
Dynamic Power Sharing for Higher Job Throughput

Daniel A. Ellsworth, Allen D. Malony
University of Oregon

Eugene, Oregon, USA
{dellswor,malony}@cs.uoregon.edu

Barry Rountree, Martin Schulz
Lawrence Livermore National Laboratory

Livermore, California, USA
{rountree4,schulzm}@llnl.gov

ABSTRACT
Current trends for high-performance systems are leading to-
wards hardware overprovisioning where it is no longer pos-
sible to run all components at peak power without exceed-
ing a system- or facility-wide power bound. The standard
practice of static power scheduling is likely to lead to in-
efficiencies with over- and under-provisioning of power to
components at runtime. In this paper we investigate the
performance and scalability of an application agnostic run-
time power scheduler (POWsched) that is capable of enforc-
ing a system-wide power limit. Our experimental results
show POWsched is robust, has negligible overhead, and can
take advantage of opportunities to shift wasted power to
more power-intensive applications, improving overall work-
load runtime by as much as 14% without job scheduler in-
tegration or application specific profiling. In addition, we
conduct scalability studies to determine POWsched’s over-
head for large node counts. Lastly, we contribute a model
and simulator (POWsim) for investigating dynamic power
scheduling behavior and enforcement at scale.

CCS Concepts
•Software and its engineering→Power management;

Keywords
RAPL; hardware over-provisioning; HPC; power bound

1. INTRODUCTION
Scalable parallel applications have been the driving force

behind the evolution of large systems with their ever-increasing
demands for processor, memory, and network performance.
This evolution over the past decade has followed a “hori-
zontal” scaling strategy to increase floating-point operations
per second (flops) and input-output operations per second
(iops) by adding more of the latest hardware. Unfortunately,
powering a massive cluster at the maximum power draw of

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807643

all hardware components simultaneously is a major techni-
cal and cost challenge that will become infeasible for future
machines. Because few applications are able to fully exploit
all components at peak capacity [10], providing maximum
power is often unnecessary. These observations will force
system designers to rethink scaling strategies for high-end
systems from the ground up.

A possible alternative is hardware over-provisioning, where
more hardware is available than can be powered at maximal
draw at any time [9]. Power systems and system scales are
designed for the common case, requiring mechanisms to pre-
vent the system from exceeding the predetermined maximal
power (i.e., a system wide power bound must be enforced).
New technologies, such as Intel’s Running Average Power
Limit (RAPL), which provide a software configurable and
hardware enforced power cap per socket, are key to this ap-
proach. Their use requires a power distribution algorithm
to allocate the available power across the system. The näıve
solution is to assign equal power to all sockets across the
cluster. One consequence of the näıve approach is that it
wastes power1 on the applications that do not execute at
the fixed power limit. Alternatively, a dynamic system-wide
power scheduler can detect and reallocate the wasted power
resources to efficiently utilize a hardware over-provisioned
system.

In this work, we evaluate the dynamic power reallocation
strategy implemented in POWsched [3]. POWsched is a dy-
namic power scheduler that enforces a global power bound
and uses a simple heuristic, based on current per socket
power consumption and allocation, to guide scheduling de-
cisions. POWsched is agnostic to the applications running
on the system and does not coordinate with the job sched-
uler. While even better performance is expected with job
scheduler integration, POWsched has been observed to re-
duce the overall runtime versus the näıve solution in power
constrained settings. When power is plentiful, overall run-
times are within a standard deviation of the unbound time.

Specifically, our research contributes the following:

• An experimental evaluation of a dynamic power sched-
uler on an HPC-class system with RAPL power control
capable of enforcing a global power bound.

• A scalability study of the POWsched algorithm on
BG/Q to determine its overhead on large numbers of
sockets.

1The power is “wasted” in the sense that it limits the hard-
ware resources that could otherwise be assigned to other
concurrent jobs.

• A simulator for experimenting with power enforcement
at scale. This addresses the current lack of large-scale
clusters exposing RAPL-like power adjustment at run-
time.

Section 2 provides a brief background on power research
in HPC systems. The environment and design of POWsched
is described in Section 3. We discuss the implementation of
POWsched, POWmon, and POWsim in Section 4. Section 5
discusses our experimental results. First, we report a range
of workload execution experiments on a RAPL-enable HPC
machine demonstrating POWsched’s implementation. Sec-
ond, we show the scaling results characterizing POWsched
overhead. Lastly, we give results from the POWsched simu-
lation. Section 6 discusses future work and conclusions.

2. BACKGROUND
Existing work on power consumption and management

is primarily focused on per job optimization of total energy
consumed. While total energy consumption is reduced when
the rate of consumption is decreased without increasing run-
time, reducing total energy consumption is a different goal
than enforcement of a system-wide power limit2.

2.1 Power Optimization
Most existing power scheduling work seeks to simultane-

ously minimize power consumption and computation run-
time. Hoffmann [5] observes that there is a class of ap-
plications that operate with real-world time constraints and
the minimum computation runtime is equivalent to one that
completes just ahead of the deadline. Bambagini et al. [1]
use such timing constraints for power optimization in real-
time embedded devices with periodic inputs. Mistral [7] uses
a target request latency for VM migration and activation to
reduce data center energy costs while maintaining service
quality. The majority of existing HPC workloads are not in-
teractive and are unlikely to benefit from real-world (clock)
time-based deadlines.

Adagio [12] uses DVFS to conserve energy for instrumented
processes. Adagio uses hardware performance counters and
instrumented MPI calls to measure program progress and
define task boundaries. Deadlines are based on the esti-
mated time of the last communication participant rather
than real-world time. The progress measures are used in-
dependently, per processor, to estimate the frequency for
the next scheduling interval, attempting to minimize power
without impacting runtime. Adagio, unlike our current work,
is uncoordinated across nodes and does not guarantee that
a global power budget will be maintained.

