
A Unified Platform for Exploring Power
Management Strategies

Daniel Ellsworth∗†, Tapasya Patki†, Martin Schulz†, Barry Rountree†, Allen Malony∗
∗University of Oregon, Eugene, Oregon, USA

†Lawrence Livermore National Laboratory Livermore, California, USA

{dellswor,malony}@cs.uoregon.edu, {patki1,schulzm,rountree4}@llnl.gov

Abstract—Power is quickly becoming a first class resource
management concern in HPC. Upcoming HPC systems will
likely be hardware over-provisioned, which will require enhanced
power management subsystems to prevent service interruption.
To advance the state of the art in HPC power management
research, we are implementing SLURM plugins to explore a
range of power-aware scheduling strategies. Our goal is to
develop a coherent platform that allows for a direct comparison
of various power-aware approaches on research as well as
production clusters.

I. INTRODUCTION

HPC systems deployed by the United States Department

of Energy (DOE) are currently capable of just under 20

petaFLOPS1 while using about 10 megawatts of power [1].

The DOE has articulated a goal for delivering a first generation

exascale system2 within a 20 megawatt power budget [2], [3].

Significant advances in energy efficiency will be needed in

both hardware and software in order to meet this goal.

HPC systems are typically operated in the interests of

advancing underlying scientific goals, which makes it difficult

to measure their performance quantitatively. Common metrics

for such performance comparison include job throughput (or,

the number of jobs completed per unit time), node utilization
(or, the percentage of total nodes in the cluster allocated to

executing jobs over a period of time), and FLOPS.

Energy efficiency relates to the energy cost to complete a

computation; energy efficient solutions use less energy to com-

plete the same computation. Improving the energy efficiency

of applications often results in variation of power consumption

over time because of the instruction mix and associated

data movements. In energy-constrained environments, such as

mobile computing, the aforementioned power variability is a

good trade-off for extending battery life and reducing costs.

Many of the innovations from the mobile space are directly

applicable to the energy efficiency challenges faced by the

HPC community.

Future HPC systems, however, are expected to be power-
constrained instead of being energy-constrained. In the past,

HPC systems have provisioned sufficient power to be able to

operate all components at their theoretical peak consumption.

Power grid infrastructure, electricity provider, and operational

1FLOPS: floating point operations per seconds
2System capable of 1018 FLOPS, or 1000 petaFLOPS.

cost limitations place a hard limit on the rate at which

electricity can be delivered to a system. As a result, HPC

systems now have to operate under a finite power envelope and

realize no direct benefit for utilizing less than the provisioned

power.

Hardware over-provisioning is a physical HPC system

design that allows additional work to be performed within

the same power envelope. In an over-provisioned system,

more computing hardware is available than can be powered

simultaneously at peak consumption. Power savings in one

part of the system can be redirected to the extra hardware

and used there for computation. The availability of additional

hardware supports executing more applications as well as

improving the performance of some applications by scaling

them out, thus improving throughput and utilization. Based

on published consumption traces from three high-end DOE

HPC systems, namely Vulcan, Sequoia, and Titan [4], [5],

opportunities exist to utilize roughly 25% more hardware and

remain safely within the power budget most of the time, while

the remaining short times are peaks that can be controlled by

actively enforcing power caps.

For hardware over-provisioned systems to be practical,

enforcement of such system wide power caps must occur with

sufficient temporal resolution to avoid damaging overloads

to the power distribution infrastructure. Technologies such as

Intel’s running average power limit (RAPL), which provide a

hardware mechanism that can enforce component level power

caps with fine temporal resolution, will need to be available.

Another practical barrier to the deployment of hardware

over-provisioned systems is resolving how power should be

scheduled across the cluster. Recently, it has been suggested

that power should be treated as a schedulable resource. Esti-

mating the power and performance of HPC applications can

thus be used for efficient scheduling. While simple static

approaches that set a uniform power cap across nodes in a

job are safe for overprovisioned systems, they often result

in limited throughput. This is because HPC applications can

exhibit distinct runtime behavior resulting in phases with low

and high power consumption. Thus, runtime systems with

the capability to dynamically modify power allocations while

jobs are executing have also been proposed. More research is

needed to directly compare and better understand the trade-off

space for power scheduling strategies. A general platform for

conducting such research is currently missing.

