer interrupt) are evenly spread
across the ranks, while others (timer interrupt, schedule)
are not. It is important to keep in mind that the high-
level profile, in contrast to the trace, only provides a view
of the overall application run - so it may not be able to
see if distributions of these noise-components were uniform
within any particular phase, but only overall. Other types
of profiling such as Phase-based profiling, which partitions
the measurement data across the phases and hence preserves
that information may be used. The pinned/non-irqbalanced
configuration shows several repeating features. One in four
ranks has high timer interrupt overhead, one in four has
higher smp apic timer interrupt and schedule as well. But
the ranks which experience a high value of one metric (e.g.
schedule) are different from those that experience another
(say timer interrupt). Why? Tasks stick to their cores due
to pinning. In addition, due to lack of irqbalancing, the
global timer is experienced by only one in four ranks (as
there are 4 cores per node). This results in the peculiar
pattern and serves to show how these interactions can be
revealed with integrated performance profile views. Small
changes to system/OS parameters can have significant ef-
fects on the parallel application. Similar features are seen in
the case of CG in the bottom of the figure. Next, we turn to
our trace-based methodology for greater insight into noise
dynamics.

4.3 Sweep3D Noise-tracking Experiments
The ASCI Sweep3D benchmark [10] is an interesting test

case for noise analysis because of its alternative phases of
computation and communication. We set up the experiment
to run Sweep3D on a problem of size 650x650x650 for 15 it-
erations with MPI-based communication. The San Diego
Supercomputing Center provided access to a test cluster
consisting of 32 dual-socket, dual-core (Opteron) nodes con-
nected by Gigabit Ethernet. Since our goal was noise track-
ing, application-level tracing was performed using TAU for
the MPI level operations with KTAU noise metrics recorded
with each event. After trace collection, the parallel noise
analysis algorithm was run to account for performance ef-
fects due to each noise component and their composition
(overall noise).

Three metrics (and corresponding graphs) are presented
to help identify key noise features. The accumulated noise
graph shows the total time lost by each process of the paral-
lel application from noise, for each noise component and the
overall noise. Subtracting this value from each process’ total
execution time gives an estimate of the process performance

in the absence of noise. The amplified noise ratio graph
shows the ratio of the accumulated noise to the local noise
(i.e., how much noise is amplified). The noise composition
graph shows the ratio of the accumulated noise component
to the overall accumulated noise. This graph indicates how
much a single noise source contributes to the overall noise
and how the effects of the different noise-sources combine
together.

We begin with a 32-processor run. Figure 5(a) plots the
total accumulated time spent due to the different noise-
sources on every rank. This time is a consequence of the lo-
cal noise, additions due to noise passed on from other nodes
and subtractions due to absorptions. Figure 5(a) shows
that the application might have run 1.6 seconds faster if
all three observed noise sources were removed from the sys-
tem. It also shows that the largest contributor in this case
is smp local timer interrupt.

Figure 6(a) shows the sorted noise amplification ratio.
timer interrupt is shown to be largest amplified noise com-
ponent. This can be explained by the fact that there is only
coarse grained irq-balancing of the global timer interrupt
(every core is chosen to receive the timer interrupts for 10
seconds at a time). Because the total local noise duration
due to timer interrupt is small, the accumulated noise value
for this component (Figure 5(a)) remains the lowest in-spite
of the large amplification. It is important to note that the
overall noise amplification for most ranks (except a few) is
less than 1. This means that most noise was actually ab-
sorbed by the application and did not contribute to ampli-
fication.

Figure 7(a) plots the contribution of a particular noise
component to overall noise. This is defined as the ratio of
accumulated noise from a single source to the accumulated
noise combined from the three sources. This view is meant
to point out dominant noise sources. Additionally we plot
a fifth curve labeled Orthogonal Accumulated Noise Sum,
which is the ratio of the sum of the accumulated noise from
the 3 sources to the combined overall accumulated noise. If
this value is equal to 1, that means the effects of the three
noise sources are orthogonal to each other and the overall
effect is just a simple addition of the separate components.
If this value is larger than 1 it means that some portion
of one noise component was subsumed or overlapped with
other noise and hence did not contribute fully to the com-
bined noise. Values of less than 1 are not possible. In Fig-
ure 7(a) smp apic timer interrupt and schedule are shown
to be approximately 60% and 50% of the overall noise. It
is interesting to note that 35% of the total noise from the
different sources is subsumed or overlaid.

Next we investigate the effect of strong scaling on noise
behavior by increasing the processor count to 128. Accumu-
lated noise (as it is not normalized) does not directly com-
pare to the 32 processor case. This is reflected in Figure 5(b),
which seems to suggest that the 128 processor run experi-
enced less noise than the 32 processor run (as it does not ac-
count for the lower run-time of the 128 processor run). The
other two metrics shed further light. Figure 6(b) shows a sig-
nificant amount of noise amplification of timer interrupt. It
also shows that the noise-amplification of the combined met-
ric is largely above 1 and ranges upto 4, depicting significant
parallel noise amplification as opposed to minimal (or zero)
amplification in the case of the 32 processor run. Figure 7(b)
shows that more than half the total accumulated noise from
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Figure 5: Noise Accumulation (Base configuration)
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Figure 6: Noise Amplification (Base Configuration)

the three sources is overlaid. It also shows that schedule is
the dominant cause of noise and, if removed, would result
in 85% of the noise effects being eliminated. Identification
of the dominant noise source allows removing or reducing
noise, without having to remove all noise sources.