Green Queue [13] uses DVFS control and a precomputed
database of observations to reduce power consumption when
compared with the default power consumption of an appli-
cation. Prior to running a workload for power savings, static
analysis is done to help instrument the workload and runs
in differing configurations are done to develop profile infor-
mation. Machine learning is used to develop models, which
are applied at runtime to guide clock frequency selection.
For the experiments reported in the paper, Green Queue
produced an average power savings of 12.5% with an aver-
age performance loss of 5.2%. The power and time cost in
instrumentation and model production were not discussed.
2Energy is a quantity measured in joules. Power is a rate
measured in watts, joules

seconds
.

0 50 100 150

0
20

40
60

80
10

0

Time

W
at

ts

8.2 12.9 93 145.8

Consumed
Allocated

0 50 100 150

0
20

40
60

80
10

0

Time

W
at

ts

8.2 13.4 94.8 151.5

Consumed
Allocated

Figure 1: Spikes above the allocation are an artifact of the
100ms POWmon sampling interval being smaller than the
1 second RAPL window. Limits at 115 watts left and 50
watts right.

The general problem of fine-grained resource scheduling
in modern systems is quite complicated due to the num-
ber of software configurable elements. PTRADE [6] ex-
plores power and performance optimization of an applica-
tion on a single host in the presence of different configura-
tion elements on different hardware platforms. A heartbeat
from the application is used to measure application runtime
performance (progress). To avoid exploring the configura-
tion space and developing application profiles before use,
PTRADE adapts the model used for application configura-
tion at runtime based on observed performance side-effects.
POWsched is extremely simple in contrast, only observing
power consumption and only adjusting the power alloca-
tion. On the other hand, POWsched operates across multi-
ple nodes of an HPC cluster.

Patki et al. [9] explore over-provisioning of hardware. They
explore the runtime of differing node and processor counts
under differing global power bounds and show that the opti-
mal runtime for a given bound is not necessarily the config-
uration using all available processors. Patki et al. [10] show
that power estimates given at job submission time, together
with the flexibility to reduce actual power allocation, can be
used to reduce the time from job submission to job comple-
tion. Our current work does not interface with the jobs or
job scheduler in anyway. Also, POWsched makes allocation
adjustments during execution. We expect large performance
gains are possible with job scheduler integration and plan to
explore such integration in future work.

2.2 Effect of Bound
Rountree et al. [11] and Fukazawa et al. [4] investigate run-

time performance of applications under fixed power bounds.
Results from this work show a non-linear correlation be-
tween power allocation and overall runtime as power bounds
are lowered. Additionally, the work by Rountree et al. [11]
shows that under the same power constraint, processors of
the same model, have different performance characteristics.
The relationship between power bound, consumption, and
runtime are fundamental to the POWsched heuristic and
the POWsim simulation model.

Applications may not use power at a consistent rate through-
out their execution. When application power consumption,
c, is beneath the power allocation, a, negligible impact to
application runtime is expected. For instance, Figure 1
shows time measurements in seconds of an 8-node (2 sockets

0.
9

1.
1

1.
3

1.
5

Watts

R
el

at
iv

e
R

un
tim

e

50 60 70 80 90 100 110

LULESH
AMG−MPI
miniFE−MPI
MCB
Nekbone−MPI
Nekbone−OpenMP
miniFE−OpenMP
CoMD

Figure 2: Runtime effect of decreasing bounds for different
CORAL benchmarks and parameters.

per node) run of the miniFE benchmark from the CORAL
benchmarks with power bounds of 115 watts and 50 watts.
A “smear” plot is shown where the power consumption of
each socket is displayed. miniFE has a variable power con-
sumption (“power signature”) over its execution and between
sockets. The 115 watts case is effectively unbounded. How-
ever, when power constraints are imposed, certain phases of
the miniFE computation become power-limited (with less
smearing), and other phases have enough power to operate
at their full rate. Runtime duration, as a percentage of phase
time, increases only for phases where unbound consumption
would exceed the runtime cap. In the miniFE experiment,
we observe the total time increasing by almost 5 seconds,
mostly due to the second phase of its computation being
power-constrained.

A polynomial impact to application runtime is observed
as the power allocation is pushed further beneath the un-
bound consumption. Intuitively, power consumption is di-
rectly related to transistor switching power and the number
of active transistors are directly related to the instruction
stream. Generally the formula for the switching power loss
is given as W = ηCV 2f [2]; the watts W lost are directly
related to the square of the voltage V and the frequency f
of switching. The voltage and frequency must be increased
together resulting in a nonlinear relationship between watts
and instruction execution speed, dominated by the V 2 term.
Figure 2 shows the runtime effects of decreasing allocation
across several CORAL benchmarks.

3. SCHEDULING APPROACH
Our work targets large-scale high-performance comput-

ing (HPC) systems, primarily with an eye to future exas-
cale platforms. HPC systems represent a substantial cap-
ital investment and are typically shared, batch-scheduled
resources. An HPC system is composed of many compute
nodes, each with a number of processing elements, including
CPUs and accelerators. Users of the system typically sub-
mit jobs with a desired number of nodes to a job scheduler
where each job is queued. The scheduler will schedule a job
to run when an adequate number of nodes become available.
We will call a subset of the nodes assigned to a job a parti-
tion or enclave, and will assume that any particular node is
a member of only one enclave at a time.

Figure 3: High-level model of system interactions

The HPC environment is highly parallel and concurrent.
User jobs are typically multi-node, highly-parallel applica-
tions and several jobs will run simultaneously on an HPC
system. A job’s start time is determined by node avail-
ability and a job’s end time is based on the actual time to
complete execution (or maximum time allocation) of the job.
Although the HPC machine is space-partitioned, in that each
job has its own processing resources, certain shared resources
(e.g., network, file system, power) are used by concurrently
executing jobs, potentially impacting the runtime behavior
across jobs.