2016 4th International Workshop on Energy Efficient Supercomputing

978-1-5090-3856-5/16 $31.00 © 2016 IEEE 24

2016 4th International Workshop on Energy Efficient Supercomputing

978-1-5090-3856-5/16 $31.00 © 2016 IEEE

DOI 10.1109/E2SC.2016.10

24

Fig. 1. Model of a hardware over-provisioned system with the job and power
schedulers.

In this paper, we present the design and implementation of

such a platform for exploration of power scheduling strategies.

Our platform is based on SLURM, and, while not production

ready, is suitable for large-scale experiments on research

clusters. Using a common platform to analyze the power-aware

scheduling space allows for direct comparison of different

approaches using the same metrics. Section II presents back-

ground and related work. Sections III to V discuss the design

concerns, evaluation parameters and implementation details of

our SLURM extensions. We conclude in Section VI.

II. BACKGROUND

We present a high-level system model for a hardware over-

provisioned HPC system in Figure 1, highlighting the power
scheduler and the job scheduler. The power and job scheduling

roles are separated in the model in order to simplify reasoning

about whether the system is guaranteed to adhere to a power

bound and to simplify the verification of correctness of the

power management approach. The power scheduler’s primary

objective is to maintain the system power bound, with all

other objectives being secondary. The job scheduler’s primary

objective is to efficiently execute work in an order that aligns

with organizational objectives, which is a complex multi-

objective optimization problem. While the job and power

schedulers should coordinate to efficiently execute work within

the system power bound, the power scheduler must always be

empowered to arbitrarily degrade performance if needed to

protect the system.

The current state of the practice for over-provisioned sys-

tems is to statically allocate the same amount of power to

every node within the cluster and never change the allocation.

Unfortunately, static power caps often result in poor power uti-

lization and throughput. Better power management strategies

involve application awareness, where power allocations are

set based on an application’s anticipated power consumption,

and dynamic power redistribution, where power allocations are

shifted between components.

SLURM [6] is a production resource manager that is

currently distributed with two power management systems.

On platforms supporting the correct model specific registers

(MSRs), a dynamic voltage and frequency scaling (DVFS)

based solution is provided [7]. The DVFS solution does not

redistribute power and cannot guarantee safe operation. On

Cray systems, a plugin can be configured to dynamically

redistribute power [8] using RAPL. Use of the Cray plugin

is limited to Cray systems and has a low temporal resolution.

Common themes for power scheduling research include

energy efficiency, performance optimization, and throughput

optimization. Energy efficiency studies analyze applications

and often involve slowing non-critical path computations

via DVFS. Research on performance optimization strives to

achieve the least execution time for an application given a

power cap or an energy saving goal [9], [10]. Throughput

optimization looks at minimizing the average turnaround time

of jobs [4], [11]. Our SLURM extensions support studies

focusing job throughput optimizations.

Sarood [11] applies an integer linear programming approach

to schedule power and moldable jobs within a data center. This

strategy (PARM) uses DVFS and has a goal of maximizing

throughput. Its scalability, however, limited: authors report that

15 seconds were required for making decisions on a queue

with 200 jobs.

Work by Patki, et al. [4] (RMAP) assumes jobs are moldable

and that a model for estimating application performance is

available. It introduces power-aware backfilling and is im-

plemented in a SLURM simulator. The best proposed policy

in RMAP improves power utilization by 17% and system

throughput by 32%.

Ellsworth, et al. [12] present PowSched, which uses the

difference between power consumption measurements and

power allocation to shift power across an HPC cluster without

awareness of jobs. Emulation experiments indicate very good

scaling and experimental results have shown a significant

improvement over naive strategies when high and low con-

sumption phases are favorably aligned.