Having identified the dominant noise source as pre-emptive
scheduling, we tested the pinning of the Sweep tasks to pre-
vent their movement across cores. We also turned off irq-
balancing of timer interrupt to observe the effects. Figures 8
and 9 show the runs for 32 and 128 processors with the new
pinned configuration. Comparing Figures 8(a) and 8(b), it
is evident that the magnitude of noise reduces by the same
factor as the speed-up (i.e., 4 times, going from 32 to 128
processors). This suggests that the noise problem was not
exacerbated due to scaling (as happened in the base con-
figuration). Figure 9(b) shows that schedule is no longer
the dominant noise source, in fact, no single noise source is
clearly dominant.

We have demonstrated our methodology in measuring and
tracking parallel effects of individual noise components and
overall combined noise, allowing identification of dominant
noise sources (if any) and alleviation of noise effects due to
scaling.

5. RELATED WORK
Trace-based analysis of message-passing programs has a

long history. Some of the most recent work related to ours
includes the DIMEMAS performance prediction tool [3] and
Chama OS interference simulator [21]. The work we present
in this paper addresses a problem not previously addressed
by trace analyzers, that of understanding how measured in-
terference propagates across all processors in a parallel pro-
gram due to delays in synchronous operations. Doing so
requires both trace analysis and a method for quantifying
interference itself.

Prior work in quantifying interference has relied on mi-
cro benchmarks to infer the features of interference by ob-
serving its impact on simple programs. In 1994, Mraz pre-
sented work that analyzed variance in simple message pass-
ing programs to understand the impact of OS configuration
on parallel programs [14]. His work could be argue to mark
the start of quantitative noise measurement and mitigation.
Later, the Fixed Time Quantum micro benchmark (FTQ)
was created to quantify the effect of preemptive multitask-
ing on single processor performance in a manner that was
compatible with the application of rigorous mathematical
analysis using tools from signal processing [20]. This allows
one to reason about noise that delays arrival at synchronous
operations on individual processors, resulting in a potential
global program slowdown.
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Figure 7: Noise Composition (Base configuration)
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Figure 8: Noise Accumulation (Pinned configuration)

A different approach taken recently with great success is
that of modeling parallel programs to predict their expected
behavior in the presence of different sources and levels of
noise. The work in tuning the ASCI Q cluster nodes that
resulted in significant performance improvements demon-
strated the success of this methodology [17]. Our work dif-
fers from this in that instead of relying on a performance
model for both applications and machines, we base our study
purely on observations of the actual machine and application
execution. The use of the actual program is key in reasoning
about the performance of complex applications with highly
input dependent behavior, such as adaptive mesh refinement
or time varying data decompositions (eg: molecular dynam-
ics and n-body codes).

It has long been recognized that a complete system per-
formance analysis requires measurements of OS behavior in
addition to that of applications. Existing OS measurement
efforts have included the Linux Trace Toolkit (LTT) [24], So-
laris DTrace framework [7], and KernInst [22] projects. In
addition DeBox [18], CrossWalk [13] and the tool described
in [19] specifically try to correlate application/kernel per-
formance. While these projects do provide access to kernel
profiling data, they do not offer a straightforward mecha-
nism for observing all forms of kernel – application interac-
tion. In particular, they provide no support for observing
asynchronous kernel – application interactions such as in-

terrupts or scheduling. Instead, they focus primarily on the
system-call interfaces (and those kernel routines directly in-
voked by the system-calls). Unfortunately, because of these
limitations, these tools are of little utility in noise-tracking.
Noise is a phenomenon that is largely a consequence of asyn-
chronous OS interference amplified by parallel application
communication patterns. The ability to unify OS and appli-
cation observations (for both synchronous and asynchronous
events) is vital for understanding how the full system be-
haves under real workloads. The KTAU framework dis-
cussed in this paper addresses this issue. Other projects
such as MAGNeT [8] provide kernel profiling data, but for
specific regions of the kernel such as the network protocol
layer, limiting their applicability to full-system analysis and
tuning activities.

6. CONCLUSION AND FUTURE WORK
Extending KTAU to derive kernel metrics and map them

to application memory for fast access has created a power-
ful new capability for observing kernel operation and under-
standing its effects on application performance. In partic-
ular, the KTAU metrics support has allowed us to probe
sources of noise and quantify their behavior in the con-
text of application-level events. The intimate relationship
of noise and communication operations, especially with re-
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Figure 9: Noise Composition (Pinned configuration)

spect to how noise influences performance scaling, requires
event-specific noise measurement and analysis to fully cap-
ture noise dynamics.

While we believe an integrated performance environment
combining kernel-level and application-level measurements
is important for next-generation parallel systems, we recog-
nize the reluctance to support instrumentation in the OS
kernel on production platforms. Nevertheless, our future
plans include the inclusion of KTAU and its extension in
Linux-based OS distributions for high-end, extreme-scale
parallel environments. In the course of this work, we believe
we can prove the worth of an integrated performance frame-
work for addressing challenging problems such as noise as-
sessment, noise elimination, and dynamically adaptive OS/R
components that require online kernel performance data that
KTAU can provide. Our first target will be new DOE leader-
ship class facilities where Linux is being pursued for a light-
weight computer node kernel.
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