One of the major challenges in the move from current
petascale to future exascale computation is increasing com-
putational power within realistic electrical power consump-
tion. The current approach of designing power systems to
sustain peak power at all times, even though few jobs con-
sume energy at that rate, is unrealistic. Hardware over-
provisioning is likely the only way to achieve the increase
in computing power while maintaining the power budget,
however new approaches are required to distribute the avail-
able power and enforce that components stay within their
assigned power limits. Exceeding the total system bound
could physically damage the HPC cluster or the supporting
power infrastructure.

We assume future hardware platforms will support an in-
terface with properties similar to Intel’s Running Average
Power Limit (RAPL). In current systems, components sup-
porting RAPL can enforce a configurable maximum rate of
energy consumption over a sliding temporal window. The
particular techniques used to enforce the limit are selected
and implemented completely by the hardware. The RAPL
interface in our testbed uses model-specific registers (MSRs)
(accessible via libmsr [8]) to allow software to interact with
the hardware power management facilities.

A mechanism like RAPL alone is insufficient for running
in an over-provisioned environment. RAPL only enables set-
ting a hardware enforced power bound for individual com-
ponents. A global power scheduler is needed to control the
individual power bounds across components and ensure that
the total sum of all bounds is below the total system bound.

Figure 3 shows a high-level view of the interaction be-
tween a potential power scheduler and an HPC cluster. The
job scheduler is responsible for assigning jobs to hardware re-
sources as well as starting and stopping the jobs. The power
scheduler is solely responsible for analyzing power measure-

ments from the cluster and providing updated power allo-
cations to all cluster components. The HPC cluster itself is
primarily concerned with executing jobs from the scheduler,
but also provides the integrated infrastructure for power
measurement and control used by the power scheduler.

3.1 Power Model
The system-wide power scheduler has the primary objec-

tive of enforcing a global power limit, L. We can think of
the HPC system as having an infinite amount of energy, but
having a global maximum limit to the instantaneous rate at
which energy can be used. Power-optimization and energy-
aware techniques reduce the energy consumed [1, 13, 12],
often by reducing the power while maintaining the runtime,
allowing more of the hardware over-provisioned system to
be used concurrently. These techniques do not provide a
guarantee that the global rate of energy consumption re-
mains within a fixed bound. Reduced energy consumption
and optimal runtimes are secondary objectives for a power
scheduler charged with enforcing the global power limit in a
hardware over-provisioned system.

A global power limit L is set by facility limitations or ad-
ministrative policy to protect the power infrastructure from
damage due to exceeding capacity. A system is modeled as
a set of n sockets. Socket power allocations above the max-
imum possible power consumption, Amax, are pointless and
power allocations below a manufacture specified minimum,
Amin, cannot be reliably enforced by the hardware. Every
socket i has a power consumption, ci, and a power alloca-
tion, ai. The delta between ci and ai is the wasted allocation
and will be noted as wi. It is assumed that the hardware
enforces ci ≤ ai or equivalently ai = ci + wi with 0 ≤ wi.
Thus, the total power allocated to the system is

∑
ai and

the total power consumption is
∑

ci. Further, due to the
hardware enforcement,

∑
ci ≤ ∑

ai.
An application’s runtime is roughly the same for any ai

such that ai > ci. Runtime should only be impacted when
ai is less than the amount an application would consume
if there was no power bound. This conclusion is consistent
with Fukazawa et al. [4] and our own experiments.

3.2 Static Scheduling
A static power scheduler makes a decision about how to

schedule power prior to the job launch. A näıve scheduling
strategy would be to allocate an equal amount of power to
each socket, ai =

L
n
, over the lifetime of the machine. Since∑

ci ≤ ∑
ai, trivially this strategy maintains

∑
ci ≤ L.

Two existing systems at the Lawrence Livermore National
Lab (LLNL) use this strategy presently. While meeting the
technical requirement of enforcing a global power bound, the
näıve static strategy is expected to under perform.

A more refined static power scheduler could attempt some
optimization of power distribution if it is aware at schedul-
ing time of an application’s expected power consumption.
Rather than allocating an equal amount of power to each
socket, the static scheduler could allocate an equal amount
of wasted allocation, wi, to each socket. The allocation per
socket for such a scheduler can be computed using ai =
ci + wavg where wavg = 1

n
(L−∑

ci).
For the more refined static approach, the scheduler must

know a priori the corresponding ci and wavg values across
the system. The behavior of a job can change based on the
parameters used for execution and there is also an expecta-

tion of greater uncertainty in behavior as systems are scaled
due to increasing runtime complexities and interactions with
other jobs. For long lived clusters, where numerous jobs
of various sizes asynchronously enter and exit the system,∑

ci across the system is expected to vary greatly over time
as jobs enter and leave the system. Even within a single
job, different phases may consume energy at different rates.
Knowledge of per socket power consumption in advance of
execution is therefore not feasible in the general case.

3.3 Dynamic Scheduling
Static power scheduling at job launch time cannot main-

tain wavg across the full machine in the presence of dynamic
job power consumption and missing knowledge of future
jobs. A dynamic approach to power scheduling is likely re-
quired to respond to the dynamic power consumption ob-
served at runtime. Rather than attempting to set ai once
at job start time, a dynamic scheduler can periodically ad-
just any ai in the system, even when there is an active job
running on the socket.

Extending the model to include time, the scheduler must
guarantee for all times t that

∑
cti ≤ L. A basic dynamic

scheduler strategy may assume that the power consumption
of a running job remains fairly consistent over time, rep-
resented by the heuristic cti ≈ ct−1

i . At time t, the sched-
uler can know the values ct−1

i and at−1
i , as reported by the

socket, as well as L. The updated per socket allocation can
be computed as at

i = ct−1
i + wt−1

avg .
Using the formulation above, a dynamic power scheduler

can maintain wavg without any control of the job schedul-
ing. If the scheduler is able to maintain wavg > 0 then all
applications are expected to complete with their unbounded
runtime since runtime is not degraded when at

i > cti. The
power scheduler only requires cti and at

i for all sockets as
input to set all at+1

i during runtime.
Up to now, there has been an assumption that there is

sufficient power to run all scheduled jobs at the optimal
power consumption, cti < at

i for all i and t. This assumption
requires a job scheduler that is guaranteed to never over-
subscribe power. Due to the challenges discussed for static
power scheduling, requiring the job scheduler to produce a
schedule that never oversubscribes power and can consume
the full system wide power allocation is not practical.