Savoie, et al. [13] make a distinction between shifting

and scheduling algorithms. Shifting algorithms redistribute

a resource across concurrently active work; an activity this

paper will refer to as power scheduling. Scheduling algorithms

control when work starts; an activity this paper will refer to

as job scheduling.

Cao, et al. [14] present a demand aware power scheduler

with some job scheduler integration. Dynamic power balanc-

ing and the ability to launch jobs that would otherwise be

denied can increase job throughput.

Hierarchical power scheduling has been recently suggested

to address future scaling challenges. Ellsworth, et al. [15]

describe the hierarchical power scheduling approach in the

Argo ExaOS/R project. Gholkar, et al. [16] report on a two-

level power scheduler that addresses processor performance

variations. PPartition allocates power across jobs and PTune

allocates power across nodes within a job.

2525

III. DESIGN CONCERNS

In this section, we highlight the need for a common evalu-

ation platform and the considerations that led to our extension

of a production scheduler.

A. Comparability

In general, comparison between published scheduling tech-

niques is difficult due to differences in the evaluation en-

vironments. Consider some of the power schedulers from

the related work, PARM [11], RMAP [4], PowSched [12],

and PPartition [16]. Each of them uses different workloads,

has different job queue capabilities, compares against differ-

ent baseline power strategies, and are evaluated on different

platforms with different node counts. Ellsworth, et al. [12]

show that performance is strongly impacted by workload mix;

the lack of a uniform workload makes reported improvement

numbers non-comparable. PPartition and RMAP both leverage

backfilling by the scheduler to get performance gains but

use different backfilling techniques. In contrast, PowSched

is experimentally evaluated with only static job schedules. It

is not clear if PARM’s baseline includes power cap mainte-

nance, which is explicitly included in the baseline for RMAP,

PowSched, and PPartition. Published research work is thus

insufficient to fairly evaluate solutions for production systems.

Comparison of published solutions via installation on a

single testbed is also challenging. RMAP was only evalu-

ated in simulation and code for experimental evaluation on

real hardware is not available. Since each solution has a

different job scheduler, there would be no uniform way to

package and launch equivalent workloads for each solution.

Even if the workloads could be described uniformly for

launch, the default job scheduler features differ significantly

between the solutions. Comparing a statically scheduled queue

from PowSched with a backfilling scheduler, like PParition

or RMAP, is an invalid comparison. Solving the workload

description and queue features problems would still leave mea-

surement collection as an open issue. Implementing several

power management strategies within a single platform should

avoid these complexities by standardizing the inputs, outputs,

and overheads used across compared techniques.

B. Production Support

Simulation studies are useful to get a sense of a system’s

anticipated behavior. However, simulation cannot take into

account the complex low-level interactions between com-

ponents or quantify interface overheads. Under the best of

circumstances, distributed applications suffer from variability

due to minor time differences and shared subsystems, such

as the network. The introduction of component level power

capping increases variability further [17]. The inability of

models to fully capture the complex interrelated behavior make

empirical experiments necessary.

Implementation of the power management strategies on

a research scheduler is tempting. Working within a sim-

ple scheduler codebase should reduce development time and

support better focus on algorithmic details. However, such

research codes exhibit missing feature richness and barriers to

adoption, including the need for re-implementation in order to

move to production. Minimizing the distance between research

and practice is an important practical objective for our work.

An additional benefit of building on top of a production

scheduler codebase is the ability to leverage the depth of

existing scheduling work. Reimplementation of features such

as backfilling, resource accounting, and priority policies would

require significant effort. Implementing reliability and scaling

features would also involve significant engineering effort out-

side of the power management research focus.

IV. EVALUATION PARAMETERS

In this section, we highlight some of parameter space we

plan to explore and evaluate using our platform.

A. Decision Time

Understanding when power allocation decisions are made

provides a coarse grain parameter for classifying and com-

paring different approaches. Three granularities of time are of

primary interest for binning approaches: machine lifetime, job

lifetime, and arbitrary intervals.