A power reading where cti = at
i could indicate that the

power is set to exactly what the application using the socket
can consume. Alternatively, cti = at

i could indicate that at
i

was too low and that the hardware reduced consumption on
the socket, degrading application performance. Such sockets
could potentially benefit from additional power allocations
to them.

The responsiveness of a dynamic power scheduler to in-
creased consumption, using the formulation in this section,
is expected to be impacted by both the scheduling inter-
val and the per socket wasted power allocation due to the
assumption cti ≈ ct+1

i and hardware enforcement of cti ≤ at
i.

4. DESIGN AND IMPLEMENTATION
To evaluate the power scheduler approach discussed above,

we developed a trio of tools: POWsched, POWmon, and
POWsim. The first two implement the dynamic power schedul-
ing apparatus on a real HPC platform that is outfitted with
power control utilities. The third enables us to assess sched-

uler dynamics across a greater scope of application power
behaviors and system scales.

4.1 POWsched
POWsched is a dynamic power scheduler based on the

model and approach discussed above. Scheduling decisions
in POWsched are made per socket and are completely ag-
nostic with respect to job, enclave, and node. POWsched
maintains a system-wide power bound without job scheduler
coordination using only per socket observed power consump-
tion to guide power scheduling across a cluster.

Pseudocode for the scheduler is provided in Algorithm 1.
The scheduling task is performed in three phases during each
scheduling interval. Our experiments use a 1 second interval.
In Phase 1, POWsched collects recent consumption readings
from all sockets. In Phase 2, power is greedily recovered
from the existing allocations for later distribution. In Phase
3, additional power is given to sockets that may be able to
use the power. At the end of Phase 3, POWsched sleeps the
remainder of the scheduling interval.

Separation of power allocation into two phases is needed
to guarantee that the system wide power limit is never ex-
ceeded due to communication delays. Recall that at

i ≤ L
must be maintained for RAPL to successfully enforce cti ≤ L.
Assume at

0 + at
1 = L. If the scheduler computes at

0 > at+1
0

and at
1 < at+1

1 and sends at+1
0 and at+1

1 at the same time,
communication delays might cause socket 1 to update the
allocation before socket 0. For a short interval the allocated
power will be at

0 + at+1
1 > L, which is a violation of the

system power bound. POWsched must be certain that all
sockets receiving a lower allocation have been updated be-
fore any sockets receiving a higher allocation are updated.

POWsched does not compute wavg. A target wi is used
to account for the measurement jitter and to greedily re-
claim power from under consuming sockets. POWsched as-
sumes the system is oversubscribed and steals a percentage
of the allocation for each socket allocated more than the sys-
tem wide average per socket allocation (ai > L

n
) when no

power is yielded and very little surplus power is available.
When adjusting allocations up, POWsched divides the sur-
plus power evenly across the sockets consuming near their
current allocation. When power is abundant, the allocation
up behavior is expected to result in a lot of wasted power
that can then be greedily collected in the next scheduling
interval. When power is scarce, the allocation up and power
stealing behavior will eventually converge at a fair allocation
across all sockets.

For a homogeneous system, like cab, an equal percent-
age for all components is a reasonable strategy. Without
access to heterogenous systems that support hardware en-
forced power capping on the accelerators in addition to the
CPUs, we were unable to experimentally explore the applica-
bility of our approach for heterogenous systems. We believe
the basic approach should be applicable. In future work we
would like to explore wether weighting by component may
be advantageous.

We implemented POWsched in C using libmsr to access
the RAPL MSRs and MPI for collective communication.
POWsched is deployed as a separate MPI job, co-resident
with the actual workload3. Fault tolorence is not explored
in the current work as most MPI implementations have ex-

3A workload consists of several concurrent jobs in our ex-
periments.

Algorithm 1 POWsched logic in pseudocode
q ← target wi

C stores {c0, · · · , cn−1}
A stores {a0, · · · , an−1}
M stores {m0, · · · ,mn−1}
numdown ← count of nodes yielding power
interval ← scheduling interval
reclaimfactor ← power to reserve when stealing

procedure Main
while True do

getReadings � Phase 1
allocDown � Phase 2
allocUp � Phase 3
sleep rest of interval

end while
end procedure

procedure getReadings
for all sockets do

Update ci with the current reading
end for

end procedure

procedure allocDown
numdown ← 0
for all sockets do

if ci < ai − q then
Update ai to max{ci + q, Amin}
numdown ← numdown + 1
Update mi to False

else
Update mi to True

end if
end for
if numdown= 0 and

∑
ai + n ≥ L then

for all sockets do
if ai >

L
n

then

ai ← ai − (ai − L
n
)× (1−reclaimfactor)

mi ← True
end if

end for
end if
for all sockets do

Set the socket to limit ai
end for

end procedure

procedure allocUp

u← (L−∑
ai)

n−numdown
for all sockets do

if mi then
ai ← min{ai + u,Amax}

end if
end for
for all sockets do

Set the socket to limit ai
end for

end procedure

tremely limited support for fault tolorence. In future sys-
tems, power scheduling will need to be fault tolorent and will
likely be provided as part of the system stack by a global
operating system.

4.2 POWmon
Monitoring power allocation and consumption is done with

POWmon. POWmon is run as a transparent wrapper around
another process on the monitored node and terminates just

App Nodes App Only +POWmon +POWsched @115W +POWsched @dyn ≈ Overhead
LU 16 119.77 119.84 120.99 121.25 0.01
LU 4 112.39 112.92 112.05 113.30 0.00

CoMD 16 107.1491 105.3836 107.3378 107.0001 0.00
CoMD 8 109.3181 109.2498 109.9474 110.1558 0.01
CoMD 4 92.4329 91.9755 92.2450 92.7113 0.00
AMG 16 102.573688 103.323772 103.71112 103.71112 0.00
AMG 8 88.667316 88.173036 89.631203 90.110953 0.01
AMG 4 76.821048 76.763169 77.002957 76.873345 0.00

Table 1: Runtimes reported by the workloads. POWsched @115W run forces POWsched to assign 115W per socket over the
lifetime of the job. POWsched @dyn allows POWsched to dynamically adjust the per socket allocation with a global bound
permitting 115W per socket.

after the wrapped process terminates. Since POWmon writes
summary data, it is important that the wrapped process ter-
minate at the end of the monitoring interval and before the
job scheduler begins killing processes. The wrapped process
can be anything the OS will treat as an executable, includ-
ing a shell script. To support wrapping MPI applications in
which multiple process will be started per node, POWmon
uses a shared memory segment to select only one monitor
instance per node to record measurements.

POWmon has a 100 millisecond measurement interval and
1 millisecond time resolution. Operating with millisecond
resolution can cause some inaccuracy when converting be-
tween quantities to rates (such as the conversion between
joules and watts), but such inaccuracy is sufficiently small.
Monitor sleeps are scheduled based on offsets from the mon-
itor start time. Therefore, errors due to short and long in-
tervals should average out over the lifetime of the run.

4.3 POWsim
Large-scale experimental evaluation of POWsched is com-

plicated by the limited number of existing HPC systems sup-
porting dynamic adjustment of per socket power allocation
at runtime. To aid in evaluation of POWsched at scale, we
develop POWsim to simulate the effects of power bounding
on applications running on power-adjustable system config-
urations that are not presently available. POWsim uses the
following model:

POWsim estimates program progress by an instruction
measure, I, and tracks energy consumed, in joules E, by
applications running on sockets with RAPL-like power cap-
ping. The intuition behind the simulation model is that
power consumption is directly related to transistor switch-
ing power and the number of active transistors are directly
related to the instruction stream. The instruction measure
is not tight, but captures the dominant behavior observed
in our experiments involving runtime under bound.

The amount of instruction work that can be done by the
socket, Is, and energy allocated to the socket, Es, are esti-
mated by the following formula:

Is =

∫ e

s

√
b− S−
S+ − S−

dt , Es =

∫ e

s

bdt

where s is the interval start time, e is the interval end time,
b is the socket power bound, S− is the “idle” socket power
consumption, and S+ is the maximum socket power con-
sumption. Es is in joules and the integration is natural
based on the definition: watts = joules

seconds
. Is is a measure

of the instruction work the socket is capable of over the in-

terval. Execution of a specific hardware instruction with
specific input requires a specific number of transistor state
transitions. The expression is based on transistor switching
power being related to the frequency and square of the volt-
age. The S− term captures the power consumed by socket
work not related to application progress. The S+ term cap-
tures the power consumed by the socket when the maximum
number of transistors are active per unit time.

Applications are modeled as a function from time to in-
stantaneous watts consumed, w(t), when the socket power
is unconstrained. We think of a particular run of an ap-
plication as being a finite ordered sequence of hardware in-
structions, the execution of each instruction resulting in a
specific number of transistor state transitions. The runtime
of an application is the time taken to execute the complete
sequence:

Ip =

∫ e

s

√
w(t) − S−
S+ − S−

dt , Ep =

∫ e

s

w(t)dt

Over an interval s to e, a computation can be power bound,
Is < Ip, or program bound, Is > Ip. A program bound in-
terval is one in which the instruction stream of the program
does not require more switching than the process can sup-
port over the interval. A power bound interval indicates
that the program can induce more transistor state changes
than the process can complete over the interval.

In the simulator, an instance of an application is repre-
sented by the application’s function, w(t), and the current
application time, tp. Advancing the simulation involves up-
dating the current application time, tp, for all active ap-
plications on the simulated cluster. For simulation inter-
vals in which the application is program bound, tp, is up-
dated based on the simulation time interval. For simulation
steps in which the application is power bound, updating tp
is slightly more complex since the simulation time interval
must be converted into a the application time interval, in the
program’s frame of reference, based on the progress effect of
the bound.

For power bound steps, the advancement of tp is computed
by solving for e in the following equation:

Is =

∫ e

tp

√
w(t) − S−
S+ − S−

dt

The limiting factor on application progress, due to the power
bound, is the amount of instruction work to be done in the
socket. Is provides a measure for the amount of the in-
struction work the socket is capable of over the simulation

interval. The solution gives the end time, e, in the program’s
frame of reference, to complete the instruction work done by
the socket over the simulation interval.

Presently, POWsim does not model the effects of applica-
tion communication behavior or scheduling latency due to
communication and computation delays. Runtime synchro-
nization of simulated applications currently is a side-effect
of simulation determinism. As future work, we plan to en-
hance the application model with a communication function
that would provide a capability to model network effects.
Scheduling latencies are also future work for POWsim.

4.4 POW Overhead
In our experiments, POWmon and POWsched appear to

interfere negligibly with other applications. Table 1 provides
the runtimes, as reported by three CORAL benchmarks, for
invocations on 2, 4, 8, and 16 nodes with different modes
of monitoring and scheduling enabled. Runtimes were per-
turbed by less than 0.1% compared to application execution
without POWmon and POWsched.

5. RESULTS
We conducted a series of experiments with POWsched on

a live HPC system at Lawrence Livermore National Lab-
oratory (LLNL). Results from these experiments are pre-
sented in this section first. Next, results from a scaling study
POWsched’s computation and communication costs on an
IBM BG/Q system are presented. The section concludes
with results from our simulator.