Machine lifetime Node power allocations are set just once

when the machine is deployed and never changed. Exist-

ing systems effectively use this strategy since all compo-

nents may safely consume up to the thermal design power

(TDP).

Job lifetime At the time a job is scheduled, the power allo-

cation for the participating nodes is set and not changed

while the job runs. Research systems like RMAP use this

strategy.

Arbitrary intervals Power allocations may be changed on

any node at any time. Research systems like PowSched

use this strategy.

While machine lifetime approaches are inherently static and

have been shown to underperform[12], approaches based on

job lifetime and arbitrary intervals are interesting to study.

Power scheduling at job boundaries is a natural fit for existing

batch resource scheduling techniques. Arbitrary intervals move

power scheduling in the direction of runtime system research.

Adjusting power during an application’s execution allows

phase behavior to be leveraged to improve performance.

B. Fairness

A common concern for the resource scheduling community

is understanding the fairness guarantees provided by a schedul-

ing algorithm. Our platform should permit different notions of

fairness to be explored. Two possible fairness considerations

we plan to explore are power fairness and node fairness.

Power fairness A job requesting resources receives a fair

allocation of power based on the node count of the

resource request. Optimizations and savings occur by

adjusting other attributes, such as job node count and

work placement.

2626

Node fairness A job requesting node resources receives the

requested node count and placement, but may suffer per-

formance degradations due to systemwide power bounds.

Fundamentally, hardware over-provisioning relies on unfair

power allocations across nodes to improve throughput. To

provide power fairness, the node count must mutable. Sim-

ilarly, providing node fairness requires the power allocation

be mutable.

While understanding scheduler behavior in terms of fairness

can be informative, deploying organizations are much more

likely to care about work priority and throughput. Fairness in

execution order is unlikely to be the primary objective. For

example, highly desirable scheduling optimizations such as

backfilling can increase system utilization but erode execution

order fairness. Increasing utilization and job throughput is

likely realized only by taking advantage of imbalances rather

than enforcing fairness.

C. Job Awareness

A major research interest motivating the platform is un-

derstanding how different levels of job awareness impact

the quality of the generated allocations. Our existing work,

RMAP [4] and PowSched [12], can be seen as existing on

opposite ends of a spectrum of job awareness. For RMAP,

most of the job properties are known and assumed to be

well modeled before jobs are executed, requiring substantial

resources for model generation. The detailed a priori knowl-

edge allows RMAP to achieve improved turnaround time by

changing a job’s configuration at launch time based on power

and other resource constraints. PowSched, on the other hand,

achieves good performance to evict all concurrent work with

no awareness of jobs, nodes, or time beyond the most recent

scheduling interval. We hypothesize that a more job aware

PowSched could make better decisions and an RMAP could

still make good decisions with weaker models.

Also related to job awareness is the level and direction

of scheduler communication. Recall from the system model

(Figure 1) that the job and power schedulers are logically

separated to aid in verification. If job awareness is useful

for power scheduling, a power scheduler should receive job

information from the job scheduler. Some exploration of

what job information is useful and how the information can

be used to produce better power schedules is needed. Job

schedulers should also receive power information from the

power scheduler to get feedback on the power utilization of the

existing schedule for use in generating later job schedules. Of

particular interest is how intervals of power oversubscription

might be handled when power and job schedulers coordinate

action.

V. ARCHITECTURE

Due to its wide spread popularity and our prior RMAP

work, we selected SLURM as the base production job sched-

uler to build on. Its plugin infrastructure was a good fit

for our needs. Much of the resource scheduling work is

handled in SLURM with the help of node select plugins that

slurmd

powd

slurmd

powd

slurmctld

RMAP select plugin

PowSched plugin

powschedd

slurmd

powd

slurmdbd MySQL
RMAP

Model Data

App/Machine
Parameter

Sweep

Fig. 2. Design of our proposed SLURM extensions for RMAP and PowSched

can be changed through configuration files. A power plugin
interface is also available in the codebase. However, the only

implemented power plugin is limited to Cray systems.