5.1 Live Power Scheduling Experiments
Our live power scheduling experiments took place on the

Cab cluster at LLNL4. Most of the experiments used 128
Cab nodes. Logically, we think of the 128 nodes being par-
titioned into 8 enclaves, each containing 16 nodes (32 sock-
ets with 8 cores each). During each experiment, all enclaves
will run simultaneously and each enclave will run a work-
load of two benchmark apps in sequence, with a 10 second
sleep between benchmark apps. Workloads of this form are
chosen to ensure a window of unevenness in the maximum
power consumption, per node, during the experiment run.
The sleep also simulates the window of time expected be-
tween completion of one job and the system job scheduler
starting another job on the nodes. Workloads with fixed
node counts per workload are used rather than individual
jobs due to complexities of running and tracking concurrent
subjobs in existing job schedulers.

Figures 4, 5 and Table 2 use workloads with 3 application
benchmarks (AMG, LULESH, and CoMD). For experiment
control, we ran each workload with each socket receiving
the maximum power allocation, 115 watts. 115 watts is
expected to result in the shortest possible runtime. We also
ran experiments where each socket received a specific power
allocation (90 watts, 70 watts, and 50 watts), simulating
the näıve static power scheduler. The static runs provide a
baseline for comparison between POWsched and a system
where each active socket is given an equal static allocation
based on the global power available (e.g., a system has a

4Cab is one of only a few HPC clusters with support for
per socket power capping via user space code. Additional
information on Cab can be found at http://computation.llnl.
gov/computers/cab and on libmsr at https://github.com/
scalability-llnl/libmsr.

W
at
ts

0
50
00

10
00
0

Time

W
at
ts

0 60 120 180 240 300 360 420 480

0
50
00

10
00
0

Figure 4: The enclave consumption and global bound for
50 watt forced and central runs. Above 50 Watts Forced.
Below 50 Watts Central.

global power bound of 17,920 watts and 256 active sockets,
resulting in an average allocation of 70 watts per socket).
The runs with a fixed per socket allocation will be referred
to as static5. The experimental runs using POWsched will
be referred to as dynamic6 and rely on the same global power
bound as the corresponding static run.

Figure 4 shows total power allocation across the 8 en-
claves for a 50 watt average bound using static and dynamic
scheduling. Table 2 shows the runtime impact of POWsched
over 10 runs at each bound with outliers removed. These re-
sults use a scheduler interval and RAPL window of 1 second.
The time to complete all workloads with POWsched, when
power is constrained, is better than the static schedule by
more than one deviation. We also note from Table 2 that
POWsched clearly is not attempting energy optimization.
In all cases roughly 4 megajoules are used to complete the
workloads, the primary effect of POWsched is on runtime
relative to static required to complete all workloads.

Figure 5 shows per enclave allocation and consumption
for the corresponding 50 watt runs, comparing static and
dynamic. What is interesting to see is the dynamic spread-
ing of power to workload applications that can use it, some
of which are consuming significantly above the 1,600 watts
per enclave (32 sockets per enclave) constraint used by the
static allocation.

Unallocated, or idle, power is present as side-effect of the
greedy reclamation strategy and can be seen in Figure 4 as
the space between the total allocated power and the global
limit. There is no idle power in the static strategy since the
full power limit is allocated across all sockets at all times.
We can imagine several co-located clusters sharing a power
infrastructure and power schedulers coordinating via some
set of policies to reallocate idle power in one system to other

5The scheduler statically allocates a particular power setting
to all sockets.
6The scheduler dynamically adjusts the power settings dur-
ing execution.

Experiment Runtime Stddev Improvement kj Alloc Stddev kj Used Stddev
115W static 278.26 9.57 8191.85 281.75 4007.80 97.99

115W dynamic 276.24 4.84 0.7% 5474.75 52.56 3977.02 36.74
90W static 284.63 3.20 6571.76 72.75 3984.68 30.32

90W dynamic 277.13 5.04 2.6% 5339.11 66.21 3979.78 47.356
70W static 323.83 4.90 5829.02 86.82 3904.29 34.08

70W dynamic 278.02 4.97 14.1% 4638.32 68.91 3984.80 37.77
50W static 401.76 5.47 5178.29 72.59 3937.65 37.52

50W dynamic 371.92 13.23 8.7% 4562.48 124.44 4015.64 79.36

Table 2: 128 nodes, 16 nodes workloads per workload, 10 runs, same workload for all runs.

0
50
0

10
00

15
00

W
at
ts

0 100 200 300 400

0
10
00

20
00

30
00

Time

W
at
ts

Figure 5: Consumption (solid) and allocation (dotted) over
time for two workload placements at 50 watts. Above 50
watts static. Below 50 watts dynamic.

power bound systems. In such a scenario, the global power
limit is also a dynamic policy-driven value. Similarly, if
needed for scaling, we can imagine a hierarchy of power
schedulers where the leaf schedulers control sets of nodes
and the interior schedulers control sets of enclaves.

Additional experiments have been conducted at 128 and
256 nodes with more diverse workloads. In these exper-
iments a workload uses 8 nodes and completes 4 random
benchmarks with a short random length sleep between bench-
marks. Table 3 lists the benchmark apps used7. The same
workloads are used for each power limit8. Table 4 shows the
results.

7Due to limitations on node over-subscription in the job
scheduler, we were unable to launch one MPI process per
core for benchmarks that have best performance with MPI
only, versus MPI+OpenMP parallelism
8Due to limited machine time these experiments were not
able to be repeated to generate distributions and timing;
only a single run of each workload is reported

Benchmark Domain Processes
LULESH Shock Hydro 27
miniFE Finite Element 8
miniFE Finite Element 64
AMG Linear Solver 32
AMG Linear Solver 64
MCB Monte Carlo 32
CoMD Molecular Dynamics 32
Nekbone Science App 8

Table 3: Benchmarks used for 8 node workloads in the 128
and 256 node experiments.