A. High-level Architecture

The core architectural design of SLURM has remained

largely intact over more than a decade of development [6].

The centralized control daemon, slurmctld, communicates

with a daemon on each node, slurmd. Slurmctld directs

slurmd instances to start and stop work on nodes, and

the slurmd instances report node configuration and status.

Plugins are used to tailor SLURM for different environments.

SLURM user utilities, such as srun and squeue, interact

with slurmctld to change and interrogate the job and re-

source queues. A database daemon, slurmdbd, is included to

securely manage accounting information stored in a relational

database.

Our design goals can be met primarily through the imple-

mentation of two plugins. A Select plugin determines which

nodes and node resources are to be given to a job. RMAP

can be implemented almost completely as a Select plugin.

Additional minor extensions are needed to slurmdbd, srun,

and SLURM’s RPC protocol to support the power model

information required for RMAP. A power plugin allows power

bounds to be set on nodes participating in a job. The power

plugin interface can be used to generate a bridge between

SLURM and an external power scheduler like PowSched.

Some changes are needed to the existing power plugin API

to make the API more generic. Figure 2 presents this design.

Existing data structures within SLURM are used to commu-

nicate between the select and power plugins. During normal

operation, SLURM select and power plugins receive node

records and job records. These records are implemented as

structs and include pointers to opaque plugin specific

structures. Hints regarding node power constraints, as deter-

mined by the power plugin, can be included in the node

records received by the select plugin. Hints regarding a job’s

power needs, as determined by the select plugin, can be

included in the job record received by the power plugin. These

plugins are discussed in detail below.

2727

B. RMAP as a Select Plugin

Select plugins in SLURM, such as cons_res, linear,

and bluegene, are responsible for selecting the specific re-

sources a job should use at runtime and to indicate if sufficient

resources exist to launch a candidate job. When determin-

ing if a job can be scheduled, SLURM provides the Select
plugin with a job description via a job record struct
pointer, and the available resources via a bitmask
pointer. If the available resources are insufficient to launch

the job, the Select plugin returns an error code. The Select
plugin will update the bitmask to indicate the selected nodes

and the job record will be updated with fine grain resource

assignments (for example, specific cores).

RMAP achieves performance improvements by optimizing

the job configuration and molding the job to the available

resources. Using an application specific model, RMAP se-

lects the most efficient resource configurations for a job.

When the available resources are insufficient for the most

efficient configuration, RMAP will consider scheduling the

job with slightly reduced resources. If RMAP determines

that the performance degradation from reduced resources is

not within user-specified acceptable limits, it will inform the

scheduler that the job can not be run and should be requeued.

The Select plugin is architecturally good location for RMAP

implementation.

RMAP was originally implemented as a Select plugin on the

BCS SLURM simulator [4], but the simulation implementation

could not be moved directly over to production. Simulation

RMAP used Job ID for application-specific model lookups

with the help of an internal mapping, which is clearly un-

reasonable for a live system. It also directly accessed a model

database that assumed that the SLURM database is co-resident

with the slurmctld, which violates the SLURM security

model. SLURM’s RPC protocol and slurmdbd have now

been extended to support the RMAP model lookups. The data

structures handled by the Select plugin have been augmented

to provide suggested power configurations to the power plugin.

1) Job Model Flag: Power consumption and performance

properties of a job depend on the application, resource con-

figuration, and data. Rather than attempt to analyze the job

record for hints regarding the correct model, the RMAP im-

plementation expects the user or another interfacing software

system to identify the correct model at job submission time.

A switch has been added to srun, –model, to pass the job

model identifier. srun packs the identifier into the job record

sent to the slurmctld. If no job model is given, the RMAP
Select plugin does not attempt to mold the job when selecting

resources. When a job model is given, the RMAP Select plugin

queries the model database, via slurmdbd, and configures the

job based on the returned resource configuration.

For implementation, the option parser was extended to be

aware of the new flag, requiring changes to libsrun. The

Select plugin API allows plugin specific key value pairs to be

added to the job record. This feature is used by our modified

libsrun to include the model identifier with the rest of the

job attributes. Our srun modifications are safe to use with

non-RMAP select plugins since the underlying SLURM data

structures have not been altered.

2) Model Database: An RMAP job model is given as a set

of tuples. The tuples are specific to the machine, application,

and data used for the job. Each tuple contains the execution

time, power, node count, and core count associated with a job.

To determine if a job can be run, the RMAP select plugin must

query the job model for a tuple that fits within the available

power and node count constraints. If a job can be run, the

plugin should mold the selected job resources to match the

values returned by the model. The query requirements make a

relational database a good fit for model storage and SLURM

has existing support for MySQL.

At many sites, MySQL is used by SLURM to store ac-

counting information. Slurmdbd provides controlled access

to the database and prevents tampering. Components other

than the slurmdbd load the slurmdbd accounting storage
plugin, which then handles the RPC calls with the slurmdbd
daemon.

Adding access to the RMAP model was the most invasive

of our extensions. The actual database logic was placed in the

mysql accounting storage plugin since most other database

accesses occur here. Accounting storage extension required

adding a new call to the accounting storage plugin API and

implementing functions in the accounting storage plugin. RPC

extension involved adding additional message types, structs,

data marshaling and unmarshaling logic, and some minor

message handling code.

3) Resource Molding: Job molding follows directly from

the configuration returned by the model query. The select
plugin includes the Model ID and resource constraints when

making the RPC call to the model database. Return values

from the RPC call include the detailed resource configuration

for the job. The select plugin ignores the requested resources

in the job record and selects job resources to match the

configuration returned from the model query.

4) Model Generation: To select efficient application con-

figurations, detailed models of application performance are

required. These are generated by first gathering application

profile data and then developing linear models for performance

prediction. Profiling the application includes gathering execu-

tion time and maximum power consumption at a few selected

node and core counts while varying node-level power caps

and turbo boost options. Application-specific linear models to

predict both execution time and overall power consumption

can then be developed based on this data. Such models have

been shown to have reasonable accuracy, with median errors in

the range of 5-10% [4]. Developing a general model to predict

performance for a set of applications with varying parameters

is an orthogonal research problem.

C. PowSched as a Power Plugin

The power plugin is primarily an interface between the

power and the job scheduler. Using the power plugin as

a gateway between separate systems echoes SLURMs early

2828

approach to separating job and resource scheduling. Our

initial power plugin only relays job information to the power

scheduler. However, later iterations will allow the power

scheduler to request behavior from the resource manager. A

functionality of particular interest is the ability to request the

resource scheduler to suspend active jobs when power is over

subscribed.

Logically, PowSched is comprised of three major func-

tional components: a power monitor, a power scheduler,

and a power actuator. The power monitor must run on all

managed components and periodically provides consumption

measurements to the power scheduler component. The power

scheduler uses the consumption measured at runtime and other

available information to generate new power allocations. The

power actuator must run on all managed components and

periodically applies new allocations from the scheduler. Tight

coupling between the components is not required. Our job

aware PowSched implementation uses UDP communication

between the daemons running on the cluster nodes and the

power scheduler running on the head node.

1) Node Daemon: The node daemon is responsible for both

the monitor and actuator functionality. At regular intervals,

node daemons transmit node power consumption to the power

scheduler over a UDP socket. A UDP socket to receive new

node power caps is also maintained by the daemon. Node

daemons use libmsr to access power counters and set power

caps. To avoid the insecurity of such daemons with root

permissions, node daemons can be run with regular user

permissions after configuring msr-safe [18] on the nodes.

Node daemons utilize Intel RAPL for power cap enforce-

ment. Technologies such as DVFS are more broadly available

and can impact power consumption, but software controlled

DVFS cannot guarantee power caps are met with high tempo-

ral resolution. Intel RAPL is limited in scope to tracking and

bounding power for processors and their connected DRAM.