128 Nodes 256 Nodes
Bound Forced Central % Forced Central %
115W 640.98 648.80 -1.2 717.53 729.82 -1.7
90W 650.98 645.70 0.8 648.69 656.54 -1.2
70W 687.47 693.11 -0.8 717.99 700.35 2.5
50W 821.69 828.24 -0.8 826.45

Table 4: Times for experimental runs of random workloads
with and without POWsched. Due to an MPI Abort in one
of the jobs, the 256 node 50W experiment was incomparable.

W
at

ts

0
50

00
10

00
0

15
00

0

Time

W
at

ts

0 60 120 240 360 480 600 720

0
50

00
10

00
0

15
00

0

Figure 6: Each enclave contains two concurrently executing
8 node workloads. Above 50 watts static. Below 50 watts
dynamic.

20
00

40
00

60
00

80
00

10
00

0

Sockets

M
ic

ro
 S

ec
on

ds

2048 4096 8192 16384

●●● ● ●

●

●

●●
●

●

●

●

●

●

●

128 nodes comp
256 nodes comp
512 nodes comp
1k nodes comp
2k nodes comp
128 nodes comm
256 nodes comm
512 nodes comm
1k nodes comm
2k nodes comm

Figure 7: Observed time for communication and computa-
tion by simulated socket count.

The outcome from the 128-node experiment indicates that
the time to complete all workloads using POWsched is roughly
the same as the static power scheduler. We attributed this to
a lack of magnitude and diversity in power consumption in-
tensity in the randomly generated workloads. Figure 6 high-
lights this by showing the 50 watt case in which POWsched
has idle power for much of the run, in contrast to Figure 4
where POWsched is able to productively assign all of the
power available for the first two minutes of execution.

Performance improvement from POWsched over static re-
quires uneven power demand across the system, work for
which an evenly set power limit is insufficient for subset of
the sockets, and a sufficient global power limit for all jobs in
aggregate. If power is plentiful, POWsched is not needed,
though the overheads are only slight if POWsched is en-
abled. If all applications need more than the static alloca-
tion, POWsched will attempt to converge to the static allo-
cation but during the convergence period will iteratively al-
ter power allocations, perturbing overall runtime non-uniformly.
In the initial experiments, workloads were constructed as
permutations of two benchmark applications run in serial.
The benchmark settings were such that LULESH was the
highest power consumer (around 90 watts per socket) and
the other benchmarks were significantly less (around 50 watts
per socket). The mix provided ample power to reallocate at
90 and 70 watts and some power for reallocation at 50 watts.

5.2 Scaling Experiment
Few large HPC platforms exist for experimenting with

dynamic hardware enforced power bounding. However, we
still desired to get a sense for scaling of the POWsched al-
gorithm. For this purpose, we deployed POWsched on the
Vulcan IBM BG/Q platform at LLNL9 and measured the
time spent in POWsched communication and computation.
Since the BG/Q platform does not support RAPL, we used
random numbers for consumption read. Use of random num-
bers should not disrupt the results since the per node time

9Additional information on Vulcan can be found at http:
//computation.llnl.gov/computers/vulcan.

0 50 100 150 200 250

0
20

40
60

80

Time

W
at

ts

0
45

90
135

180
200

Consumed
Allocated

0 50 100 150 200 250

0
20

40
60

80

Time

W
at

ts

0
68

113
180

225
254

Consumed
Allocated

Figure 8: Simulation output showing dilation effects similar
to Figure 1. Left 115 watts, right 50 watts.

to read from or write to the RAPL registers should remain
constant10. The performance of POWsched at scale will be
dominated by the time taken to communicate the per socket
readings or the time taken to perform computation over the
socket readings.

Each scheduler process launched represents a simulated
node with 2 sockets and for each run we use 1, 2, 4, 8, 16,
32, or 64 processes per physical BG/Q node. Overall, we use
BG/Q node counts from 1 to 8k, allowing us to sweep the
space from a single simulated node to 500k simulated nodes.
We observed linear scaling for computation and slowly grow-
ing communication cost. Linear scaling for computation is
expected due to the linear scans conducted by the dynamic
scheduler each interval. BG/Q’s optimized network for low-
latency and high-bandwidth MPI collectives results in slow
all-gather communication time growth. Figure 7 shows the
cross over region between computation and communication
being the dominant time cost. Even at the largest number of
simulated nodes, 512k, scheduling communication and com-
putation completes in under 400ms. Depending on system
scale and network performance, dynamic centralized power
scheduling may be viable.

5.3 Simulation Experiment
POWsim allows exploration of the interplay between ap-

plication runtime and power bound that is difficult on real
systems due to scale and nondeterminism. Our simulated
job power functions, w(t), in these experiments are a con-
stant, square wave, or saw tooth. Figure 8 shows the simu-
lation behavior for an application similar to the miniFE ex-
ecution shown in Figure 1; we note that the runtime penalty
for power bound phases using the simulator is greater than
those we have experimentally observed.

Figure 9 shows power consumption and allocation for 4
concurrent jobs using dynamic and static schedulers. All
jobs use the same amount of power, but the alignment of the
job consumption results in very different behavior. When
jobs have time-synchronized and mirrored rates of change
in power consumption, POWsched has the best opportu-
nity for power reallocation and throughput improvement. If
the jobs are time-synchronized, but with identical rates of
change in power consumption, POWsched can not produce
any throughput improvement. If the rate of change in power

10Measurements we made on Cab show an average of 44 and
15 microseconds are required to read and set the RAPL reg-
isters, respectively, via libmsr.

115 Watts 70 Watts 115 Watts 70 Watts 115 Watts 70 Watts
S
ta
ti
c

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

D
y
n
a
m
ic

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

0 60 120 180

0
20

00
40

00
60

00

Figure 9: Simulated power allocation and consumption for 4 concurrent jobs. From left to right: best, worst, and improvable.