Due to the limited scope of Intel’s RAPL and lack of other

components with similar power control interfaces, the current

node daemon implementation only takes processor and DRAM

power into account.

2) Central Scheduler: The central scheduler is responsible

for interfacing with the job scheduler and dividing the system

power cap across the managed nodes. At power scheduling

time, the central scheduler determines new node power al-

locations and messages the node daemons to apply the new

allocations. Most of the parameters we would like to explore

with our power management platform involve changes to how

and when power allocation is done within the central sched-

uler. The power scheduling decision may involve information

received from the node daemons or the job scheduler, and the

power scheduler may call back to the job scheduler via the

power plugin.

For simplicity in communicating with the job scheduler, the

central power scheduler is currently launched by the power
plugin as a thread in the slurmctld instance. Keeping the

power scheduler inside of the job scheduler’s process space

greatly simplifies access to the job record and node record

data structures. Being in the slurmctld process space makes

calling SLURM functions simple function calls within the

power scheduler, avoiding the upfront cost of identifying the

desired SLURM functionality and building RPC mechanisms

to wrap them. The tight integration of the power scheduler and

job scheduler is not ideal. Future power scheduler iterations

are expected to have the power scheduler in a separate process

and use SLURM’s RPC protocol, sockets, or some other IPC

mechanism.

Central power scheduling is done in three phases. The first

phase uses recent power measurements and other available

data to determine what the updated power allocations should

be across the cluster. The second phase saves power by setting

the allocation on all nodes having their power reduced. The

third phase spends power by setting the allocation of all nodes

having their power increased. Attempting to apply all power

allocation simultaneously may result in the power bound being

exceeded due to messaging latencies [12].

3) Protocol: A simple messaging protocol was introduced

to communicate between the node daemons and central sched-

uler. Several options for reusing existing network protocols

were considered and rejected before implementing on UDP.

Our protocol is tolerant of some packet loss but assumes the

network is high speed and generally reliable. The protocol

permits power measurements to be silently dropped, however

power allocations must be acknowledged.

SLURM’s RPC mechanism was considered early in plan-

ning but was rejected in large part due to the node daemons

being external processes and the level of effort to extend the

RPC interface. REST and other web-service based protocols

were rejected due to overheads in processing and network

bandwidth. Implementation on TCP was considered, however

the reliability and in order guarantees of TCP were not worth

the overhead cost for PowSched. Ultimately, we elected to

implement our own protocol over UDP.

There is no strong reason to make power measurement mes-

sages reliable for power scheduling. If the lost measurement

is close to the previously received measurement, which is ex-

pected during application phases, then there is little difference

between using the lost and previous measurements. If the lost

measurement indicates lower power consumption then the new

schedule will likely overestimate a node’s power need. If the

lost measurement indicates higher power consumption then

the new scheduler will likely underestimate a node’s power

need. In all cases the power allocations produced are still safe,

though likely less optimal.

Messages used to set power caps, on the other hand, must be

acknowledged. Unlike power measurements, unreceived power

allocation changes can result in exceeding the system wide

power cap. When an allocation is received by the client, the

allocation is applied before sending an acknowledgement back

to the power scheduler. Setting the cap prior to sending the ac-

knowledgement guarantees that all acknowledged allocations

have actually been set. The server sends power allocations

in waves with a time out. Each received acknowledgement

flips the corresponding nodes ack bit in the wave. Unac-

2929

knowledged allocations are resent if the wave time out occurs.

Until an acknowledgement is received, a node is assumed to

have the highest power allocation sent since the previously

acknowledged allocation.

VI. CONCLUSIONS

Implementation work is ongoing. As of the time of this

writing, preliminary RMAP and PowSched plugins have been

implemented. The communication mechanisms between the

node selection and power plugins are in place and the current

development focus is on policies to explore a spectrum of

research questions surrounding job awareness.
SLURM is an open source product with a BSD license. Our

extensions leverage the existing plugin architecture and will

hopefully be accepted into the main distribution at some point

in the future. We are currently working through the release

process with our funding organization so that the work can be

published to github and made available for general use by the

research community.
We have implemented power aware SLURM plugins for

experimentally exploring a range of power management strate-

gies for hardware over-provisioned HPC systems. Our work

enables the direct comparison of power management strategies

using existing hardware platforms. Additionally, our work

builds on a robust existing scheduling platform, reducing

the distance between state of the art and state of practice

solutions.

ACKNOWLEDGMENT

Part of this work was performed under the auspices of the

U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344 (LLNL-

CONF-701437).

REFERENCES

[1] Top 500, 2016 (accessed August 19, 2016),
https://www.top500.org/lists/2016/06/.

[2] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina et al., “The opportunities
and challenges of exascale computing–summary report of the advanced
scientific computing advisory committee (ascac) subcommittee,” US
Department of Energy Office of Science, 2010.

[3] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra et al., “Top ten exascale
research challenges,” DOE ASCAC Subcommittee Report, 2014.

[4] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L.
Rountree, M. Schulz, and B. R. de Supinski, “Practical Resource
Management in Power-Constrained, High Performance Computing,”
in Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’15.
New York, NY, USA: ACM, 2015, pp. 121–132. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749262

[5] T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing Centers and Electricity Service
Providers: A Geographically Distributed Perspective on Demand Man-
agement in Europe and the United States,” in International Conference
on High Performance Computing. Springer, 2016, pp. 243–260.

[6] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux Utility
for Resource Management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003, pp. 44–60.

[7] Y. Georgiou, D. Glesser, and D. Trystram, “Adaptive Resource and
Job Management for Limited Power Consumption,” in Parallel and
Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE
International. IEEE, 2015, pp. 863–870.

[8] Slurm Power Management Guide, 2015 (accessed August 31, 2016),
http://slurm.schedmd.com/power mgmt.html.

[9] B. Rountree, D. K. Lownenthal, B. R. De Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: Making DVS Practical for Complex
HPC Applications,” in Proceedings of the 23rd international conference
on Supercomputing. ACM, 2009, pp. 460–469.

[10] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supin-
ski, “Exploring Hardware Overprovisioning in Power-Constrained, High
Performance Computing,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing. ACM,
2013, pp. 173–182.

[11] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing Throughput
of Overprovisioned HPC Data Centers Under a Strict Power Budget,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
807–818.

[12] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz,
“POW: System-wide Dynamic Reallocation of Limited Power in
HPC,” in Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’15.
New York, NY, USA: ACM, 2015, pp. 145–148. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749277

[13] L. Savoie, D. K. Lowenthal, B. R. d. Supinski, T. Islam, K. Mohror,
B. Rountree, and M. Schulz, “I/O Aware Power Shifting,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2016, pp. 740–749.

[14] T. Cao, Y. He, and M. Kondo, “Demand-Aware Power Management
for Power-Constrained HPC Systems,” in 2016 16th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid).
IEEE, 2016, pp. 21–31.

[15] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J. Zounmevo,
R. Gupta, K. Yoshii, H. Hoffman, A. Malony, M. Schulz, and P. Beck-
man, “Systemwide Power Management with Argo,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2016, pp. 1118–1121.

[16] N. Gholkar, F. Mueller, and B. Rountree, “Power Tuning HPC Jobs on
Power-Constrained Systems,” in International Conference on Parallel
Architectures and Compilation (PACT), 2016. ACM, 2016.

[17] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,
D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda et al., “Analyzing
and Mitigating the Impact of Manufacturing Variability in Power-
Constrained Supercomputing,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2015, p. 78.

[18] K. Shoga, B. Rountree, M. Schulz, and J. Shafer, “Whitelisting MSRs
with msr-safe,” in 3rd Workshop on Exascale Systems Programming
Tools, in conjunction with SC14, 2014.

3030