Parameter Min Max

Job Nodes 8 clustersize
4

Job Runtime (seconds) 10 6000
Phase 1 Watts 85 115
Phase 2 Watts 30 115
Phase Period 30 600

Table 5: Simulation parameters

Nodes Bound Static Dynamic %

1
k

115W 40567 40581 -0.0
70W 44541 43287 2.8
50W 53249 54955 -3.2

8
k

115W 43801 43825 -0.0
70W 51652 51081 1.1
50W 63085 65545 -3.9

1
6
k

115W 44414 44429 -0.0
70W 52656 51873 1.5
50W 64097 66054 -3.1

Table 6: Simulated runtime with random workloads.

consumption is not identical, POWsched can potentially im-
prove runtime performance.

Using POWsim we simulate the use of POWsched on clus-
ters of 1k, 8k, and 16k nodes. For each node count a random
mix of 100 jobs is generated, the same mix is used for each
run at that particular node count. Each job is one of the
three simulated functions with a random runtime, period,
and consumption. Table 5 shows the parameter ranges used.
All jobs in the run are queued using FIFO job scheduler be-
fore the first time step executes. Table 6 shows the time
taken to complete all queued jobs. Simulation results are
consistent with the experimental results on random work-
loads – little effect at 115 watts, improvement around 70
watts, and reduced performance at 50 watts when power is
overly constrained.

6. CONCLUSION
The work contributed by this paper is significant for fu-

ture power limited systems. We have demonstrated the
first system-wide dynamic power scheduler that enforces a
global power limit on an HPC system with opportunistic

power reallocation to improve performance. Decisions to
reallocate power across individual sockets are based only
on the relation between power allocation and consumption,
per socket, across the HPC system. We have shown that
power can be allocated efficiently and that workload per-
formance can be improved, compared to static fixed power
allocation. When sufficient power is available, POWsched
can increase throughput (up to 14% in our experiments)
by redistributing waste power. We have also provided a
node-level performance-monitor with high temporal resolu-
tion and negligible performance impact. In support of fu-
ture work on large scale power scheduling, we have provided
a model for simulating the effects of power bounds on ap-
plication runtime and implemented a simulator using the
model.

While the current RAPL and libmsr technology provide
adequate capabilities for the development of socket level
power monitoring and control, RAPL is not widely avail-
able to allow large-scale power scheduling experiments. The
technology and its deployment will likely improve in the next
several years. This will allow our techniques to be integrated
more broadly and at greater scale. There are also opportuni-
ties for improved power scheduling through the integration
with job schedulers and incorporation of application-specific
knowledge of power consumption. With improved power
measurement and control for accelerator and manycore de-
vices, our work can be extended to heterogeneous systems
for both power monitoring and scheduling.

7. ACKNOWLEDGMENTS
Part of this work was performed under the auspices of the

U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-675184). Work by the University of Oregon is sup-
ported by the DOE Office of Science, through a Sub-Contract
No. 3F-32643 from the University of Chicago, Argonne, LLC
(as operator of Argonne National Laboratory), under Prime
Contract No. DE-AC02-06CH11357.

8. REFERENCES
[1] M. Bambagini, M. Bertogna, M. Marinoni, and

G. Buttazzo. An energy-aware algorithm exploiting
limited preemptive scheduling under fixed priorities.

In 8th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 3–12. IEEE, 2013.

[2] K. De Vogeleer, G. Memmi, P. Jouvelot, and
F. Coelho. The energy/frequency convexity rule:
Modeling and experimental validation on mobile
devices. In Parallel Processing and Applied
Mathematics, pages 793–803. Springer, 2014.

[3] D. A. Ellsworth, A. D. Malony, B. Rountree, and
M. Schulz. Pow: System-wide dynamic reallocation of
limited power in hpc. In Proceedings of the 24th
International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, pages
145–148, New York, NY, USA, 2015. ACM.

[4] K. Fukazawa, M. Ueda, M. Aoyagi, T. Tsuhata,
K. Yoshida, A. Uehara, M. Kuze, Y. Inadomi, and
K. Inoue. Power consumption evaluation of an mhd
simulation with cpu power capping. In Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, pages
612–617. IEEE, 2014.

[5] H. Hoffmann. Racing and pacing to idle: an evaluation
of heuristics for energy-aware resource allocation. In
Workshop on Power-Aware Computing and Systems,
page 13. ACM, 2013.

[6] H. Hoffmann, M. Maggio, M. D. Santambrogio,
A. Leva, and A. Agarwal. A generalized software
framework for accurate and efficient management of
performance goals. In International Conference on
Embedded Software (EMSOFT), pages 1–10. IEEE,
2013.

[7] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D.
Schlichting, and C. Pu. Mistral: Dynamically
managing power, performance, and adaptation cost in
cloud infrastructures. In IEEE 30th International
Conference on Distributed Computing Systems
(ICDCS), pages 62–73. IEEE, 2010.

[8] L. L. N. S. LLC. libmsr.
https://github.com/scalability-llnl/libmsr.

[9] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski. Exploring hardware
overprovisioning in power-constrained, high
performance computing. In 27th ACM International
Conference on Supercomputing, pages 173–182. ACM,
2013.

[10] T. Patki, D. K. Lowenthal, A. Sasidharan,
M. Maiterth, B. L. Rountree, M. Schulz, and B. R.
de Supinski. Practical resource management in
power-constrained, high performance computing. In
Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed
Computing, HPDC ’15, pages 121–132, New York,
NY, USA, 2015. ACM.

[11] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K.
Lowenthal, and M. Schulz. Beyond dvfs: A first look
at performance under a hardware-enforced power
bound. In IEEE 26th International Parallel and
Distributed Processing Symposium Workshops
(IPDPSW),, pages 947–953. IEEE, 2012.

[12] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
making dvs practical for complex hpc applications. In

23rd ACM International Conference on
Supercomputing, pages 460–469. ACM, 2009.

[13] A. Tiwari, M. Laurenzano, J. Peraza, L. Carrington,
and A. Snavely. Green queue: Customized large-scale
clock frequency scaling. In Second International
Conference on Cloud and Green Computing (CGC),
pages 260–267. IEEE, 2012.

